【高考模拟】2017年上海市虹口区高考数学二模试卷含答案解析
- 格式:doc
- 大小:552.00 KB
- 文档页数:21
1A虹口区2017学年度第二学期期中教学质量监控测试高三数学试卷(时间120分钟,满分150分)2018.4一.填空题(1~6题每小题4分,7~12题每小题5分,本大题满分54分)1.已知(,]A a=-∞,[1,2]B=,且A Bφ⋂≠,则实数a的范围是.2.直线(1)10ax a y+-+=及直线420x ay+-=互相平行,则实数a=.3.已知(0,)απ∈,,则.4.长方体的对角线及过同一个顶点的三个表面所成的角分别为α,β,γ,则222cos cos cosαβγ++=.5.已知函数,则11[(9)]f f---=.6.从集合{}1,1,2,3-随机取一个为m,从集合{}2,1,1,2--随机取一个为n,则方程表示双曲线的概率为.7.已知数列{}n a是公比为q的等比数列,且2a,4a,3a成等差数列,则q= _______.8.若将函数6()f x x=表示成23601236()(1)(1)(1)(1)f x a a x a x a x a x=+-+-+-++-则3a的值等于.9.如图,长方体1111ABCD A B C D-的边长11AB AA==,AD=,它的外接球是球O,则A,1A面距离等于.10.椭圆的长轴长等于m,短轴长等于n,则此椭圆的内接矩形的面积的最第1 页第 2 页大值为_______.11.[]x 是不超过x 的最大整数,则方程满足x <1的所有实数解是 .12.函数()sin f x x =,对于123n x x x x <<<<且[]12,,,0,8n x x x π∈(10n ≥),记1223341()()()()()()()()n n M f x f x f x f x f x f x f x f x -=-+-+-++-,则M 的最大值等于 .二.选择题(每小题5分,满分20分) 13.下列函数是奇函数的是( ).14.在Rt ABC ∆中,AB AC =,点M 、N 是线段AC 的三等分点,点P 在线段BC 上运动且满足PC k BC =⋅,当PM PN ⋅取得最小值时,实数k 的值为( )15.直线:10l kx y k -++=及圆228x y +=交于A ,B 两点,且AB =,过点A ,B 分别作l 的垂线及y 轴交于点M ,N ,则MN等于( ) .A .B4 .C .D 816.已知数列{}n a 的首项1a a =,且04a <≤,,n S 是此数列的前n 项与,则以下结论正确的是( ).A 不存在...a 与n 使得2015n S = .B 不存在...a 与n 使得2016n S = .C 不存在...a 与n 使得2017n S = .D 不存在...a 与n 使得2018n S =三.解答题(本大题满分76分)17.(本题满分14分.第(1)小题7分,第(2)小题7分.)如图,直三棱柱的底面是等腰直角三角形,在线1AB AC ==,,高等于3,点1M ,2M ,1N ,2N 为所P 2P 1C 1A N 2N 1第 3 页段的三等分点.(1)求此三棱柱的体积与三棱锥112A AM N -的体积; (2)求异面直线12A N ,1AM 所成的角的大小.18.(本题满分14分.第(1)小题7分,第(2)小题7分.)已知ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,cos sin z A i A =+⋅(i 是虚数单位)是方程210z z -+=的根,3a =.(1)若 ,求边长c 的值; (2)求ABC ∆面积的最大值.19.(本题满分14分.第(1)小题6分,第(2)小题8分.)平面内...的“向量列”{}n a ,如果对于任意的正整数n ,均有1n n a a d +-=,则称此“向量列”为“等差向量列”,d 称为“公差向量”.平面内的“向量列”{}n b ,如果01≠b 且对于任意的正整数n ,均有1n n b q b +=⋅(0q ≠),则称此“向量列”为“等比向量列”,常数q 称为“公比”.(1)如果“向量列”{}n a 是“等差向量列”,用1a 与“公差向量”d 表示12n a a a +++;(2)已知{}n a 是“等差向量列”,“公差向量”(3,0)d =,1(1,1)a =,(,)n n n a x y =;{}nb 是“等比向量列”,“公比”2q =,1(1,3)b =,(,)n n n b m k =.求1122n n a b a b a b ⋅+⋅++⋅.20.(本题满分16分.第(1)小题4分,第(2)小题5分,第(3)小题7分.)如果直线及椭圆只有一个交点,称该直线为椭圆的“切线”.已知椭圆,点(,)M m n 是椭圆C 上的任意一点,直线l 过点M 且是椭圆C 的“切线”.第 4 页x(1)证明:过椭圆C 上的点(,)M m n 的“切线”方程是;(2)设A ,B 是椭圆C 长轴上的两个端点,点(,)M m n 不在坐标轴上,直线MA ,MB 分别交y 轴于点P ,Q ,过M 的椭圆C 的“切线”l 交y 轴于点D ,证明:点D是线段PQ 的中点;(3)点(,)M m n 不在x 轴上,记椭圆C 的两个焦点分别为1F 与2F ,判断过M 的椭圆C 的“切线”l 及直线1MF ,2MF 21.(本题满分18分.第(1)小题32)小题7分,第(3)小题8分.)已知函数3()f x ax x a =+-(a R ∈,x R ∈(1)如果是关于x 的不等式()0f x ≤的解,求实数a 的取值范围; (2)判断()g x 在与的单调性,并说明理由;(3)证明:函数()f x 存在零点q ,使得4732n a q q q q -=+++++成立的充要条件是.虹口区2017学年度第二学期高三年级数学学科期中教学质量监控测试题答案一、填空题(1~6题每小题4分,7~12题每小题5分,本大题满分54分)1、1a ≥;2、2;3、17-; 4、2; 5、2-; 6、12; 7、1或12-;8、20; 9、3π; 10、12mn ; 11、1x =-或; 12、16; 二、选择题(每小题5分,满分20分)13、B ; 14、C ; 15、D ; 16、A ;第 5 页三、解答题(本大题满分76分)17、(14分)解:(1) ,∴ ……2分,1C 到平面11ABB A 的距离等于1,即2N 到平面11ABB A 的距离等于1,∴112211131322A AM N N AM A V V --==⨯=∴ 三棱柱111ABC A B C - 的体积等于32(立方单位),三棱锥112A AM N -的体积等于12(立方单位)……………7分(2)取线段1AA 的三等分点1P ,2P ,连12P M ,1PC .12A N ∥1PC ,1AM ∥12P M ,∴ 21M PC ∠的大小等于异面直线12A N ,1AM 所成的角或其补角的大小.…………9分∴ 异面直线12A N ,1AM 所成的角的大小等于3π.………………14分 18、(14分)解:(1)210z z -+=的两个根为.…………2分 , , .…………4分∴5sin sin124C π== , ,得……………7分 (2)2222cos a b c bc A =+-.∴2292b c bc bc bc bc=+-≥-=,从而9bc ≤,等号当b c =时成立,此时max 1sin 24S bc A ==.∴ABC ∆的面积的最大值等于4.……………14分 19、(14分)解:(1)设(,)n n n a x y =,12(,)d d d =.由1n n a a d +-=,得,所以数列{}n x 是以1x 为首项,公差为1d 的等差数列;数列P 2P 1C 1A N 2N 1第 6 页{}n y 是以1y 首项,公差为2d 的等差数列.……………………3分.………………6分(2)设(,)n n n a x y = ,(,)n n n b m k =.由11111(,)(,)(,)(3,0)n n n n n n n n n n a a x y x y x x y y +++++-=-=--=,从而13n n x x +-=,10n n y y +-=.数列{}n x 是以1为首项,公差为3的等差数列,从而32n x n =-.数列{}n y 是常数列,1n y =.由12n n b b +=得12n n m m +=,12n n k k +=,又11m =,13k =,∴数列{}n m 是以1为首项,公比为2的等比数列;数列{}n k 是以3为首项,公比为2的等比数列,从而有12n n m -=,132n n k -=⋅.……10分令211122114272(32)2n n n n S x m x m x m n -=+++=⨯+⨯+⨯++-⨯………①①-②得,23113(2222)(32)2n n n S n --=+++++--⋅,得5(35)2n n S n =+-⨯令11223(12)3(21)12n n n n n T y k y k y k ⋅-=+++==⋅--从而1122(32)22n n n n n a b a b a b S T n ⋅+⋅++⋅=+=-⋅+………………14分20、(16分解:(1)由点(,)M m n 在椭圆C 上,有,∴(,)M m n 在直线上 当0n =时,由,得22m =,直线方程为,代入椭圆方程得,得一个交点,直线l 是椭圆C 切线.当0n ≠时,有,直线为代入椭圆方程得,有222214(1)2202m n m n ∆=-⨯-=+-=,直线是椭圆C 切线.…………………4分另解:不讨论将椭圆方程化为,将直线方程代入消y ,得到x 的一元二次方程,然后证明0∆=第 7 页(2)点(,)M m n 不在坐标轴上,:AM y x =+,得. :BM y x =-,得……………………6分过点(,)M m n 的切线为,得.由,得2222m n -=-,从而有24222P Q D n y y y m n-+====-,∴点D 是线段PQ 的中点.…9分(3)(,)M m n ,,l 的方向向量(2,)d n m =-,.1(1,0)F -,2(1,0)F ,1(1,)MF m n =---,2(1,)MF m n =--,记d 及1MF 的夹角α,d 及2MF 的夹角β.………12分所以cos cos αβ=,有αβ=,从而有l 及直线1MF ,2MF 所成的夹角相等.……16分21、(18分)解:(1)由3((022a a -+--≤,得 ………………3分(2)设21x x > ,212112212133332121()[1()]()()11(1)(1)x x x x x x x x g x g x x x x x -++-=-=---- 当 时,210x x -> ,3210x -> ,3110x ->,,122x x -<+,有12122()1x x x x -<+<-,121211()0x x x x -<++<,∴ 21()()0g x g x -<.………………6分当 时,210x x -> ,3210x -> ,3110x ->,,120x x +<,有12121()0x x x x -<+≤,121201()1x x x x <++≤,∴ 21()()0g x g x ->.当1201x x ≤<<时,210x x -> ,3210x -> ,3110x ->,x x x x ++>12121()0,∴ 21()()0g x g x ->. ∴ ()g x 在递减,在与[0,1)上递增,从而在上递增 (10)分(3)充分性:当时,有3(022222a f a a -=---=--≤,又(1)10f =>,函数3f x ax x a=+-在内的图像连续不断,故在内一定存在零点q且1()q<,∴有30=+++++.……14分a q q q q-aq q a+-=,得,从而4732n必要性:当0q=时,0a=.当0q≠时,由4732n-<<从而得11q11a q q q q-=+++++成立,可得3-<<,,q由(2)中的结论可知在递减,在递增,从而,或 .从而,11-<<时,有.………………18分q第8 页。
