高考数学文优化方案一轮复习课件第第二古典概型苏教江苏专用
- 格式:ppt
- 大小:1.12 MB
- 文档页数:47
1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D 上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是单调增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是单调减函数图象描述自左向右看图象是上升的自左向右看图象是下降的如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件1对于任意的x∈I,都有f(x)≤M;2存在x∈I,使得f(x)=M1对于任意x∈I,都有f(x)≥M;2存在x∈I,使得f(x)=M结论M为函数y=f(x)的最大值M为函数y=f(x)的最小值[小题体验]1.(2019·常州一中月考)f(x)=|x+2|的单调递增区间为________.答案:[—2,+∞)2.若函数f(x)=错误!在区间[2,a]上的最大值与最小值的和为错误!,则a=________.解析:由f(x)=错误!的图象知,f(x)=错误!在(0,+∞)上是减函数,因为[2,a]⊆(0,+∞),所以f(x)=错误!在[2,a]上也是减函数,所以f(x)max=f(2)=错误!,f(x)min=f(a)=错误!,所以错误!+错误!=错误!,所以a=4.答案:43.函数f(x)是在区间(—2,3)上的增函数,则y=f(x+5)的一个递增区间是________.解析:由—2<x+5<3,得—7<x<—2,故y=f(x+5)的递增区间为(—7,—2).答案:(—7,—2)1.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f (x)在区间(—1,0)上是减函数,在(0,1)上是减函数,但在(—1,0)∪(0,1)上却不一定是减函数,如函数f(x)=错误!.3.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但f(x)·g(x),错误!等的单调性与其正负有关,切不可盲目类比.[小题纠偏]1.(2019·海安期中)函数f(x)=错误!的单调递减区间为________.答案:错误!和错误!2.已知函数f(x)=log5(x2—3x—4),则该函数的单调递增区间为________.解析:由题意知x2—3x—4>0,则x>4或x<—1,令y=x2—3x—4,则其图象的对称轴为x=错误!,所以y=x2—3x—4的单调递增区间为(4,+∞).单调递减区间为(—∞,—1),由复合函数的单调性知f(x)的单调递增区间为(4,+∞).答案:(4,+∞)错误!错误![题组练透]1.讨论函数f(x)=错误!在x∈(—1,1)上的单调性.解:设—1<x1<x2<1,则f(x1)—f(x2)=错误!—错误!=错误!.因为—1<x1<x2<1,所以x2—x1>0,x1x2+1>0,(x错误!—1)(x错误!—1)>0,所以f(x1)—f(x2)>0,即f(x1)>f(x2),故函数f(x)在(—1,1)上为减函数.2.已知函数f(x)=a+错误!(a∈R),判断函数f(x)的单调性,并用单调性的定义证明.解:f(x)在(—∞,0),(0,+∞)上均为减函数,证明如下:函数f(x)的定义域为(—∞,0)∪(0,+∞),在定义域内任取x1,x2,使0<x1<x2,则f(x2)—f(x1)=错误!—错误!=错误!.因为0<x1<x2,所以2x1<2x2,2x2>1,2x1>1,所以2x1—2x2<0,2x1—1>0,2x2—1>0,从而f(x2)—f(x1)<0,即f(x2)<f(x1),所以f(x)在(0,+∞)上为减函数,同理可证f(x)在(—∞,0)上为减函数.[谨记通法]1.定义法判断函数单调性的步骤取值错误!错误!错误!2.导数法判断函数单调性的步骤错误!错误!错误!错误!错误![典例引领]求下列函数的单调区间:(1)y=—x2+2|x|+1;(2)y=log错误!(x2—3x+2).解:(1)由于y=错误!即y=错误!