稳压二极管伏安特性曲线的反向区、符号和典型应用电路
- 格式:doc
- 大小:29.50 KB
- 文档页数:2
二极管的伏安特性曲线图解二极管的性能可用其伏安特性来描述。
在二极管两端加电压U,然后测出流过二极管的电流I,电压与电流之间的关系i=f(u)即是二极管的伏安特性曲线,如图1所示。
图1 二极管伏安特性曲线二极管的伏安特性表达式可以表示为式1-2-1其中iD为流过二极管两端的电流,uD为二极管两端的加压,UT在常温下取26mv。
IS为反向饱和电流。
1、正向特性特性曲线1的右半部分称为正向特性,由图可见,当加二极管上的正向电压较小时,正向电流小,几乎等于零。
只有当二极管两端电压超过某一数值Uon时,正向电流才明显增大。
将Uon 称为死区电压。
死区电压与二极管的材料有关。
一般硅二极管的死区电压为0.5V左右,锗二极管的死区电压为0.1V左右。
当正向电压超过死区电压后,随着电压的升高,正向电流将迅速增大,电流与电压的关系基本上是一条指数曲线。
由正向特性曲线可见,流过二极管的电流有较大的变化,二极管两端的电压却基本保持不变。
通过在近似分析计算中,将这个电压称为开启电压。
开启电压与二极管的材料有关。
一般硅二极管的死区电压为0.7V左右,锗二极管的死区电压为0.2V左右。
2、反向特性特性曲线1的左半部分称为反向特性,由图可见,当二极管加反向电压,反向电流很小,而且反向电流不再随着反向电压而增大,即达到了饱和,这个电流称为反向饱和电流,用符号IS 表示。
如果反向电压继续升高,当超过UBR以后,反向电流急剧增大,这种现象称为击穿,UBR称为反向击穿电压。
图2 二极管的温度特性击穿后不再具有单向导电性。
应当指出,发生反向击穿不意味着二极管损坏。
实际上,当反向击穿后,只要注意控制反向电流的数值,不使其过大,即可避免因过热而烧坏二极管。
当反向电压降低后,二极管性能仍可能恢复正常。
3、温度对二极管伏安特性的影响温度升高,正向特性左移,反向特性下移;室温附近,温度每升高1℃;正向压降减少2-2.5mV;室温附近,温度每升高10℃,反向电流增大一倍。
各种二极管符号及作用二极管是一种常见的电子器件,广泛应用于电路中。
它具有电流只能单向通过的特性,常用于整流、检波、稳压、开关等电路中。
下面将详细介绍各种二极管的符号及作用。
1.正向导通二极管(正向二极管):正向导通二极管的符号为一个三角箭头指向一条直线。
它由P型半导体和N型半导体组成,P区称为阳极,N区称为阴极。
当外加正向电压时,两个半导体之间的势垒会被压低或消除,形成导电通道,电流可以顺利通过。
所以正向导通二极管主要用作整流器、放大器等电路中。
2.反向截止二极管(反向二极管):反向截止二极管的符号为一个三角箭头指向一条直线,并且箭头与直线相连。
它同样由P型半导体和N型半导体组成,但是当外加反向电压时,两个半导体之间的势垒会增大,阻断电流流动。
所以反向截止二极管主要用作保护电路中的组件,防止过电压损坏其他器件。
3.发光二极管(LED):发光二极管的符号与正向导通二极管相似,但在箭头顶部加了两条斜线,表示发光。
发光二极管在正向导通时会发出可见光或红外线,常用于指示灯、显示屏、数码管等场景中。
4. 齐纳二极管(Zener二极管):齐纳二极管的符号与正向导通二极管相似,但在箭头上加了一个斜杠。
齐纳二极管是一种特殊的二极管,主要用于稳压电路中。
当反向电压达到其中一特定电压值时,齐纳二极管会出现反向击穿现象,即通过漏电流来维持固定电压输出。
因此,齐纳二极管可以用来实现稳定的电压源。
5. Schottky二极管:Schottky二极管的符号与正向导通二极管相似,但箭头底部加了一个横线。
Schottky二极管由金属与半导体的接触形成,具有快速开关速度和低导通压降的特性。
它广泛应用于高速开关电路、电源转换器、射频调制解调器等场景中。