目录 ................................................................. 21. 虹口 ................................................................. 32. 黄浦 ................................................................. 43. 杨浦 ................................................................. 54. 奉贤 ......................................................... 65. 长宁金山青浦 ................................................................. 76. 浦东 ................................................................. 87. 闵行 ................................................................. 98. 普陀 9. 徐汇 ................................................................ 10 ............................................................... 1110. 静安 ............................................................... 1211. 崇明 ............................................................... 1312. 松江 ............................................................... 1313. 嘉定 ............................................................... 1414. 宝山 ............................................................. 1615奉贤区: ............................................................. 1816普陀区: ............................................................. 1917杨浦区: .............................................................. 2018闵行区 .............................................................. 2219黄浦区 20宝山区 .............................................................. 23 ............................................................ 2521浦东新区 2017年上海市高三二模数学填选难题解析2017-4-251. 虹口11. 在直角△ABC 中,2A π∠=,1AB =,2AC =,M 是△ABC 内一点,且12AM =, 若AM AB AC λµ=+ ,则2λµ+的最大值为【解析】将直角三角形放入直角坐标系中,问题可以简化,(0,0)A 、(0,1)B 、(2,0)C 、(cos ,sin )M θθ(0,)2πθ∈,11(cos ,sin )22AM θθ= ,AB AC λµ+(0,1)(2,0)(2,)λµµλ=+=,112sin cos )22242πλµθθθ+=+=+≤. 12. 无穷数列{}n a 的前n 项和为n S ,若对任意的正整数n 都有12310{,,,,}n S k k k k ∈ ,则10a 的可能取值最多..有 个 【解析】若910S S =,100a =;若910S S ≠,在12310{,,,,}k k k k 中有序任取2个作为9S 和10S ,10109a S S =−,有21090P =种取法;所以综上最多有91个16. 已知点(,)M a b 与点(0,1)N −在直线3450x y −+=的两侧,给出以下结论: ①3450x y −+>;② 当0a >时,a b +有最小值,无最大值;③ 221a b +>; ④ 当0a >且1a ≠时,11b a +−的取值范围是93(,)(,)44−∞−+∞ . 正确的个数是( )A. 1B. 2C. 3D. 4【解析】① ∵将(0,1)N −代入304(1)50×−×−+>,∴将(,)M a b 代入3450x y −+<;② ∵(,)M a b 取不 到点5(0,)4,∴没有最小值;③ ||MO 大于点O 到直线3450x y −+=的距离1d =,∴221a b +>;④ 可 看作点(,)M a b 与点(1,1)−连线的斜率,数形结合可知 斜率范围为93(,)(,)44−∞−+∞ ;③④正确,选B2. 黄浦11. 三棱锥P ABC −满足:AB AC ⊥,AB AP ⊥,2AB =,4AP AC +=,则该三棱锥的体积V 的取值范围是 【解析】1233APC APC V S AB S ∆∆=⋅⋅=,12APC S AC AP ∆≤⋅⋅∵4AP AC +=≥,∴4AC AP ⋅≤,122APC S AC AP ∆≤⋅⋅≤,∴4(0,]3V ∈12. 对于数列{}n a ,若存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 是以T 为周期的周期数列,设1b m =(01)m <<,对任意正整数n 有11,11,01n n n n nb b b b b +−> = <≤ , 若数列{}n b 是以5为周期的周期数列,则m 的值可以是(只要求填写满足条件的一个m 值即可) 【解析】1b m =,21b m =,311b m=−. 观察可得12m =不符 (1)当1(0,)2m ∈,412b m=−;(2)当1(,1)2m ∈,41m b m =−; ① 1(0,)3m ∈,513b m =−; ② 11[,)32m ∈,512m b m =−;③ 1(,1)2m ∈,5211m b m −=−; a. 当1(0,)4m ∈,614b m =−;614b m m=−=,解得2m ,舍去负值 b. 当11[,)43m ∈,613m b m m ==−,解得0m =,舍去 c. 当11[,)32m ∈,63112m b m m −==−,解得12m −=,舍去负值 d. 当12(,]23m ∈,6121m b m m −==−,解得m =,舍去 e. 当2(,1)3m ∈,6321m b m m−==−,解得1m −,舍去负值综上,2m =−或m =1m =16. 如图所示,23BAC π∠=,圆M 与AB 、AC 分别相切于点D 、E ,1AD =,点P 是圆M 及其内部任意一点,且AP xAD y AE =+ (,)x y R ∈,则x y +取值范围是( )A. [1,4+B. [4−+C. [1,2+D. [2+【解析】如图所示,当P 点位于右图位置时,x y +最大,此时2MA =,MD MP ==2AP AH AG ===,∴2x y ==,4x y +=+P 位于线段MA与M 的交点时,可得最小值4x y +=−,综上,选B.3. 杨浦11. 已知0a >,0b >,当21(4)a b ab++取到最小值时,b = 【解析】2221111(4)16888168a b a b ab ab ab ab ab ab ab ab++=+++≥++=+≥, 当1164ab ab ==且4a b =时等号成立,即1a =,14b = 12. 设函数()||||a f x x x a +−,当a 在实数范围内变化时,在圆盘221x y +≤内,且不在任一()a f x 的图像上的点的全体组成的图形的面积为【解析】根据题意,()||||||a f a a a a a +−,即当a 在实数范围内变化时,图像一个分段点为(,||)a a ,该点轨迹为||y x =,∴结合图像可得图像面积为34π16. 对于定义在R 上的函数()f x ,若存在正常数a 、b ,使得()()f x a f x b +≤+对一切x R ∈均成立,则称()f x 是“控制增长函数”,在以下四个函数中:① 2()1f x x x =++;② ()f x =;③ 2()sin()f x x =;④ ()sin f x x x =⋅. 是“控制增长函数”的有( )A. ②③B. ③④C. ②③④D. ①②④【解析】① 2()()2f x a f x a x a a R +−=++∈,不成立;② 存在1a =,1b =,使得不等式(1)()1f x f x +−≤恒成立;③ 存在2b =,使得()()2f x a f x +−≤恒成立;③ 存在 存在2a π=,2b π=,使得(2)()(2)sin(2)sin 2sin 2f x f x x x x x x πππππ+−=++−=≤ 恒成立;故选C.4. 奉贤11. 已知实数x 、y 满足方程22(1)(1)1x a y −++−=,当0y b ≤≤()b R ∈时,由此方程 可以确定一个偶函数()y f x =,则抛物线212y x =−的焦点F 到点(,)a b 的轨迹上点的距离 最大值为【解析】根据题意,∵偶函数,∴1a =,∵是一个函数,∴[0,1]b ∈,即点(,)a b 的轨迹是一条线段,抛物线的焦点1(0,)2F −,数形结合可知,焦点F 到(1,1)12. 设1x 、2x 、3x 、4x 为自然数1、2、3、4的一个全排列,且满足 1234|1||2||3||4|6x x x x −+−+−+−=,则这样的排列有 个【解析】若11x =,2x 、3x 、4x 共有6种排列,一一代入,没有符合的情况; 若12x =,2x 、3x 、4x 有6种排列,符合情况的有2431、2413、2341三种排列; 若13x =,2x 、3x 、4x 有6种排列,符合情况的有3142、3241两种排列;若14x =,2x 、3x 、4x 有6种排列,符合情况的有4123、4132、4213、4231四种排列; 综上,符合条件的排列共有9个16. 如图,在△ABC 中,BC a =,AC b =,AB c =,O 是△ABC 的外心,OD BC ⊥ 于D ,OE AC ⊥于E ,OF AB ⊥于F ,则::OD OE OF 等于( )A. ::a b cB. 111::a b cC. sin :sin :sin A B CD. cos :cos :cos A B C【解析】如右图所示,::::cos 1:cos 2:cos 3OD OE OF OD OE OF OB OC OA==∠∠∠,根据圆 的性质,112BOC A ∠=∠=∠,同理2B ∠=∠,3C ∠=∠,故选D5. 长宁金山青浦11. 已知函数()||f x x x a =−,若对任意1[2,3]x ∈,2[2,3]x ∈,12x x ≠,恒有 1212()()()22x x f x f x f ++>,则实数a 的取值范围为【解析】根据题意,()||f x x x a =−在[2,3]上为上凸函数(图像上表现为在[2,3]上的函数 图象在两区间端点连线的上方),数形结合可得3a ≥12. 对于给定的实数0k >,函数()k f x x=的图像上总存在点C ,使得以C 为圆心,1为半 径的圆上有两个不同的点到原点O 的距离为1,则k 的取值范围是【解析】根据题意,即函数图像上至少有一点到原点的距离小于2,∵2222k x k x+≥,2<,解得(0,2)k ∈. 或者数形结合,这个距离原点最近的点在y x =上,代入2<,解得(0,2)k ∈.16. 设1x 、2x 、…、10x 为1、2、…、10的一个排列,则满足对任意正整数m 、n ,且 110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为( )A. 512B. 256C. 255D. 64【解析】直接思考这个问题会有难度,我们可以改变一些条件,试着从简单开始① 比如前9个数字固定排列为1、2、3、4、5、6、7、8、9,那么最后一个数字只能是10, 这时候符合条件的排列个数为1;② 放宽条件,比如前8个数字固定排列为1、2、3、4、5、6、7、8,那么最后2个数字可 以是9、10,也可以是10、9,符合条件的排列个数为2;③ 再放宽条件,比如前7个数字固定排列为1、2、3、4、5、6、7,那么最后3个数字可 以是8、9、10,或8、10、9,或9、8、10,或10、9、8,符合条件的排列个数为4; ……,继续放宽条件,当前6个数字固定排列为1、2、3、4、5、6时,符合的有8个; 规律出来了,以此类推下去,……,当前2个数字固定为1、2时,符合的有72个, 当第一个数字固定为1时,符合的有82个,当这列数全排列时,符合的有92个.6. 浦东11. 已知各项均为正数的数列{}n a 满足11(2)(1)0n n n n a a a a ++−−=*()n N ∈,且110a a =, 则首项1a 所有可能取值中最大值为【解析】根据题意,112n n a a +=或11n na a +=,取极端情况,1982a a =,81019112a a a a === ∴2812a =,41216a ==.12. 