画出函数图象如图所示,单调递增区间为(—∞,—1]和[0,1],单调递减区间为[—1,0]和[1,+∞).(2)令u=x2—3x+2,则原函数可以看作y=log错误!u与u=x2—3x+2的复合函数.令u=x2—3x+2>0,则x<1或x>2.所以函数y=log错误!(x2—3x+2)的定义域为(—∞,1)∪(2,+∞).又u=x2—3x+2的对称轴x=错误!,且开口向上.所以u=x2—3x+2在(—∞,1)上是单调减函数,在(2,+∞)上是单调增函数.而y=log错误!u在(0,+∞)上是单调减函数,所以y=log错误!(x2—3x+2)的单调递减区间为(2,+∞),单调递增区间为(—∞,1).[由题悟法]确定函数的单调区间的3种方法[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[即时应用]1.函数f(x)=log2(x2—4)的单调递增区间为________.解析:令t=x2—4>0,解得x<—2或x>2,故函数f(x)的定义域为{x|x<—2或x>2},且f(x)=log2t.利用二次函数的性质可得,t =x 2—4在定义域{x |x <—2或x >2}内的单调递增区间为(2,+∞),所以函数f (x )的单调递增区间为(2,+∞).答案:(2,+∞) 2.函数y =错误!2231x x -+的单调递增区间为________.解析:令u =2x 2—3x +1=2错误!2—错误!.因为u =2错误!2—错误!在错误!上单调递减,函数y =错误!u 在R 上单调递减. 所以y =错误!2231x x -+在错误!上单调递增.答案:错误! 错误! 错误![锁定考向]高考对函数单调性的考查多以填空题的形式出现,有时也应用于解答题中的某一问中. 常见的命题角度有: (1)求函数的值域或最值; (2)比较数值的大小; (3)利用单调性解函数不等式;(4)利用单调性求参数的取值范围或值.[题点全练]角度一:求函数的值域或最值1.(2019·启东中学检测)设m ∈R ,若函数f (x )=|x 3—3x —2m |+m 在x ∈[0,2]上的最大值与最小值之差为3,则m =________.解析:令y =x 3—3x ,x ∈[0,2],则y ′=3x 2—3. 由y ′>0,得1<x <2;由y ′<0,得0<x <1,所以y =x 3—3x 在(0,1)上单调递减,在(1,2)上单调递增,所以当x ∈[0,2]时,y =x 3—3x 的值域为[—2,2],y =x 3—3x —2m 的值域为[—2—2m,2—2m ].1当m =0时,f (x )max =2,f (x )min =0,不符合题意;2当m ≥1时,f (x )max =f (—2)=2+3m ,f (x )min =f (2)=3m —2,f (x )max —f (x )=4,不符合题意;min3当0<m<1时,f(x)max=f(—2)=2+3m,f(x)min=m,f(x)max—f(x)min=2+2m=3,解得m=错误!,符合题意;4当—1<m<0时,f(x)max=f(2)=2—m,f(x)min=m,f(x)max—f(x)min=2—2m=3,解得m=—错误!,符合题意;5当m≤—1时,f(x)max=2—m,f(x)min=—2—m,f(x)max—f(x)min=4,不符合题意.综上可得,m=±错误!.答案:±错误!角度二:比较数值的大小2.设函数f(x)定义在实数集R上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x—1,则f错误!,f错误!,f错误!的大小关系为________________(用“<”号表示).解析:由题设知,f(x)的图象关于直线x=1对称,当x<1时,f(x)单调递减,当x≥1时,f(x)单调递增,所以f错误!=f错误!=f错误!=f错误!,又错误!<错误!<错误!<1,所以f错误!>f错误!>f 错误!,即f错误!>f错误!>f错误!.答案:f错误!<f错误!<f错误!角度三:利用单调性解函数不等式3.设函数f(x)=错误!若f(a+1)≥f(2a—1),则实数a的取值范围是________.