6.多层结二极管(TPD):多层结二极管的符号使用两个三角箭头,一个指向上方,一个指向下方,两个三角箭头之间有一个横线连接。
多层结二极管由多个PN结级联而成,可以在高电压条件下工作。
硅稳压二极管的伏安特性曲线和稳压电路硅稳压管利用特别工艺制成具有稳压作用的特别二极管。
形状与一般二极管基本相同,电路符号有所差别,文字符号用V表示。
硅稳压二极管的伏安特性曲线如图所示,由曲线可以看出:(1)硅稳压二极管的正向特性与一般二极管相同。
(2)反向特性曲线比一般二极管陡峭。
在反向电压较小时,管子只有极微的反向电流。
当反向电流达到某一数值Uw时,管子突然导通,电压即使增加很少也会引起较大电流。
这种现象叫“击穿”,Uw叫击穿电压(即稳压管的稳定电压)。
在反向击穿区,稳压管的电流在很大范围内变化,Uw却基本不变(见曲线AB段),这就是稳压管的稳压作用。
由于稳压管是工作在反向击穿状态,所以接到电路中时应当反接(见图),即稳压管的正极应接被稳定电压的负极;稳压管的负极应接被稳定电压的正极。
假如稳压管的极性接反,不能起到稳压作用,此时稳压管两端的正向电压约为0.7V。
硅稳压管稳压电路如图所示。
图中Ui是需要稳定的直流电压,R是限流电阻,RL是负载电阻。
电路的工作过程如下。
(1)设负载电阻RL固定不变。
当输入电压Ui上升时,流过稳压管的电流将增加,流过限流电阻R的电流也相应地增加,则输出电压(也就是负载两端的电压)U0=Ui - UR就能保持不变。
同理,若输入电压减小,限流电阻上的电压也相应削减,从而保证负载两端的电压仍旧稳定。
(2)设输入电压Ui不变。
当负载电阻削减而使负载电流增加、限流电阻上的压降增大时,输出电压将下降。
但输出电压稍有下降,就会引起流过稳压管的电流下降,从而抵消了负载电流变化在限流电阻上造成的电压变化,保证了输出电压的稳定。
同理,当负载电阻增大时,由于稳压管的稳压作用,也能保证输出电压稳定。
可见,除稳压管起稳压作用外,限流电阻不仅有限流作用,也有调压作用,与稳压管协作共同稳定输出电压。
用示波法显示稳压二极管的伏安特性曲线【摘要】本实验采用示波法来显示稳压二极管的伏安特性曲线,通过示波器观察此曲线,了解稳压二极管的一些特性。
【关键字】稳压二极管单向导电特性示波器伏安特性曲线【概要】稳压二极管是一种具有单向导电性的半导体元件。
其特点是击穿后,两端的电压基本保持不变。
这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。
设计实验用示波器测二极管伏安特性,将二极管的电压U加到示波器的“X轴输入”端,将二极管的电流转化为电压后加到示波器的“Y轴输入”端,从而在示波器屏上得到伏安特性曲线图象,直观的显示二极管的伏安特性。
【实验原理】稳压二极管的正向电流与电压、反向电流与电压之间的关系可用I~V特性曲线表示,如图给出了稳压管的伏安特性曲线及其符号。
从图中可以看出,给二极管两端加以正向电压,二极管表现为一个低阻值的非线性电阻,当正向电压较小时,正向电流几乎为零,只有当正向电压超过死区电压(一般硅管约为0.5V,锗管约为0.1V)时,正向电流才明显增大,当正向管压降达到导通时(一般硅管约为0.6~0.7V,锗管约为0.2~0.3V),管子才处在正向导通状态。
迅速增大的电流值有一最大限度,这个最大限度称为二极管的最大正向电流。
给二极管两端加以反向电压,二极管表现为一个高阻值电阻。
当反向电压较小时,反向电流很小,当反向电压超过反向击穿电压(一般在几十伏以上)后,反向电流会突然增大,二极管处于击穿状态。
如右图,在a、b端接上交流电压(其最大输出电压的有效值一般为6~8V左右,并能随时调节)若接上直流电压,屏幕上只显示正向特征曲线。
在A、B之间测出的是近似加在待测元件R0的电压,在C、B间的是电阻R的电压,这个电压正比于R0的电流强度。
因而将二极管的电压U加到示波器的“X轴输入”端,将二极管的电流转化为电压后加到示波器的“Y轴输入”端,从而在示波器屏上得到伏安特性曲线图象。