已知平面上三个不同的单位向量a 、b 、c 满足12a b b c ⋅=⋅=,若e 为平面内的任意单 位向量,则||2||3||a e b e c e ⋅+⋅+⋅ 的最大值为【解析】如图构造,1()2a ,(0,1)b =,1)2c = , 设(cos ,sin )e θθ= ,根据题意,||2||3||a e b e c e ⋅+⋅+⋅=11sin |2|sin |3|sin |22θθθθθ−+++,要取得最大,∴||2||3||3sin a e b e c e θθ⋅+⋅+⋅=+≤.16. 已知等比数列1a 、2a 、3a 、4a 满足)1,0(1∈a ,)2,1(2∈a ,)4,2(3∈a ,则4a 的取值 范围是( )A. (3,8)B. (2,16)C. (4,8)D. 【解析】33221(1,4)a q a a a ==⋅∈,233111(2,)a q a a a ==⋅∈+∞,综上,q ∈,∴43a a q =⋅∈,故选D.7. 闵行11. 已知定点(1,1)A ,动点P 在圆221x y +=上,点P 关于直线y x =的对称点为P ′,向量 AQ OP ′= ,O 是坐标原点,则||PQ 的取值范围是【解析】设(cos ,sin )P θθ′,∵OQ OA AQ OA OP ′=+=+ ,∴Q 坐标为(cos 1,sin 1)θθ++,∵(sin ,cos )P θθ,∴222||(cos 1sin )(sin 1cos )PQ θθθθ=+−++−22(sin cos )242sin 2[2,6]θθθ=−+=−∈∴||PQ的取值范围是.12. 已知递增数列{}n a 共有2017项,且各项均不为零,20171a =,如果从{}n a 中任取两项 i a 、j a ,当i j <时,j i a a −仍是数列{}n a 中的项,则数列{}n a 的各项和2017S =【解析】∵递增,∴1232017a a a a <<<⋅⋅⋅<,∵当i j <时,j i a a −仍是数列{}n a 中的项, ∴213141201710a a a a a a a a <−<−<−<⋅⋅⋅<−,且1j a a −都是数列{}n a 中的项, ∴201712016a a a −=、201612015a a a −=、…、211a a a −=,∴{}n a 是首项为1a ,公差为1a 的等差数列,根据201711201620171a a d a =+==,可得112017a d ==,∴20171009S =.16. 设函数()y f x =的定义域是R ,对于以下四个命题:① 若()y f x =是奇函数,则(())y f f x =也是奇函数;② 若()y f x =是周期函数,则(())y f f x =也是周期函数;③ 若()y f x =是单调递减函数,则(())y f f x =也是单调递减函数;④ 若函数()y f x =存在反函数1()y f x −=,且函数1()()y f x f x −=−有零点,则函数()y f x x =−也有零点.其中正确的命题共有( )A. 1个B. 2个C. 3个D. 4个【解析】① ∵()y f x =是奇函数,∴()()f x f x −=−,∴(())(())(())f f x f f x f f x −=−=−,∴①正确;②()()f x T f x +=,(())(())f f x T f f x +=,②正确;③ 当x 增大,()f x 减小,(())f f x 增大,∴③错误;④ 反例如图所示,④错误;故①②正确,选B.8. 普陀11. 设0a <,若不等式22sin (1)cos 10x a x a +−+−≥对于任意的R x ∈恒成立,则a 的 取值范围是【解析】由22sin (1)cos 10x a x a +−+−≥得22cos (1)cos 0x a x a −+−+≥,设cos t x =, 即22()(1)0f t t a t a =+−−≤对[1,1]t ∈−恒成立,∴22(1)40a a ∆=−+>,2(1)110f a a −=+−−≤,2(1)110f a a =+−−≤,0a <,综上解得2a ≤−.12. 在△ABC 中,D 、E 分别是AB 、AC 的中点,M 是直线DE 上的动点. 若△ABC 的面积为1,则2MB MC BC ⋅+ 的最小值为【解析】取BC 中点F ,12MB MF FB MF BC =+=− , 12MC MF FC MF BC =+=+ ,∴2MB MC BC ⋅+= 2222213||||44MF BC BC MF BC MF BC −+=+≥⋅∵11||||22MBC MF BC S ∆⋅≥= ,即||||1MF BC ⋅≥ ,∴2MB MC BC ⋅+≥ .16. 关于函数2sin y x =的判断,正确的是( )A. 最小正周期为2π,值域为[1,1]−,在区间[,]22ππ−上是单调减函数 B. 最小正周期为π,值域为[1,1]−,在区间[0,]2π上是单调减函数 C. 最小正周期为π,值域为[0,1],在区间[0,]2π上是单调增函数 D. 最小正周期为2π,值域为[0,1],在区间[,]22ππ−上是单调增函数 【解析】21cos 2sin 2x yx −=,T π=,排除A 、D ,2sin 0y x =≥,排除B ,故选C. 9. 徐汇11. 如图:在△ABC 中,M 为BC 上不同于B 、C 的任意一点,点N 满足2AN NM = ,若AN xAB y AC =+ ,则229x y +的最小值为 【解析】23AN xAB y AC AM =+= ,∴3322AM xAB y AC =+ ,∵B 、M 、C 三点共 线,∴33122x y +=,即23x y +=,∴222222299()1012435x y x x x x +=+−=−+≥. 12. 设单调函数()y p x =的定义域为D ,值域为A ,如果单调函数()y q x =使得函数(())y p q x =的值域也是A ,则称函数()y q x =是函数()y p x =的一个“保值域函数”,已 知定义域为[,]a b 的函数2()|3|h x x =−,函数()f x 与()g x 互为反函数,且()h x 是()f x 的 一个“保值域函数”, ()g x 是()h x 的一个“保值域函数”,则b a −=【解析】∵()f x 、()g x 、()h x 都是单调函数,且根据题意,(())f h x 与()f x 值域相同,(())h g x 与()h x 值域相同,∴()[,]g x a b ∈,∵()f x 与()g x 互为反函数,∴()f x 定义域为[,]a b ,∴()[,]h x a b ∈,∴()h x 的定义域和值域均为[,]a b ,根据数形结合,a 、b 为 23x x=−两解,∴1a =,2b =,1b a −=.16. 过椭圆2214x y m m +=−(4)m >右焦点F 的圆与圆22:1O x y +=外切,则该圆直径FQ 的端点Q 的轨迹是( )A. 一条射线B. 两条射线C. 双曲线的一支D. 抛物线 【解析】数形结合,设椭圆左焦点为F ′,FQ 中点为P ,联结OP 、F Q ′,∴OP 是中位线, ∴2()2()2F Q FQ PO PF PO PA ′−=−=−=, 这符合双曲线的定义,故选C.10. 静安10. 若适合不等式2|4||3|5x x k x −++−≤的x 最大值为3,则实数k 的值为【解析】当3x =时,2|4||3|5x x k x −++−=,即|3|5k −=,∴8k =,2k =−. ① 当8k =,2|48||3|5x x x −++−≤,即243|3|0x x x −++−≤,若3x >, 则230x x −≤,得03x ≤≤,不符,若3x ≤,2560x x −+≤,解得23x ≤≤, ∴8k =时,不等式的解为23x ≤≤,符合题意.② 当2k =−,2|42||3|5x x x −−+−≤,找个反例即可,4x =符合不等式,但大于3, ∴2k =−不符,综上,8k =. 11. 已知1()1xf x x−=+,数列{}n a 满足112a =,对于任意*n N ∈都满足2()n n a f a +=,且0n a >,若2018a a =,则20162017a a += 【解析】∵2018a a =,∴18181811a a a −=+,解得20181a a ==,同理22242016a a a ==⋅⋅⋅=1=−. 根据112a =,∴313a =,∴512a =,713a =,…,可归纳出4112k a +=,4313k a += ∴20174504112a a ×+==,∴20162017a a +11122−+=−15. 曲线C 为:到两定点(2,0)M −、(2,0)N 的距离乘积为常数16的动点P 的轨迹,以下 结论: ① 曲线C 经过原点;② 曲线C 关于x 轴对称,但不关于y 轴对称;③ △MPN 的面积不大于8;④ 曲线C 在一个面积为60的矩形范围内. 其中正确的个数为( ) A. 0 B. 1 C. 2 D. 3【解析】① 设原点为O ,22416OM ON ⋅=×=≠,∴不经过原点;② 列出轨迹的表达16=,可知若点(,)P x y 在曲线上,代入1(,)P x y −、 2(,)P x y −、3(,)P x y −−,方程均成立,∴既关于x 轴对称,也关于y 轴对称,关于原点对称; ③ 11sin 822SPM PN P PM PN =⋅⋅∠≤⋅=;④ 当0x =时,y =±,当0y =时,x =±,由点(±±构成的矩形面积为60>;∴只有③正确,故选B.【附】16= 的精确图像11. 崇明11. 已知函数22sin(),0()3cos(),0x x x f x x x x πα ++> = −++<,[0,2)απ∈是奇函数,则α= 【解析】当0x >,则0x −<,∵()()f x f x −=−,∴2()cos()f x x x α−=−+−+,2()sin()3f x x x π−=−−+,∴5cos()sin()sin()cos()336x x x x πππα−+=−+=−−=+, 即5cos()cos()6x x πα−=+在定义域上恒成立,∴526k παπ=−+,∴76πα=. 12. 已知△ABC是边长为PQ 为△ABC 外接圆O 的一条直径,M 为 △ABC 边长的动点,则PM MQ ⋅的最大值是【解析】()()PM MQ PO OM MO OQ ⋅=+⋅+22()()PO OM PO OM PO OM =+⋅−=− ,∵边长为O 半径为2,即24PM MQ OM ⋅=− ,OM 最小值为1 即PM MQ ⋅的最大值是316. 设函数()x x x f x a b c =+−,其中0c a >>,0c b >>,若a 、b 、c 是△ABC 的三条 边长,则下列结论:① 对于一切(,1)x ∈−∞都有()0f x >;② 存在0x >使x xa 、x b 、x c 不能构成一个三角形的三边长;③ 若△ABC 为钝角三角形,存在(1,2)x ∈,使()0f x =. 其中正确的个数为( )A. 3个B. 2个C. 1个D. 0个 【解析】① ()[()()1]x x x ab f xc c c =+−,设()()()1x x a b g x cc =+−,可知(0,1)ac∈,(0,1)b c ∈,∴()g x 单调递减,当1x <,()(1)10a bg x g c c>=+−>,∴()0f x >,正确; ② 举反例,令2a =,3b =,4c =,存在3x =,3333234⋅+<,不能构成三角形; ③ △ABC 为钝角三角形,∴2220a b c +−<,即(2)0f <,∵0a b c +−>,即(1)0f >, ∴()f x 在(1,2)上必有零点,正确. 综上所述,正确个数为3个,选A.12. 松江11. 如图同心圆中,大、小圆的半径分别为2和1,点P 在大圆上,PA 与小圆相切于点A ,Q 为小圆上的点,则PA PQ ⋅的取值范围是【解析】结合向量数量积的几何意义,PA PQ ⋅ 等于||PA 乘以PQ 在PA方向上的投影,∵2OP =,1OA =,∴||PA =PA PQ PA PB ⋅=⋅=1)3+=+,如右图,投影最小,1)3PA PQ PA PC ⋅=⋅−=−∴取值范围为[3. 12题、16题同闵行12题、16题13. 嘉定11. 设等差数列{}n a 的各项都是正数,前n 项和为n S ,公差为d . 若数列也是公差 为d 的等差数列,则}{n a 的通项公式为n a =【解析】1(1)2nn n S na d −=+,也是等差数列,∴22n dS n ==,d =,∴12d =或0(舍),1124d a ==,∴124n n a =−. 12. 