解析:易知函数f(x)在定义域(—∞,+∞)上是增函数,∵f(a+1)≥f(2a—1),∴a+1≥2a—1,解得a≤2.故实数a的取值范围是(—∞,2].答案:(—∞,2]x)>04.定义在R上的奇函数y=f(x)在(0,+∞)上递增,且f 错误!=0,求不等式f(log19的解集.解:∵y=f(x)是定义在R上的奇函数,且y=f(x)在(0,+∞)上递增.∴y=f(x)在(—∞,0)上也是增函数,又f 错误!=0,知f 错误!=—f 错误!=0.故原不等式f(log19x)>0可化为f(log19x)>f错误!或f错误!<f(log19x)<f错误!,∴log19x>错误!或—错误!<log19x<0,解得0<x<错误!或1<x<3.∴原不等式的解集为错误!.角度四:利用单调性求参数的取值范围或值5.(2019·南通调研)已知函数f(x)=错误!(a>0,且a≠1)满足对任意x1≠x2,都有错误!<0成立,则实数a的取值范围是________.解析:由题意知f(x)为减函数,所以错误!解得0<a≤错误!.答案:错误![通法在握]函数单调性应用问题的常见类型及解题策略(1)求函数最值(五种常用方法)(2)比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于填空题能数形结合的尽量用图象法求解.(3)解不等式在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(4)利用单调性求参数的范围(或值)的方法1视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;2需注意若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的.[提醒] 1若函数在区间[a,b]上单调,则该函数在此区间的任意子区间上也是单调的;2分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.[演练冲关]1.(2019·连云港调研)若函数f(x)=错误!是在R上的减函数,则a的取值范围是________.解析:由题意得错误!解得—6≤a<1.答案:[—6,1)2.函数f(x)=—错误!+b(a>0)在错误!上的值域为错误!,则a=________,b=________.解析:因为f(x)=—错误!+b(a>0)在错误!上是增函数,所以f错误!=错误!,f(2)=2.即错误!解得a=1,b=错误!.答案:1错误!3.已知函数f(x)=ln(2+|x|)—错误!,则使得f(x+2)>f(2x—1)成立的x的取值范围是________.解析:由f(—x)=f(x)可得函数f(x)是定义域R上的偶函数,且x>0时函数f(x)单调递增,则不等式等价于f(|x+2|)>f(|2x—1|),即|x+2|>|2x—1|,两边平方化简得3x2—8x—3<0,解得—错误!<x<3.答案:错误!一抓基础,多练小题做到眼疾手快1.(2019·如皋中学月考)函数f(x)=|x2—2x+2|的增区间是________.解析:因为函数f(x)=|x2—2x+2|=|(x—1)2+1|=(x—1)2+1,所以函数f(x)=|x2—2x+2|的增区间是[1,+∞).答案:[1,+∞)2.函数y=错误!—x(x≥0)的最大值为________.解析:令t=错误!,则t≥0,所以y=t—t2=—错误!2+错误!,结合图象知,当t=错误!,即x=错误!时,y max=错误!.答案:错误!3.(2018·徐州质检)函数f(x)=错误!x—log2(x+2)在区间[—1,1]上的最大值为________.解析:因为y=错误!x和y=—log2(x+2)都是[—1,1]上的减函数,所以y=错误!x—log2(x +2)是在区间[—1,1]上的减函数,所以最大值为f(—1)=3.答案:34.已知偶函数f(x)在区间[0,+∞)上单调递减,则满足f(2x—1)<f(5)的x的取值范围是________.解析:因为偶函数f(x)在区间[0,+∞)上单调递减,且f(2x—1)<f(5),所以|2x—1|>5,即x<—2或x>3.答案:(—∞,—2)∪(3,+∞)5.