稳压二极管原理电路及应用引言二极管因用途不同而种类繁多。
稳压二极管是其中的一种。
我们知道晶体二极管具有单向导电的性能。
正向连接时是导电的(在电路中,二极管的正极接电源的正极,二极管的负极接电源的负极),反向连接是不导电的,只有很小很小的漏电流。
但是如果给某些特定二极管反向电压逐渐加大到某一数值,二极管就会被击穿,这时二极管又开始反向导电。
随着导电电流逐渐增大(只要电流不是增加到损坏二极管的程度),二极管两端的电压却基本上保持不变,几乎恒定在二极管击穿的电压数值上。
这就是二极管的反向击穿特性。
利用这个特性,人们制成稳压二极管[1]。
由于这种反向击穿特性能起稳压作用,所以在电路中稳压二极管必须反向连接,就是二极管的正极接电源的负极,二极管的负极接电源的正极。
1.稳压二极管的原理及电路1.1稳压管的特性稳压管的伏安特性曲线如图l所示。
由图可见,反向电压在一定范围内变化时,反向电流很小;当反向电压增高到击穿电压时,反向电流突然剧增,即稳压管反向击穿;此后,虽然电流在很大范围内变化,但稳压管两端的电压变化很小,这一特性便可用来稳压。
稳压管与其他二极管不同的是,其反向击穿是可逆的。
当反向电压去掉后,稳压管又恢复正常状态但是,如果反向电流超过允许值,稳压管的PN结也会因过热而损坏。
由于硅管的热稳定性比锗管好,因此一般都用硅管做稳压二极管,例如2CW系列和2DW系列都是硅稳压二极管[2]图1 硅稳压二极管伏安特性和符号1.2 稳压管的主要参数1.2.1 稳定电压U:稳压管反向击穿后稳定工作时的电压值称为稳定电压,如2CW13型为5V一6.5V,具有温度补偿作用的2DW7A型稳压管为5.8V一6.6V。
对于某只稳压管,其U Z是这个范围内的某一确定数值。
因此在使用时,具体数值需要实际测试。
1.2.2 稳定电流I Z稳压管反向击穿后稳定工作时的反向电流称为稳定电流。
稳压管允许通过的最大反向电流称为最大稳定电流I Zmax。
一、稳压二极管原理及特性一般二极管都是正向导通,反向截止;加在二极管上的反向电压如果超过二极管的承受能力,二极管就要击穿损毁。
但是有一种二极管,它的正向特性与普通二极管相同,而反向特性却比较特殊:当反向电压加到一定程度时,虽然管子呈现击穿状态,通过较大电流,却不损毁,并且这种现象的重复性很好;只要管子处在击穿状态,尽管流过管子的电在变化很大,而管子两端的电压却变化极小起到稳压作用。
这种特殊的二极管叫稳压管。
稳压管的型号有2CW、2DW 等系列,它的电路符号如图5-17所示。
稳压管的稳压特性,可用图5一18所示伏安特性曲线很清楚地表示出来。
稳压管是利用反向击穿区的稳压特性进行工作的,因此,稳压管在电路中要反向连接。
稳压管的反向击穿电压称为稳定电压,不同类型稳压管的稳定电压也不一样,某一型号的稳压管的稳压值固定在口定范围。
例如:2CW11的稳压值是3.2伏到4.5伏,其中某一只管子的稳压值可能是3.5伏,另一只管子则可能是4.2伏。
在实际应用中,如果选择不到稳压值符合需要的稳压管,可以选用稳压值较低的稳压管,然后串联几只硅二极管“枕垫”,把稳定电压提高到所需数值。
这是利用硅二极管的正向压降为0.6~0.7伏的特点来进行稳压的。
因此,二极管在电路中必须正向连接,这是与稳压管不同的。
稳压管稳压性能的好坏,可以用它的动态电阻r来表示:显然,对于同样的电流变化量ΔI,稳压管两端的电压变化量ΔU越小,动态电阻越小,稳压管性能就越好。
稳压管的动态电阻是随工作电流变化的,工作电流越大,动态电阻越小。
因此,为使稳压效果好,工作电流要选得合适。
工作电流选得大些,可以减小动态电阻,但不能超过管子的最大允许电流(或最大耗散功率)。
各种型号管子的工作电流和最大允许电流,可以从手册中查到。