设x ∈R ,用[]x 表示不超过x 的最大整数(如[2.32]2=,[ 4.76]5−=−),对于给定 的*n ∈N ,定义(1)([]1)(1)([]1)x n n n n x C x x x x −−+=−−+ ,其中[1,)x ∈+∞,则当3[,3)2x ∈时,函数xC x f 10)(=的值域是 【解析】当3[,2)2x ∈,[]1x =,101020(5,]3xC x =∈;当[2,3)x ∈,[]2x =,1090(1)xC x x =−, (1)[2,6)x x −∈,∴90(15,45](1)x x ∈−;综上,值域为20(5,](15,45]3.16. 已知()f x 是偶函数,且()f x 在[0,)+∞上是增函数,若(1)(2)f ax f x +≤−在1[,1]2x ∈上恒成立,则实数a 的取值范围是( )A. [2,1]−B. [2,0]−C. [1,1]−D. [1,0]− 【解析】由题得,|1|2ax x +≤−在1[,1]2x ∈时恒成立,设()|1|g x ax =+,()2h x x =−,()g x 恒过定点(0,1), 数形结合可知,只需满足(1)(1)g h ≤,即|1|1a +≤, ∴[2,0]a ∈−,故选B.14. 宝山11. 设向量(,)m x y = ,(,)n x y =− ,P 为曲线1m n ⋅=(0)x >上的一个动点,若点P 到直 线10x y −+=的距离大于λ恒成立,则实数λ的最大值为【解析】1m n ⋅= 即221x y −=(0)x >,根据题意,实数λ的最大值即直线1y x =+与一条渐近线y x =之间的距离,∴d =,即λ最大值为2.12题同长宁16题15. 如图,在同一平面内,点P 位于两平行直线1l 、2l 两侧,且P 到1l 、2l 距离分别为1、3,点M 、N 分别在1l 、2l 上,||8PM PN += ,则PM PN ⋅ 的最大值为( )A. 15B. 12C. 10D. 9【解析】取MN 中点O ,222()()16PM PN PO OM PO ON PO OM OM ⋅=+⋅+=−=− ,∵1l 、2l 之间距离为2,∴2OM 最小值为1,即PM PN ⋅的最大值为15,选A.16. 若存在t R ∈与正数m ,使()()F t m F t m −=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”,设2()x f x xλ+=(0)x >,若对于任意t ∈,总存在正数m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ取值范围是( ) A. (0,2] B. (1,2] C. [1,2] D. [1,4] 【解析】()()f t m f t m +=−,∴t m t m t mt mλλ++=−++−,2mt mt mλλ=−−+,化简得:22t m λ=−,即220m t λ=−>恒成立,2t λ<,∴02λ<≤,选A. 本题如果理解了题意,可以从图像角度秒解如图所示,A 、B 为两对称点, 满足()()f t m f t m +=−,线段AB 中垂线为x t =t < 即2t λ<,∴02λ<≤15奉贤区:11、已知实数y x ,满足方程1)1(122=−++−y a x )(,当)(0R b b y ∈≤≤时,由此方程可以确定一个偶函数,则抛物线221x y −=的焦点F 到点),(b a 的轨迹上点的距离最大值为 .解析:根据偶函数的对称性很容易得出:10−=a ,1=a ;根据函数的概念容易得出:[]0,1∈b ,很容易求出结果。
2017年上海市虹口区高三二模数学试卷一、填空题(共12小题;共60分)1. 集合,,则.2. 复数所对应的点在复平面内位于第象限.3. 已知首项为,公差为的等差数列,其前项和为,则.4. 若方程组无解,则实数.5. 若的二项展开式中,含项的系数为,则实数.6. 已知双曲线,它的渐近线方程是,则的值为.7. 在中,内角,,所对的边分别为,,,且三边长分别为,,,则.8. 在平面直角坐标系中,已知点,对于任意不全为零的实数,,直线,若点到直线的距离为,则的取值范围是.9. 函数,如果方程有四个不同的实数解,,,,则.10. 三条侧棱两两垂直的正三棱锥,其俯视图如图所示,主视图的边界是底边长为的等腰三角形,则主视图的面积等于.11. 在直角中,,,,是内一点,且,若,则的最大值.12. 无穷数列的前项和为,若对任意的正整数都有,则的可能取值最多有个.二、选择题(共4小题;共20分)13. 已知,,是实数,则“,,成等比数列”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件14. ,是空间两条直线,是平面,以下结论正确的是A. 如果,,则一定有B. 如果,,则一定有C. 如果,,则一定有D. 如果,,则一定有15. 已知函数,,且,,,则的值A. 一定等于零B. 一定大于零C. 一定小于零D. 正负都有可能16. 已知点与点在直线的两侧,给出以下结论:①;②当时,有最小值,无最大值;③;④当且时,的取值范围是.正确的个数是A. B. C. D.三、解答题(共5小题;共65分)17. 如图是直三棱柱,底面是等腰直角三角形,且,直三棱柱的高等于,线段的中点为,线段的中点为,线段的中点为.(1)求异面直线,所成角的大小;(2)求三棱锥的体积.18. 已知定义在上的函数是奇函数,且当时,.(1)求在区间上的解析式;(2)当实数为何值时,关于的方程在有解.19. 已知数列是首项等于且公比不为的等比数列,是它的前项和,满足.(1)求数列的通项公式;(2)设(且),求数列的前项和的最值.20. 已知椭圆,定义椭圆上的点的“伴随点”为.(1)求椭圆上的点的“伴随点”的轨迹方程;(2)如果椭圆上的点的“伴随点”为,对于椭圆上的任意点及它的“伴随点”,求的取值范围;(3)当,时,直线交椭圆于,两点,若点,的“伴随点”分别是,,且以为直径的圆经过坐标原点,求的面积.21. 对于定义域为的函数,部分与的对应关系如表:(1)求;(2)数列满足,且对任意,点都在函数的图象上,求;(3)若,其中,,,,求此函数的解析式,并求.答案第一部分1.【解析】因为,,所以.2. 四【解析】复数所对应的点在复平面内位于第四象限.3.【解析】由题意,,,所以.4.【解析】根据题意,方程组无解,则直线与直线平行,则有,且,即,,解得.5.【解析】的二项展开式的通项公式:,令,则,解得.6.【解析】根据题意,双曲线的方程为:,其焦点在轴上,其渐近线方程为:,又有其渐近线方程是,则有.7.【解析】在中,因为,,,所以,,,,所以.8.【解析】由题意,直线过定点,时,取得最大值,直线过时,取得最小值,所以的取值范围是.9.【解析】作出函数的图象,方程有四个不同的实数解,等价为和的图象有个交点,不妨设它们交点的横坐标为,,,,且,由,关于原点对称,,关于对称,可得,,则.10.【解析】由题意,正三棱锥的三个侧面都是等腰直角三角形,(如图:,,)且,根据俯视图可得,底面是边长为的等边三角形.其面积,设主视图的高,则.所以.因为主视图的边界是底边长为的等腰三角形,其高为.所以主视图的面积.11.【解析】如图建立平面直角坐标系,则,,,,因为,所以,所以,,所以,所以当时,取得最大值.12.【解析】,而,若,则有个可能取值,若,则有,只有个取值,根据分类计数原理可得,共有个可能取值.第二部分13. A 【解析】若,,成等比数列,则成立,若,满足,但,,不能成等比数列,故“,,成等比数列”是“”的充分不必要条件.14. D 【解析】若,,则有或与相交或与异面,故 A 错误;如果,,则有或,故B,C 错误;如果,则垂直内的所有直线,又,过与相交的平面交于,则,所以,故 D 正确.15. B【解析】函数,定义域为,因为,所以函数是奇函数,因为与都是增函数,所以函数是增函数,因为,,,所以,,,所以,,,所以,,,三式相加得:.16. B 【解析】因为点与点在直线的两侧,所以,即,故①错误;因为,所以,所以当时,,所以既无最小值,也无最大值,故②错误;表示点到原点的距离的平方,易知点和原点在直线的两侧,又因为原点到直线的距离,所以,故③正确;当且时,表示点与连线的斜率.因为当,时,,又直线的斜率为,结合图象,可得的取值范围为,故④正确.所以正确命题的个数是个.第三部分17. (1)以为坐标原点,,,分别为轴,轴,轴建立空间直角坐标系.依题意有,,,,所以,.设异面直线,所成角为,则,所以,即异面直线,所成角的大小为.(2)连接,,,,因为,,所以,又因为,分别为,的中点,所以,,所以,因为为线段的中点,且,所以,又面,平面,所以,因为,平面,平面,所以面,所以,所以三棱锥的体积为.18. (1)设,则,因为是奇函数,所以,所以.(2)设,令,则,而.因为,所以,从而,所以在上的取值范围是.又设,则,由此函数是奇函数得,因为,所以.综上所述,的值域为,所以的取值范围是.19. (1)因为,,所以,整理得,解得或(舍去).所以.(2)因为.所以数列是以为公差,以为首项的等差数列,所以.)当时,有,数列是以为公差,以为首项的等差数列,所以是递增数列,所以没有最大值.由,得,所以.)当时,有,数列是以为公差的等差数列,所以是首项为正的递减等差数列,所以没有最小值.令,得,.20. (1)设,由题意则又,所以,从而得.(2)由,得.又,得.因为点在椭圆上,所以,所以,且.所以,因为,所以的取值范围是.(3)设,,则,;)当直线的斜率存在时,设方程为,由得;则由以为直径的圆经过坐标原点可得:,即;整理得:将式代入式得:,,则,,又点到直线的距离,所以.)当直线的斜率不存在时,设方程为,联立椭圆方程得;代入,得,解得,从而,此时原点到的距离,,故,综上:的面积是定值.21. (1)根据表中的数据:.(2)由题意,,点都在函数的图象上,即,所以,,,,所以,所以数列是周期为的周期数列,且,故得:.(3)由题意得由得:,化简得.又因为,所以.所以,因为,所以,从而有即所以.所以.,,因为,所以.所以.此函数的最小正周期,所以,所以,所以①当时,②当时,第11页(共11 页)。
宝山2017二模一、填空题(本大题共有12题,满分54分,第16题每题4分,第712题每题5分)考生应在答题纸的相应位置直接填写结果.1.若集合{}|0A x x =>,{}|1B x x =<,则A B ⋂=____________2.已知复数z1z i ⋅=+(i 为虚数单位),则z =____________ 3.函数()sin cos cos sin x x f x x x=的最小正周期是____________4.已知双曲线()2221081x y a a -=>的一条渐近线方程3y x =,则a =____________ 5.若圆柱的侧面展开图是边长为4的正方形,则圆柱的体积为____________6.已知,x y 满足0220x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值是____________7.直线12x t y t =-⎧⎨=-⎩(t 为参数)与曲线3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的交点个数是____________8.已知函数()()()220log 01xx f x x x ⎧≤⎪=⎨<≤⎪⎩的反函数是()1f x -,则12f -1⎛⎫= ⎪⎝⎭____________9.设多项式()()()()23*11110,nx x x x x n N ++++++++≠∈的展开式中x 项的系数为n T ,则2limnn T n →∞=____________10.生产零件需要经过两道工序,在第一、第二道工序中产生的概率分别为0.01和p ,每道工序产生废品相互独立,若经过两道工序得到的零件不是废品的概率是0.9603,则p =____________11.设向量()(),,,m x y n x y ==-,P 为曲线()10m n x ⋅=>上的一个动点,若点P 到直线10x y -+=的距离大于λ恒成立,则实数λ的最大值为____________12.设1210,,,x x x 为1,2,,10的一个排列,则满足对任意正整数,m n ,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为____________二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设,a b R ∈,则“4a b +>”是“1a >且3b >”的( ) A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分又不必要条件14.如图,P 为正方体1111ABCD A B C D -中1AC 与1BD 的交点,则PAC 在该正方体各个面上的射影可能是( )A. ①②③④B.