若函数f(x)=—x2+2ax与g(x)=(a+1)1—x在区间[1,2]上都是减函数,则a的取值范围是________.解析:因为f(x)=—x2+2ax=—(x—a)2+a2在[1,2]上是减函数,所以a≤1.又g(x)=(a+1)1—x在[1,2]上是减函数.所以a+1>1,所以a>0.综上可知0<a≤1.答案:(0,1]6.(2019·海门中学高三检测)已知函数f(x)=错误!满足对任意x1<x2,都有f(x1)<f(x2)成立,那么实数a的取值范围是________.解析:∵函数f(x)满足对任意x1<x2,都有f(x1)<f(x2)成立,∴函数f(x)在定义域上是增函数,则满足错误!即错误!解得错误!≤a<2.答案:错误!二保高考,全练题型做到高考达标1.设函数f(x)=错误!在区间(—2,+∞)上是增函数,则a的取值范围是________.解析:f(x)=错误!=a—错误!,因为函数f(x)在区间(—2,+∞)上是增函数.所以错误!解得a≥1.答案:[1,+∞)2.(2019·江阴高三检测)设a>0且a≠1,函数f(x)=log a|ax2—x|在[3,5]上是单调增函数,则实数a的取值范围为______________.解析:∵a>0且a≠1,函数f(x)=log a|ax2—x|=log a|x·(ax—1)|在[3,5]上是单调增函数,∴当a>1时,y=x·(ax—1)在[3,5]上是单调增函数,且y>0,满足f(x)是增函数;当0<a<1时,要使f(x)在[3,5]上是单调增函数,只需错误!解得错误!≤a<错误!.综上可得,a>1或错误!≤a<错误!.答案:错误!∪(1,+∞)3.对于任意实数a,b,定义min{a,b}=错误!设函数f(x)=—x+3,g(x)=log2x,则函数h(x)=min{f(x),g(x)}的最大值是________.解析:依题意,h(x)=错误!当0<x≤2时,h(x)=log2x是增函数,当x>2时,h(x)=—x +3是减函数,所以h(x)在x=2时,取得最大值h(2)=1.答案:14.(2018·徐州一模)已知函数y=f(x)和y=g(x)的图象关于y轴对称,当函数y=f(x)和y=g(x)在区间[a,b]上同时递增或者同时递减时,把区间[a,b]叫做函数y=f(x)的“不动区间”,若区间[1,2]为函数f(x)=|2x—t|的“不动区间”,则实数t的取值范围是________.解析:因为函数y=f(x)与y=g(x)的图象关于y轴对称,所以g(x)=f(—x)=|2—x—t|.因为区间[1,2]为函数f(x)=|2x—t|的“不动区间”,所以函数f(x)=|2x—t|和函数g(x)=|2—x—t|在[1,2]上单调性相同,因为y=2x—t和函数y=2—x—t的单调性相反,所以(2x—t)(2—x—t)≤0在[1,2]上恒成立,即2—x≤t≤2x在[1,2]上恒成立,解得错误!≤t≤2.答案:错误!5.(2018·金陵中学月考)定义在[—2,2]上的函数f(x)满足(x1—x2)[f(x1)—f(x2)]>0,x1≠x2,且f(a2—a)>f(2a—2),则实数a的取值范围为________.解析:函数f(x)满足(x1—x2)[f(x1)—f(x2)]>0,x1≠x2,所以函数在[—2,2]上单调递增,所以错误!所以错误!所以0≤a<1.答案:[0,1)6.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(—2),f(π),f (—3)的大小关系为____________(用“<”表示).解析:因为f(x)是偶函数,所以f(—3)=f(3),f(—2)=f(2).又因为函数f(x)在[0,+∞)上是增函数,所以f(π)>f(3)>f(2),所以f(—2)<f(—3)<f(π).答案:f(—2)<f(—3)<f(π)7.(2018·苏州高三暑假测试)已知函数f(x)=x+错误!(a>0),当x∈[1,3]时,函数f(x)的值域为A,若A⊆[8,16],则a的值等于________.解析:因为A⊆[8,16],所以8≤f(x)≤16对任意的x∈[1,3]恒成立,所以错误!