稳压管的稳定性能受温度影响,当温度变化时,它的稳定电压也要发生变化,常用稳定电压的温度系数来表示,这种性能例如2CW19型稳压管的稳定电压Uw= 12伏,温度系数为0.095%℃,说明温度每升高1℃,其稳定电压升高11.4毫伏。
什么是稳压二极管稳压二极管(又叫齐纳二极管)它的电路符号是:,稳压二极管是一种用于稳定电压的单PN结二极管。
此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。
在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。
稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。
稳压管的应用:1、浪涌保护电路(如图2):稳压管在准确的电压下击穿,这就使得它可作为限制或保护之元件来使用,因为各种电压的稳压二极管都可以得到,故对于这种应用特别适宜。
图中的稳压二极管D是作为过压保护器件。
只要电源电压VS超过二极管的稳压值D就导通。
使继电器J吸合负载RL就与电源分开。
2、电视机里的过压保护电路(如图3):EC是电视机主供电压,当EC电压过高时,D导通,三极管BG导通,其集电极电位将由原来的高电平(5V)变为低电平,通过待机控制线的控制使电视机进入待机保护状态。
3、电弧抑制电路如图4:在电感线圈上并联接入一只合适的稳压二极管(也可接入一只普通二极管原理一样)的话,当线圈在导通状态切断时,由于其电磁能释放所产生的高压就被二极管所吸收,所以当开关断开时,开关的电弧也就被消除了。
这个应用电路在工业上用得比较多,如一些较大功率的电磁吸控制电路就用到它。
4、串联型稳压电路(如图5):在此电路中。
串联稳压管BG的基极被稳压二极管D钳定在13V,那么其发射极就输出恒定的12V电压了。
这个电路在很多场合下都有应用国产稳压二极管产品的分类二极管的击穿通常有三种情况,即雪崩击穿、齐纳击穿和热击穿。
(1)雪崩击穿对于掺杂浓度较低的PN结,结较厚,当外加反向电压高到一定数值时,因外电场过强,使PN结内少数载流子获得很大的动能而直接与原子碰撞,将原子电离,产生新的电子空穴对,由于链锁反应的结果,使少数载流子数目急剧增多,反向电流雪崩式地迅速增大,这种现象叫雪崩击穿。
稳压二极管伏安特性曲线的反向区、符号和典型应用电路
稳压二极管是应用在反向击穿区的特殊硅二极管。
稳压二极管的伏安特性曲线与硅二极管的伏安特性曲线完全一样,稳压二极管伏安特性曲线的反向区、符号和典型应用电路如图1所示。
(a) 符号 (b) 伏安特性 (c) 应用电路图 1 稳压二极管的伏安特性
从稳压二极管的伏安特性曲线上可以确定稳压二极管的参数。
(1)稳定电压VZ ——在规定的稳压管反向工作电流IZ下,所对应的反向工作电压。
(2)动态电阻rZ——其概念与一般二极管的动态电阻相同,只不过稳压二极管的动态电阻是从它的反向特性上求取的。
RZ愈小,反映
稳压管的击穿特性愈陡。
rz =DVZ /DIZ
(3)最大耗散功率PZM ——稳压管的最大功率损耗取决于PN结的面积和散热等条件。
反向工作时,PN结的功率损耗为 PZ= VZIZ,由PZM和VZ可以决定IZmax。
(4)最大稳定工作电流IZmax和最小稳定工作电流IZmin——稳压管的最大稳定工作电流取决于最大耗散功率,即PZmax=VZIZmax 。
而Izmin对应VZmin。
若IZ<IZmin,则不能稳压。
(5)稳定电压温度系数——温度的变化将使VZ改变,在稳压管中,当êVZê>7V时,VZ具有正温度系数,反向击穿是雪崩击穿。
当êVZê<4V时,VZ具有负温度系数,反向击穿是齐纳击穿。
当4V<êVZê <7V时,稳压管可以获得接近零的温度系数。
这样的稳压二极管可以作为标准稳压管使用。
稳压二极管在工作时应反接,并串入一只电阻。
电阻的作用一是起限流作用,以保护稳压管;其次是当输入电压或负载电流变化时,通过该电阻上电压降的变化,取出误差信号以调节稳压管的工作电流,从而起到稳压作用。