①③C. ①④D.②④15.如图,在同一平面内,点P 位于两平行直线12,l l 同侧,且P 到12,l l 的距离分别为1,3.点,M N 分别在12,l l 上,8PM PN +=,则PM PN ⋅的最大值为( )A. 15B. 12C. 10D. 916.若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”,设()()20x f x x xλ+=>,若对于任意()2,6t ∈,总存在正数m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ的取值范围是( )A. (]0,2B. (]1,2C. []1,2D. []1,4三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分8分,第2小题满分6分)如图,在正方体1111ABCD A B C D -中,E 、F 分别是线段BC 、1CD 的中点. (1)求异面直线EF 与1AA 所成角的大小; (2)求直线EF 与平面11AA B B 所成角的大小.18.(本题满分14分,第1小题6分,第2小题8分)已知抛物线()220y px p =>,其准线方程为10x +=,直线l 过点()(),00T t t >且与抛物线交于A 、B 两点,O 为坐标原点.(1)求抛物线方程,并证明:OA OB ⋅的值与直线l 倾斜角的大小无关; (2)若P 为抛物线上的动点,记PT 的最小值为函数()d t ,求()d t 的解析式.19.(本题满分14分,第1小题6分,第2小题8分)对于定义域为D 的函数()y f x =,如果存在区间[](),m n D m n ⊆<,同时满足:①()f x 在[],m n 内是单调函数;②当定义域是[],m n 时,()f x 的值域也是[],m n 则称函数()f x 是区间[],m n 上的“保值函数”.(1)求证:函数()22g x x x =-不是定义域[]0,1上的“保值函数”;(2)已知()()2112,0f x a R a a a x=+-∈≠是区间[],m n 上的“保值函数”,求a 的取值范围.20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)数列{}n a 中,已知()12121,,n n n a a a a k a a ++===+对任意*n N ∈都成立,数列{}n a 的前n 项和为n S .(这里,a k 均为实数) (1)若{}n a 是等差数列,求k ; (2)若11,2a k ==-,求n S ; (3)是否存在实数k ,使数列{}n a 是公比不为1的等比数列,且任意相邻三项12,,m m m a a a ++按某顺序排列后成等差数列?若存在,求出所有k 的值;若不存在,请说明理由.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)设T,R 若存在常数0M >,使得对任意t T ∈,均有t M ≤,则称T 为有界集合,同时称M 为集合T 的上界.(1)设121|,21x xA y y x R ⎧⎫-==∈⎨⎬+⎩⎭、21|sin 2A x x ⎧⎫=>⎨⎬⎩⎭,试判断1A 、2A 是否为有界集合,并说明理由;(2)已知()2f x x u =+,记()()()()()()11,2,3,n n f x f x f x f f x n -===.若m R ∈,1,4u ⎡⎫∈+∞⎪⎢⎣⎭,且(){}*|n B f m n N =∈为有界集合,求u 的值及m 的取值范围;(3)设a 、b 、c 均为正数,将()2a b -、()2b c -、()2c a -中的最小数记为d ,是否存在正数()0,1λ∈,使得λ为有界集合222{|,dC y y a b c ==++a 、b 、c 均为正数}的上界,若存在,试求λ的最小值;若不存在,请说明理由.宝山区答案1.(0,1)2.13. π4.35. 5.16. 37. 28. 19.1210. 0.03 11.212.512 13. B14. C15.A16.A17. (1) (2)arctan 218.(1)24y x =,证明略(2)2)(t),(0t 2)d t ⎧≥⎪=⎨<<⎪⎩19. (1)证明略(2)12a或32a 20. (1)12k =(2)2(21,),(2,)n n n k k N S n n k k N **⎧-=-∈=⎨=∈⎩ (3)25k =-21.(1)1A 为有界集合,上界为1;2A 不是有界集合 (2)14u =,11,22m ⎡⎤∈-⎢⎥⎣⎦ (3)15λ=解析:(2)设()()011,,,1,2,3,...n n a m a f m a f a n -====,则()n n a f m =∵()2114a f m m u ==+≥,则222111111024a a a a u a u ⎛⎫-=-+=-+-≥ ⎪⎝⎭且211111024n n n n n a a a u a a ---⎛⎫-=-+-≥⇒≥ ⎪⎝⎭若(){}*|N n B f m n =∈为有界集合,则设其上界为0M ,既有*0,N n a M n ≤∈∴()()()112211112211......n n n n n n n n n a a a a a a a a a a a a a a a ------=-+-++-+=-+-++-+2222121111111...242424n n a u a u a u m u --⎛⎫⎛⎫⎛⎫=-+-+-+-++-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭222212111111...22244n n a a a m n u u n u u --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-++-+≥-+⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦若0n a M ≤恒成立,则014n u u M ⎛⎫-+≤ ⎪⎝⎭恒成立,又11044u u ≥⇒-≥ ∴14u =,∴()214f x x =+ 设12m λ=+(i )0λ>,则()22101011112422a a f m m a a λλλ⎛⎫⎛⎫-=-=++-+=⇒>> ⎪ ⎪⎝⎭⎝⎭∴111...2n n a a a m ->>>>>记()()212g x f x x x ⎛⎫=-=- ⎪⎝⎭,则当1212x x >>时,()()12g x g x >∴()()()2111110n n n n n g a f a a a a g m a a λ----=-=->=-=∴()211n a a n λ>+-,若0na M ≤恒成立,则0λ=,矛盾。
2017年上海市虹口区高考数学一模试卷一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.已知集合A={1,2,4,6,8},B={x|x=2k,k∈A},则A∩B=.2.已知,则复数z的虚部为.3.设函数f(x)=sinx﹣cosx,且f(α)=1,则sin2α=.4.已知二元一次方程组的增广矩阵是,则此方程组的解是.5.数列{a n}是首项为1,公差为2的等差数列,S n是它前n项和,则=.6.已知角A是△ABC的内角,则“”是“的条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).7.若双曲线x2﹣=1的一个焦点到其渐近线的距离为2,则该双曲线的焦距等于.8.若正项等比数列{a n}满足:a3+a5=4,则a4的最大值为.9.一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于.10.设函数f(x)=,则当x≤﹣1时,则f[f(x)]表达式的展开式中含x2项的系数是.11.点M(20,40),抛物线y2=2px(p>0)的焦点为F,若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于.12.当实数x ,y 满足x 2+y 2=1时,|x +2y +a |+|3﹣x ﹣2y |的取值与x ,y 均无关,则实数a 的取范围是 .二、选择题(每小题5分,满分20分)13.在空间,α表示平面,m ,n 表示二条直线,则下列命题中错误的是( )A .若m ∥α,m 、n 不平行,则n 与α不平行B .若m ∥α,m 、n 不垂直,则n 与α不垂直C .若m ⊥α,m 、n 不平行,则n 与α不垂直D .若m ⊥α,m 、n 不垂直,则n 与α不平行14.已知函数在区间[0,a ](其中a >0)上单调递增,则实数a 的取值范围是( )A .B .C .D .15.如图,在圆C 中,点A 、B 在圆上,则的值( )A .只与圆C 的半径有关B .既与圆C 的半径有关,又与弦AB 的长度有关 C .只与弦AB 的长度有关D .是与圆C 的半径和弦AB 的长度均无关的定值16.定义f (x )={x }(其中{x }表示不小于x 的最小整数)为“取上整函数”,例如{2.1}=3,{4}=4.以下关于“取上整函数”性质的描述,正确的是( ) ①f (2x )=2f (x ); ②若f (x 1)=f (x 2),则x 1﹣x 2<1;③任意x 1,x 2∈R ,f (x 1+x 2)≤f (x 1)+f (x 2);④.A .①②B .①③C .②③D .②④三、解答题(本大题满分76分)17.在正三棱锥P﹣ABC中,已知底面等边三角形的边长为6,侧棱长为4.(1)求证:PA⊥BC;(2)求此三棱锥的全面积和体积.18.如图,我海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其北偏东30°方向与它相距20海里的B处有一外国船只,且D岛位于海监船正东18海里处.(1)求此时该外国船只与D岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D岛12海里的E处(E在B的正南方向),不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时).19.已知二次函数f(x)=ax2﹣4x+c的值域为[0,+∞).(1)判断此函数的奇偶性,并说明理由;(2)判断此函数在[,+∞)的单调性,并用单调性的定义证明你的结论;(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.20.椭圆C:过点M(2,0),且右焦点为F(1,0),过F的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2.(1)求椭圆C的方程;(2)如果直线l的斜率等于﹣1,求出k1•k2的值;(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.21.已知函数f(x)=2|x+2|﹣|x+1|,无穷数列{a n}的首项a1=a.(1)如果a n=f(n)(n∈N*),写出数列{a n}的通项公式;(2)如果a n=f(a n﹣1)(n∈N*且n≥2),要使得数列{a n}是等差数列,求首项a 的取值范围;(3)如果a n=f(a n﹣1)(n∈N*且n≥2),求出数列{a n}的前n项和S n.2017年上海市虹口区高考数学一模试卷参考答案与试题解析一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.已知集合A={1,2,4,6,8},B={x|x=2k,k∈A},则A∩B={2,4,8} .【考点】交集及其运算.【分析】先分别求出集合A和B,由此能出A∩B.【解答】解:∵集合A={1,2,4,6,8},∴B={x|x=2k,k∈A}={2,4,8,12,19},∴A∩B={2,4,8}.故答案为:{2,4,8}.2.已知,则复数z的虚部为1.【考点】复数代数形式的乘除运算.【分析】由,得,利用复数复数代数形式的乘法运算化简,求出z,则答案可求.【解答】解:由,得=2﹣2i+i﹣i2=3﹣i,则z=3+i.∴复数z的虚部为:1.故答案为:1.3.设函数f(x)=sinx﹣cosx,且f(α)=1,则sin2α=0.【考点】二倍角的正弦.【分析】由已知可得sinα﹣cosα=1,两边平方,利用二倍角的正弦函数公式,同角三角函数基本关系式即可得解.【解答】解:∵f(x)=sinx﹣cosx,且f(α)=1,∴sinα﹣cosα=1,∴两边平方,可得:sin2α+cos2α﹣2sinαcosα=1,∴1﹣sin2α=1,可得:sin2α=0.故答案为:0.4.已知二元一次方程组的增广矩阵是,则此方程组的解是.【考点】系数矩阵的逆矩阵解方程组.