对任意的x∈[1,3]恒成立,当x∈[1,3]时,函数y=16x—x2在[1,3]上单调递增,所以16x—x2∈[15,39],函数y=8x—x2在[1,3]上也单调递增,所以8x—x2∈[7,15],所以错误!即a的值等于15.答案:158.若函数f(x)=a x(a>0,a≠1)在[—1,2]上的最大值为4,最小值为m,且函数g(x)=(1—4m)错误!在[0,+∞)上是增函数,则a=________.解析:函数g(x)在[0,+∞)上为增函数,则1—4m>0,即m<错误!.若a>1,则函数f(x)在[—1,2]上的最小值为错误!=m,最大值为a2=4,解得a=2,错误!=m,与m<错误!矛盾;当0<a<1时,函数f(x)在[—1,2]上的最小值为a2=m,最大值为a—1=4,解得a=错误!,m=错误!.所以a=错误!.答案:错误!9.已知函数f(x)=a—错误!.(1)求证:函数y=f(x)在(0,+∞)上是增函数;(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.解:(1)证明:当x∈(0,+∞)时,f(x)=a—错误!,设0<x1<x2,则x1x2>0,x2—x1>0,f(x2)—f(x1)=错误!—错误!=错误!—错误!=错误!>0,所以f(x)在(0,+∞)上是增函数.(2)由题意a—错误!<2x在(1,+∞)上恒成立,设h(x)=2x+错误!,则a<h(x)在(1,+∞)上恒成立.任取x1,x2∈(1,+∞)且x1<x2,h(x1)—h(x2)=(x1—x2)错误!.因为1<x1<x2,所以x1—x2<0,x1x2>1,所以2—错误!>0,所以h(x1)<h(x2),所以h(x)在(1,+∞)上单调递增.故a≤h(1),即a≤3,所以实数a的取值范围是(—∞,3].10.(2019·江阴期中)设函数f(x)=错误!是定义在(—1,1)上的奇函数,且f错误!=错误!.(1)求函数f(x)的解析式;(2)用单调性定义证明f(x)在(—1,1)上是增函数;(3)解不等式f(|t|—1)+f(t2)<f(0).解:(1)因为f(x)=错误!是定义在(—1,1)上的奇函数,所以f(0)=b=0,所以f(x)=错误!,而f错误!=错误!=错误!,解得a=1,所以f(x)=错误!,x∈(—1,1).(2)证明:任取x1,x2∈(—1,1)且x1<x2,则f(x1)—f(x2)=错误!—错误!=错误!.因为x1<x2,所以x1—x2<0,又因为x1,x2∈(—1,1),所以1—x1x2>0,所以f(x1)—f(x2)<0,即f(x1)<f(x2),所以函数f(x)在(—1,1)上是增函数.(3)由题意,不等式f(|t|—1)+f(t2)<f(0)可化为f(|t|—1)+f(t2)<0,即f(t2)<—f(|t|—1),因为f(x)是定义在(—1,1)上的奇函数,所以f(t2)<f(1—|t|),所以错误!解得错误!<t<错误!且t≠0,所以该不等式的解集为错误!∪错误!.三上台阶,自主选做志在冲刺名校1.f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1,当f (x)+f(x—8)≤2时,x的取值范围是____________.解析:因为f(9)=f(3)+f(3)=2,所以由f(x)+f(x—8)≤2,可得f[x(x—8)]≤f (9),因为f(x)是定义在(0,+∞)上的增函数,所以有错误!解得8<x≤9.答案:(8,9]2.已知定义在区间(0,+∞)上的函数f(x)满足f错误!=f(x1)—f(x2),且当x>1时,f (x)<0.(1)证明:f(x)为单调递减函数;(2)若f(3)=—1,求f(x)在[2,9]上的最小值.解:(1)证明:任取x1,x2∈(0,+∞),且x1>x2,则错误!>1,由于当x>1时,f(x)<0,所以f错误!<0,即f(x1)—f(x2)<0,因此f(x1)<f(x2),所以函数f(x)在区间(0,+∞)上是单调递减函数.(2)因为f(x)在(0,+∞)上是单调递减函数,所以f(x)在[2,9]上的最小值为f(9).由f错误!=f(x1)—f(x2)得,f错误!=f(9)—f(3),而f(3)=—1,所以f(9)=—2.所以f(x)在[2,9]上的最小值为—2.。