【分析】先利用增广矩阵,写出相应的二元一次方程组,然后再求解即得.【解答】解:由题意,方程组解之得故答案为5.数列{a n}是首项为1,公差为2的等差数列,S n是它前n项和,则=.【考点】数列的极限.【分析】求出数列的和以及通项公式,然后求解数列的极限即可.【解答】解:数列{a n}是首项为1,公差为2的等差数列,S n==n2.a n=1+(n﹣1)×2=2n﹣1,则==故答案为:;6.已知角A是△ABC的内角,则“”是“的充分不必要条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及三角函数值判断即可.【解答】解:A为△ABC的内角,则A∈(0,180°),若命题p:cosA=成立,则A=60°,sinA=;而命题q:sinA=成立,又由A∈(0,180°),则A=60°或120°;因此由p可以推得q成立,由q推不出p,可见p是q的充分不必要条件.故答案为:充分不必要.7.若双曲线x2﹣=1的一个焦点到其渐近线的距离为2,则该双曲线的焦距等于6.【考点】双曲线的简单性质.【分析】根据焦点到其渐近线的距离求出b的值即可得到结论.【解答】解:双曲线的渐近线为y=±bx,不妨设为y=﹣bx,即bx+y=0,焦点坐标为F(c,0),则焦点到其渐近线的距离d===b=2,则c====3,则双曲线的焦距等于2c=6,故答案为:68.若正项等比数列{a n}满足:a3+a5=4,则a4的最大值为2.【考点】等比数列的性质.【分析】利用数列{a n}是各项均为正数的等比数列,可得a3a5=a42,再利用基本不等式,即可求得a4的最大值.【解答】解:∵数列{a n}是各项均为正数的等比数列,∴a3a5=a42,∵等比数列{a n}各项均为正数,∴a3+a5≥2,当且仅当a3=a5=2时,取等号,∴a3=a5=2时,a4的最大值为2.故答案是:2.9.一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于.【考点】椭圆的简单性质.【分析】利用已知条件,求出题意的长半轴,短半轴,然后求出半焦距,即可.【解答】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为:=8,∵a2=b2+c2,∴c==2,∴椭圆的焦距为;故答案为:4.10.设函数f(x)=,则当x≤﹣1时,则f[f(x)]表达式的展开式中含x2项的系数是60.【考点】分段函数的应用.【分析】根据分段函数的解析式先求出f[f(x)]表达式,再根据利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为2求得r,再代入系数求出结果【解答】解:由函数f(x)=,当x≤﹣1时,f(x)=﹣2x﹣1,此时f(x)min=f(﹣1)=2﹣1=1,∴f[f(x)]=(﹣2x﹣1)6=(2x+1)6,=C6r2r x r,∴T r+1当r=2时,系数为C62×22=60,故答案为:6011.点M(20,40),抛物线y2=2px(p>0)的焦点为F,若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于42或22.【考点】抛物线的简单性质.【分析】过P做抛物线的准线的垂线,垂足为D,则|PF|=|PD|,当M(20,40)位于抛物线内,当M,P,D共线时,|PM|+|PF|的距离最小,20+=41,解得:p=42,当M(20,40)位于抛物线外,由勾股定理可知:=41,p=22或58,当p=58时,y2=116x,则点M(20,40)在抛物线内,舍去,即可求得p的值.【解答】解:由抛物线的定义可知:抛物线上的点到焦点距离=到准线的距离,过P做抛物线的准线的垂线,垂足为D,则|PF|=|PD|,当M(20,40)位于抛物线内,∴|PM|+|PF|=|PM|+|PD|,当M,P,D共线时,|PM|+|PF|的距离最小,由最小值为41,即20+=41,解得:p=42,当M(20,40)位于抛物线外,当P,M,F共线时,|PM|+|PF|取最小值,即=41,解得:p=22或58,由当p=58时,y2=116x,则点M(20,40)在抛物线内,舍去,故答案为:42或22.12.当实数x,y满足x2+y2=1时,|x+2y+a|+|3﹣x﹣2y|的取值与x,y均无关,则实数a的取范围是[,+∞).【考点】圆方程的综合应用.【分析】根据实数x,y满足x2+y2=1,设x=cosθ,y=sinθ,求出x+2y的取值范围,再讨论a的取值范围,求出|x+2y+a|+|3﹣x﹣2y|的值与x,y均无关时a的取范围.【解答】解:∵实数x,y满足x2+y2=1,可设x=cosθ,y=sinθ,则x+2y=cosθ+2sinθ=sin(θ+α),其中α=arctan2;∴﹣≤x+2y≤,∴当a≥时,|x+2y+a|+|3﹣x﹣2y|=(x+2y+a)+(3﹣x﹣2y)=a+3,其值与x,y均无关;∴实数a的取范围是[,+∞).故答案为:.二、选择题(每小题5分,满分20分)13.在空间,α表示平面,m,n表示二条直线,则下列命题中错误的是()A.若m∥α,m、n不平行,则n与α不平行B.若m∥α,m、n不垂直,则n与α不垂直C.若m⊥α,m、n不平行,则n与α不垂直D.若m⊥α,m、n不垂直,则n与α不平行【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】对于A,若m∥α,m、n不平行,则n与α可能平行、相交或n⊂α,即可得出结论.【解答】解:对于A,若m∥α,m、n不平行,则n与α可能平行、相交或n ⊂α,故不正确.故选A.14.已知函数在区间[0,a](其中a>0)上单调递增,则实数a的取值范围是()A.B.C.D.【考点】正弦函数的单调性.【分析】由条件利用正弦函数的单调性,可得2a+≤,求得a的范围.【解答】解:∵函数在区间[0,a](其中a>0)上单调递增,则2a+≤,求得a≤,故有0<a≤,故选:B.15.如图,在圆C中,点A、B在圆上,则的值()A.只与圆C的半径有关B.既与圆C的半径有关,又与弦AB的长度有关C.只与弦AB的长度有关D.是与圆C的半径和弦AB的长度均无关的定值【考点】平面向量数量积的运算.【分析】展开数量积,结合向量在向量方向上投影的概念可得=.则答案可求.【解答】解:如图,过圆心C作CD⊥AB,垂足为D,则=||||•cos∠CAB=.∴的值只与弦AB的长度有关.故选:C.16.定义f(x)={x}(其中{x}表示不小于x的最小整数)为“取上整函数”,例如{2.1}=3,{4}=4.以下关于“取上整函数”性质的描述,正确的是()①f(2x)=2f(x);②若f(x1)=f(x2),则x1﹣x2<1;③任意x1,x2∈R,f(x1+x2)≤f(x1)+f(x2);④.A.①②B.①③C.②③D.②④【考点】函数与方程的综合运用.【分析】充分理解“取上整函数”的定义.如果选项不满足题意,只需要举例说明即可【解答】解:对于①,当x=1.4时,f(2x)=f(2.8)=3.2,f(1.4)=4.所以f (2x)≠2f(x);①错.对于②,若f(x1)=f(x2).当x1为整数时,f(x1)=x1,此时x2>x1﹣1,即x1﹣x2<1.当x1不是整数时,f(x1)=[x1]+1.[x1]表示不大于x1的最大整数.x2表示比x1的整数部分大1的整数或者是和x1保持相同整数的数,此时﹣x1﹣x2<1.故②正确.对于③,当x1,x2∈Z,f(x1+x2)=f(x1)+f(x2),当x1,x2∉Z,f(x1+x2)<f(x1)+f(x2),故正确;对于④,举例f(1.2)+f(1.2+0.5)=4≠f(2.4)=3.故④错误.故选:C.三、解答题(本大题满分76分)17.在正三棱锥P﹣ABC中,已知底面等边三角形的边长为6,侧棱长为4.(1)求证:PA⊥BC;(2)求此三棱锥的全面积和体积.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积;直线与平面垂直的性质.【分析】(1)取BC的中点M,连AM、BM.由△ABC是等边三角形,可得AM ⊥BC.再由PB=PC,得PM⊥BC.利用线面垂直的判定可得BC⊥平面PAM,进一步得到PA⊥BC;(2)记O是等边三角形的中心,则PO⊥平面ABC.由已知求出高,可求三棱锥的体积.求出各面的面积可得三棱锥的全面积.【解答】(1)证明:取BC的中点M,连AM、BM.∵△ABC是等边三角形,∴AM⊥BC.又∵PB=PC,∴PM⊥BC.∵AM∩PM=M,∴BC⊥平面PAM,则PA⊥BC;(2)解:记O是等边三角形的中心,则PO⊥平面ABC.∵△ABC是边长为6的等边三角形,∴.∴,,∵,∴;.18.如图,我海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其北偏东30°方向与它相距20海里的B处有一外国船只,且D岛位于海监船正东18海里处.(1)求此时该外国船只与D岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D岛12海里的E处(E在B的正南方向),不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时).【考点】直线与圆的位置关系.【分析】(1)依题意,在△ABD中,∠DAB=60°,由余弦定理求得DB;(2)法一、过点B作BH⊥AD于点H,在Rt△ABH中,求解直角三角形可得HE、AE的值,进一步得到sin∠EAH,则∠EAH可求,求出外国船只到达E处的时间t,由求得速度的最小值.法二、建立以点A为坐标原点,AD为x轴,过点A往正北作垂直的y轴.可得A,D,B的坐标,设经过t小时外国船到达点,结合ED=12,得,列等式求得t,则,,再由求得速度的最小值.【解答】解:(1)依题意,在△ABD中,∠DAB=60°,由余弦定理得DB2=AD2+AB2﹣2AD•AB•cos60°=182+202﹣2×18×15×cos60°=364,∴,即此时该外国船只与D岛的距离为海里;(2)法一、过点B作BH⊥AD于点H,在Rt△ABH中,AH=10,∴HD=AD﹣AH=8,以D为圆心,12为半径的圆交BH于点E,连结AE、DE,在Rt△DEH中,HE=,∴,又AE=,∴sin∠EAH=,则≈41.81°.外国船只到达点E的时间(小时).∴海监船的速度(海里/小时).又90°﹣41.81°=48.2°,故海监船的航向为北偏东48.2°,速度的最小值为6.4海里/小时.法二、建立以点A为坐标原点,AD为x轴,过点A往正北作垂直的y轴.则A(0,0),D(18,0),,设经过t小时外国船到达点,又ED=12,得,此时(小时).则,,∴监测船的航向东偏北41.81°.∴海监船的速度(海里/小时).19.已知二次函数f(x)=ax2﹣4x+c的值域为[0,+∞).(1)判断此函数的奇偶性,并说明理由;(2)判断此函数在[,+∞)的单调性,并用单调性的定义证明你的结论;(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.【考点】二次函数的性质.【分析】(1)由二次函数f(x)=ax2﹣4x+c的值域,推出ac=4,判断f(﹣1)≠f(1),f(﹣1)≠﹣f(1),得到此函数是非奇非偶函数.(2)求出函数的单调递增区间.设x1、x2是满足的任意两个数,列出不等式,推出f(x2)>f(x1),即可判断函数是单调递增.(3)f(x)=ax2﹣4x+c,当,即0<a≤2时,当,即a>2时求出最小值即可.【解答】解:(1)由二次函数f(x)=ax2﹣4x+c的值域为[0,+∞),得a>0且,解得ac=4.…∵f(1)=a+c﹣4,f(﹣1)=a+c+4,a>0且c>0,从而f(﹣1)≠f(1),f(﹣1)≠﹣f(1),∴此函数是非奇非偶函数.…(2)函数的单调递增区间是[,+∞).设x1、x2是满足的任意两个数,从而有,∴.又a>0,∴,从而,即,从而f(x2)>f(x1),∴函数在[,+∞)上是单调递增.…(3)f(x)=ax2﹣4x+c,又a>0,,x∈[1,+∞)当,即0<a≤2时,最小值g(a)=f(x0)=0当,即a>2时,最小值综上,最小值…当0<a≤2时,最小值g(a)=0当a>2时,最小值综上y=g(a)的值域为[0,+∞)…20.椭圆C:过点M(2,0),且右焦点为F(1,0),过F 的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2.(1)求椭圆C的方程;(2)如果直线l的斜率等于﹣1,求出k1•k2的值;(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.【考点】直线与椭圆的位置关系.【分析】(1)利用已知条件求出b,即可求解椭圆方程.(2)直线l:y=﹣x+1,设AB坐标,联立利用韦达定理以及斜率公式求解即可.(3)当直线AB的斜率不存在时,不妨设A,B,求出斜率,即可;当直线AB 的斜率存在时,设其为k,求直线AB:y=k(x﹣1),联立直线与椭圆的方程组,利用韦达定理以及斜率公式化简求解即可.【解答】解:(1)∵a=2,又c=1,∴,∴椭圆方程为…(2)直线l:y=﹣x+1,设A(x1,y1)B(x2,y2),由消y得7x2﹣8x﹣8=0,有,.……(3)当直线AB的斜率不存在时,不妨设A(1,),B(1,﹣),则,,故k1+k2=2.…当直线AB的斜率存在时,设其为k,则直线AB:y=k(x﹣1),设A(x1,y1)B (x2,y2),由消y得(4k2+3)x2﹣8k2x+(4k2﹣12)=0,有,.…=…21.已知函数f(x)=2|x+2|﹣|x+1|,无穷数列{a n}的首项a1=a.(1)如果a n=f(n)(n∈N*),写出数列{a n}的通项公式;(2)如果a n=f(a n﹣1)(n∈N*且n≥2),要使得数列{a n}是等差数列,求首项a 的取值范围;(3)如果a n=f(a n﹣1)(n∈N*且n≥2),求出数列{a n}的前n项和S n.【考点】数列与函数的综合.【分析】(1)化简函数f(x)为分段函数,然后求出a n=f(n)=n+3.(2)如果{a n}是等差数列,求出公差d,首项,然后求解a的范围.(3)当a≥﹣1时,求出前n项和,当﹣2≤a≤﹣1时,当a≤﹣2时,分别求出n项和即可.【解答】解:(1)∵函数f(x)=2|x+2|﹣|x+1|=,…又n≥1且n∈N*,∴a n=f(n)=n+3.…(2)如果{a n}是等差数列,则a n﹣a n﹣1=d,a n=a n﹣1+d,由f(x)知一定有a n=a n﹣1+3,公差d=3.当a1≥﹣1时,符合题意.当﹣2≤a1≤﹣1时,a2=3a1+5,由a2﹣a1=3得3a1+5﹣a1=3,得a1=﹣1,a2=2.当a1≤﹣2时,a2=﹣a1﹣3,由a2﹣a1=3得﹣a1﹣3﹣a1=3,得a1=﹣3,此时a2=0.综上所述,可得a的取值范围是a≥﹣1或a=﹣3.…(3)当a≥﹣1时,a n=f(a n﹣1)=a n﹣1+3,∴数列{a n}是以a为首项,公差为3的等差数列,.…当﹣2≤a≤﹣1时,a2=3a1+5=3a+5≥﹣1,∴n≥3时,a n=a n﹣1+3.∴n=1时,S1=a.n≥2时,又S1=a也满足上式,∴(n∈N*)…当a≤﹣2时,a2=﹣a1﹣3=﹣a﹣3≥﹣1,∴n≥3时,a n=a n﹣1+3.∴n=1时,S1=a.n≥2时,又S1=a也满足上式,∴(n∈N*).综上所述:S n=.….。
虹口区2016学年度第二学期期中教学质量监控测试高三数学试卷(时间120分钟,满分150分) 2017.4一、填空题(1~6题每小题4分,7~12题每小题5分,本大题满分54分) 1、集合{}1,2,3,4A =,{}(1)(5)0B x x x =--<,则A B ⋂= .2、复数21iz i-=+所对应的点在复平面内位于第 象限.3、已知首项为1公差为2的等差数列{}n a ,其前n 项和为n S ,则2()lim n n na S →∞= .4、若方程组2322ax y x ay +=⎧⎨+=⎩无解,则实数a = .5、若7)(a x +的二项展开式中,含6x 项的系数为7,则实数=a .6、已知双曲线2221(0)y x a a-=>,它的渐近线方程是2y x =±,则a 的值为 .8、在平面直角坐标系中,已知点(2,2)P -,对于任意不全为零的实数a 、b ,直线:(1)(2)0l a x b y -++=,若点P 到直线l 的距离为d ,则d 的取值范围是 .9、函数21()(2)1xx f x x x ⎧≤⎪=⎨->⎪⎩,如果方程()f x b =有四个不同的实数解1x 、2x 、3x 、4x ,则1234x x x x +++= .10、三条侧棱两两垂直的正三棱锥,其俯视图如图所示,主视图的边界是底边长为2的等腰三角形,则主视图的面积等于 .11、在直角ABC ∆中,2A π∠=,1AB =,2AC =,M 是ABC ∆内一点,且12AM =,若AM AB AC λμ=+,则2λμ+的最大值 .12、无穷数列{}n a 的前n 项和为n S ,若对任意的正整数n 都有{}12310,,,,n S k k k k ∈,则10a 的可能取值最多..有 个.二、选择题(每小题5分,满分20分)13、已知a ,b ,c 都是实数,则“a ,b ,c 成等比数列”是“2b ac =⋅的( ).A 充分不必要条件 .B 必要不充分条件 .C 充要条件 .D 既不充分也不必要条件14、1l 、2l 是空间两条直线,α是平面,以下结论正确的是( )..A 如果1l ∥α,2l ∥α,则一定有1l ∥2l . .B 如果12l l ⊥,2l α⊥,则一定有1l α⊥..C 如果12l l ⊥,2l α⊥,则一定有1l ∥α. .D 如果1l α⊥,2l ∥α,则一定有12l l ⊥.15、已知函数()2x x e e f x --=,1x 、2x 、3x R ∈,且120x x +>,230x x +>,310x x +>,则123()()()f x f x f x ++的值( ).A 一定等于零. .B 一定大于零. .C 一定小于零. .D 正负都有可能.16、已知点(,)M a b 与点(0,1)N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,ab +有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93(,)(,)44-∞-+∞. 正确的个数是( ).A 1 .B 2 .C 3 .D 4F EDCBAC 1B 1A 1三、解答题(本大题满分76分)17、(本题满分14分.第(1)小题7分,第(2)小题7分.)如图111ABC A B C -是直三棱柱,底面ABC ∆是等腰直角三角形,且4AB AC ==,直三棱柱的高等于4,线段11B C 的中点为D ,线段BC 的中点为E ,线段1CC 的中点为F . (1)求异面直线AD 、EF 所成角的大小; (2)求三棱锥D AEF -的体积.已知定义在(,)22ππ-上的函数()f x 是奇函数,且当(0,)2x π∈时,tan ()tan 1xf x x =+.(1)求()f x 在区间(,)22ππ-上的解析式;(2)当实数m 为何值时,关于x 的方程()f x m =在(,)22ππ-有解.已知数列{}n a 是首项等于116且公比不为1的等比数列,n S 是它的前n 项和,满足325416S S =-. (1)求数列{}n a 的通项公式;(2)设log n a n b a =(0a >且1)a ≠,求数列{}n b 的前n 项和n T 的最值.已知椭圆:C 22221(0)x y a b a b +=>>,定义椭圆C 上的点00(,)M x y 的“伴随点”为00(,)x yN a b.(1)求椭圆C 上的点M 的“伴随点”N 的轨迹方程; (2)如果椭圆C 上的点3(1,)2的“伴随点”为13(,)22b,对于椭圆C 上的任意点M 及它的“伴随点”N ,求OM ON 的取值范围;(3)当2a =,b =l 交椭圆C 于A ,B 两点,若点A ,B 的“伴随点”分别是P ,Q ,且以PQ为直径的圆经过坐标原点O ,求OAB ∆的面积.对于定义域为R 的函数()y f x =,部分x 与y 的对应关系如下表:(1)求{[(0)]}f f f ;(2)数列{}n x 满足12x =,且对任意n N *∈,点1(,)n n x x +都在函数()y f x =的图像上,求124n x x x +++;(3)若()sin()y f x A x b ωϕ==++,其中0A >,0ωπ<<,0ϕπ<<,03b <<,求此函数的解析式,并求(1)(2)(3)f f f n +++(n N *∈).F EDCBAC 1B 1A 1虹口区2016学年度第二学期高三年级数学学科期中教学质量监控测试题答案一、填空题(1~6题每小题4分,7~12题每小题5分,本大题满分54分) 1、{2,3,4}; 2、四; 3、4; 4、2±; 5、1; 6、2 ;7、76; 8、[0,5]; 9、4; 10; 11; 12、91;二、选择题(每小题5分,满分20分)13、A ; 14、D ; 15、B ; 16、B ; 三、解答题(本大题满分76分)17、(14分)解:(1)以A 为坐标原点,AB 、AC 、1AA 分别为x 轴和y 轴建立直角坐标系.依题意有D (2,2,4),A (0,0,0),E (2,2,0),F (0,4,2) 所以(2,2,4),(2,2,2)AD EF ==-.……………………3分设异面直线AD 、EF 所成角为角,||cos ||||AD EF AD EF α⋅==⋅16444=++ 3所以arccos 3α=, 所以异面直线AD 、EF 所成角的大小为arccos 3…………7分 (2)线段11B C 的中点为D ,线段BC 的中点为E,由4AB AC ==,高14A A=,得BC =,∴AE =DEFS =3分由E 为线段BC 的中点,且AC AB =,BC AE ⊥∴,由⊥1BB 面ABC ,1BB AE ⊥∴,得⊥AE 面C C BB 11,1116333D AEF A DEF DEFV V SAE --==⋅=⋅= ∴三棱锥D AEF -的体积为163体积单位.……………………7分18、(14分)解:(1)设02x π-<<,则02x π<-<,()f x 是奇函数,则有tan()tan ()()tan()11tan x xf x f x x x-=--=-=-+-…………4分∴tan 0tan 12()00tan 01tan 2xx x f x x x x x ππ⎧<<⎪+⎪==⎨⎪⎪-<<-⎩ ………………7分 (2)设02x π<<,令tan t x =,则0t >,而tan 1()1tan 111x t y f x x t t====-+++. 11t +>,得1011t <<+,从而10111t <-<+,∴()y f x =在02x π<<的取值范围是01y <<.…………………………11分又设02x π-<<,则02x π<-<,由此函数是奇函数得()()f x f x =--,0()1f x <-<,从而1()0f x -<<.………………13分综上所述,()y f x =的值域为(1,1)-,所以m 的取值范围是(1,1)-.…………14分19、(14分)解:(1)325416S S =- ,1q ≠,3211(1)(1)541116a q a q q q --∴=⨯---.……2分 整理得2320q q -+=,解得2q =或1q =(舍去).………………4分1512n n n a a q --∴=⨯=.………………6分(2)log (5)log 2n a n a b a n ==-.………………8分1)当1a >时,有log 20,a > 数列{}n b 是以log 2a 为公差的等差数列,此数列是首项为负的递增的等差数列. 由0n b ≤,得5n ≤.所以min 45()10log 2n a T T T ===-.n T 的没有最大值.………11分2)当01a <<时,有log 20a <,数列{}n b 是以log 2a 为公差的等差数列,此数列是首项为正的递减的等差数列.0n b ≥,得5n ≤,max 45()10log 2n a T T T ===-.n T 的没有最小值.…………14分20、(16分)解:(1)解.设N (,x y )由题意 00x x a y y b⎧=⎪⎪⎨⎪=⎪⎩ 则00x ax y by =⎧⎨=⎩,又2200221(0)x y a b a b +=>> ∴2222()()1(0)ax by a b a b+=>>,从而得221x y +=……………………3分 (2)由112a =,得2a =.又221914a b +=,得b =…………5分点00(,)M x y 在椭圆上,22143x y +=,2200334y x =-,且2004x ≤≤,∴222000002(,)(,224xx OM ON x y x -=⋅==+0>,OM ON的取值范围是2⎤⎦……8分(3) 设1122(,),(,)A x y B x y ,则12,22x x P Q ⎛⎛ ⎝⎝;1)当直线l 的斜率存在时,设方程为y kx m =+, 由22143y kx mx y =+⎧⎪⎨+=⎪⎩得222(34)84(3)0k x kmx m +++-=; 有22122212248(34)08344(3)34k m kmx x k m x x k ⎧⎪∆=+->⎪-⎪+=⎨+⎪⎪-=⎪+⎩① ……10分 由以PQ 为直径的圆经过坐标原点O 可得: 1212340x x y y +=;整理得:221212(34)4()40k x x mk x x m ++++= ②将①式代入②式得: 22342k m +=,………………………… 12分048,0,043222>=∆>∴>+m m k又点O 到直线y kx m =+的距离d =2222222221223414334143433411m m k k m k k m k k x x k AB ⋅+=+⋅+=+-++=-+=所以12OAB S AB d ∆==14分 2) 当直线l 的斜率不存在时,设方程为(22)x m m =-<<联立椭圆方程得223(4)4m y -=;代入1212340x x y y +=得223(4)3404m m --⋅=,解得22m =,从而232y =,3212121=-==∆y y m d AB S OAB 综上:OAB ∆的面积是定值……………………16分 21、(18分)解:(1) {[(0)]}((3))(1)2f f f f f f ==-= ……………………3分(2) 11212,()()(2)0,n n x x f x x f x f +==∴===32()3,x f x == 43()1,x f x ==-54()2x f x ==51x x ∴=,周期为4 , 所以124n x x x +++=4n .……………………9分(3)由题意得 (1)2(1)(1)2(2)(0)3(3)(2)0(4)f f f f -=⎧⎪=⎪⎨=⎪⎪=⎩ 由(1)(2)sin()sin()sin cos 0ωϕωϕωϕ-∴+=-+∴= 又0ωπ<<sin 0cos 0ωϕ∴≠∴= 而0ϕπ<<2πϕ∴=…………11分从而有23cos 32cos 23(2cos 1)30cos20A b A A A b b A A A A b ωωωω+=⎧+-=⎧⎪+=⇒=-⇒⎨⎨-+-=⎩⎪+=⎩22242230 2.1A A A A A b ∴-+-+=∴== 1cos 2ω=0ωπ<<3πω∴=()2cos 13f x x π∴=+…………………………13分此函数的最小正周期为6, (6)(0)3f f == (1)(2)(3)4)+(5)(6)6f f f f f f ++++=(…………14分1)当2n k =()k N *∈时. (1)(2)(3)(1)(2)(6)f f f n f f f k +++=+++[(1)(2)(6)]63k f f f k n =+++==.……………………16分 2)当21n k =-()k N *∈时.(1)(2)(3)(1)(2)(6)(62)(61)(6)f f f n f f f k f k f k f k +++=+++----- [(1)(2)(6)]56532k f f f k n =+++-=-=-.………………18分。
2017年上海市虹口区高考数学一模试卷一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.已知集合A={1,2,4,6,8},B={x|x=2k,k∈A},则A∩B=.2.已知,则复数z的虚部为.3.设函数f(x)=sinx﹣cosx,且f(α)=1,则sin2α=.4.已知二元一次方程组的增广矩阵是,则此方程组的解是.5.数列{a n}是首项为1,公差为2的等差数列,S n是它前n项和,则=.6.已知角A是△ABC的内角,则“”是“的条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).7.若双曲线x2﹣=1的一个焦点到其渐近线的距离为2,则该双曲线的焦距等于.8.若正项等比数列{a n}满足:a3+a5=4,则a4的最大值为.9.一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于.10.设函数f(x)=,则当x≤﹣1时,则f[f(x)]表达式的展开式中含x2项的系数是.11.点M(20,40),抛物线y2=2px(p>0)的焦点为F,若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于.12.当实数x,y满足x2+y2=1时,|x+2y+a|+|3﹣x﹣2y|的取值与x,y均无关,则实数a的取范围是.二、选择题(每小题5分,满分20分)13.在空间,α表示平面,m,n表示二条直线,则下列命题中错误的是()A.若m∥α,m、n不平行,则n与α不平行B.若m∥α,m、n不垂直,则n与α不垂直C.若m⊥α,m、n不平行,则n与α不垂直D.若m⊥α,m、n不垂直,则n与α不平行14.已知函数在区间[0,a](其中a>0)上单调递增,则实数a的取值范围是()A.B.C.D.15.如图,在圆C中,点A、B在圆上,则的值()A.只与圆C的半径有关B.既与圆C的半径有关,又与弦AB的长度有关C.只与弦AB的长度有关D.是与圆C的半径和弦AB的长度均无关的定值16.定义f(x)={x}(其中{x}表示不小于x的最小整数)为“取上整函数”,例如{2.1}=3,{4}=4.以下关于“取上整函数”性质的描述,正确的是()①f(2x)=2f(x);②若f(x1)=f(x2),则x1﹣x2<1;③任意x1,x2∈R,f(x1+x2)≤f(x1)+f(x2);④.A.①②B.①③C.②③D.②④三、解答题(本大题满分76分)17.在正三棱锥P﹣ABC中,已知底面等边三角形的边长为6,侧棱长为4.(1)求证:PA⊥BC;(2)求此三棱锥的全面积和体积.18.如图,我海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其北偏东30°方向与它相距20海里的B处有一外国船只,且D岛位于海监船正东18海里处.(1)求此时该外国船只与D岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D岛12海里的E处(E在B的正南方向),不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时).19.已知二次函数f(x)=ax2﹣4x+c的值域为[0,+∞).(1)判断此函数的奇偶性,并说明理由;(2)判断此函数在[,+∞)的单调性,并用单调性的定义证明你的结论;(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.20.椭圆C:过点M(2,0),且右焦点为F(1,0),过F的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2.(1)求椭圆C的方程;(2)如果直线l的斜率等于﹣1,求出k1•k2的值;(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.21.已知函数f(x)=2|x+2|﹣|x+1|,无穷数列{a n}的首项a1=a.(1)如果a n=f(n)(n∈N*),写出数列{a n}的通项公式;(2)如果a n=f(a n﹣1)(n∈N*且n≥2),要使得数列{a n}是等差数列,求首项a 的取值范围;(3)如果a n=f(a n﹣1)(n∈N*且n≥2),求出数列{a n}的前n项和S n.2017年上海市虹口区高考数学一模试卷参考答案与试题解析一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.已知集合A={1,2,4,6,8},B={x|x=2k,k∈A},则A∩B={2,4,8} .【考点】交集及其运算.【分析】先分别求出集合A和B,由此能出A∩B.【解答】解:∵集合A={1,2,4,6,8},∴B={x|x=2k,k∈A}={2,4,8,12,19},∴A∩B={2,4,8}.故答案为:{2,4,8}.2.已知,则复数z的虚部为1.【考点】复数代数形式的乘除运算.【分析】由,得,利用复数复数代数形式的乘法运算化简,求出z,则答案可求.【解答】解:由,得=2﹣2i+i﹣i2=3﹣i,则z=3+i.∴复数z的虚部为:1.故答案为:1.3.设函数f(x)=sinx﹣cosx,且f(α)=1,则sin2α=0.【考点】二倍角的正弦.【分析】由已知可得sinα﹣cosα=1,两边平方,利用二倍角的正弦函数公式,同角三角函数基本关系式即可得解.【解答】解:∵f(x)=sinx﹣cosx,且f(α)=1,∴sinα﹣cosα=1,∴两边平方,可得:sin2α+cos2α﹣2sinαcosα=1,∴1﹣sin2α=1,可得:sin2α=0.故答案为:0.4.已知二元一次方程组的增广矩阵是,则此方程组的解是.【考点】系数矩阵的逆矩阵解方程组.【分析】先利用增广矩阵,写出相应的二元一次方程组,然后再求解即得.【解答】解:由题意,方程组解之得故答案为5.数列{a n}是首项为1,公差为2的等差数列,S n是它前n项和,则=.【考点】数列的极限.【分析】求出数列的和以及通项公式,然后求解数列的极限即可.【解答】解:数列{a n}是首项为1,公差为2的等差数列,S n==n2.a n=1+(n﹣1)×2=2n﹣1,则==故答案为:;6.已知角A是△ABC的内角,则“”是“的充分不必要条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及三角函数值判断即可.【解答】解:A为△ABC的内角,则A∈(0,180°),若命题p:cosA=成立,则A=60°,sinA=;而命题q:sinA=成立,又由A∈(0,180°),则A=60°或120°;因此由p可以推得q成立,由q推不出p,可见p是q的充分不必要条件.故答案为:充分不必要.7.若双曲线x2﹣=1的一个焦点到其渐近线的距离为2,则该双曲线的焦距等于6.【考点】双曲线的简单性质.【分析】根据焦点到其渐近线的距离求出b的值即可得到结论.【解答】解:双曲线的渐近线为y=±bx,不妨设为y=﹣bx,即bx+y=0,焦点坐标为F(c,0),则焦点到其渐近线的距离d===b=2,则c====3,则双曲线的焦距等于2c=6,故答案为:68.若正项等比数列{a n}满足:a3+a5=4,则a4的最大值为2.【考点】等比数列的性质.【分析】利用数列{a n}是各项均为正数的等比数列,可得a3a5=a42,再利用基本不等式,即可求得a4的最大值.【解答】解:∵数列{a n}是各项均为正数的等比数列,∴a3a5=a42,∵等比数列{a n}各项均为正数,∴a3+a5≥2,当且仅当a3=a5=2时,取等号,∴a3=a5=2时,a4的最大值为2.故答案是:2.9.一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于.【考点】椭圆的简单性质.【分析】利用已知条件,求出题意的长半轴,短半轴,然后求出半焦距,即可.【解答】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为:=8,∵a2=b2+c2,∴c==2,∴椭圆的焦距为;故答案为:4.10.设函数f(x)=,则当x≤﹣1时,则f[f(x)]表达式的展开式中含x2项的系数是60.【考点】分段函数的应用.【分析】根据分段函数的解析式先求出f[f(x)]表达式,再根据利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为2求得r,再代入系数求出结果【解答】解:由函数f(x)=,当x≤﹣1时,f(x)=﹣2x﹣1,此时f(x)min=f(﹣1)=2﹣1=1,∴f[f(x)]=(﹣2x﹣1)6=(2x+1)6,=C6r2r x r,∴T r+1当r=2时,系数为C62×22=60,故答案为:6011.点M(20,40),抛物线y2=2px(p>0)的焦点为F,若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于42或22.【考点】抛物线的简单性质.【分析】过P做抛物线的准线的垂线,垂足为D,则|PF|=|PD|,当M(20,40)位于抛物线内,当M,P,D共线时,|PM|+|PF|的距离最小,20+=41,解得:p=42,当M(20,40)位于抛物线外,由勾股定理可知:=41,p=22或58,当p=58时,y2=116x,则点M(20,40)在抛物线内,舍去,即可求得p的值.【解答】解:由抛物线的定义可知:抛物线上的点到焦点距离=到准线的距离,过P做抛物线的准线的垂线,垂足为D,则|PF|=|PD|,当M(20,40)位于抛物线内,∴|PM|+|PF|=|PM|+|PD|,当M,P,D共线时,|PM|+|PF|的距离最小,由最小值为41,即20+=41,解得:p=42,当M(20,40)位于抛物线外,当P,M,F共线时,|PM|+|PF|取最小值,即=41,解得:p=22或58,由当p=58时,y2=116x,则点M(20,40)在抛物线内,舍去,故答案为:42或22.12.当实数x,y满足x2+y2=1时,|x+2y+a|+|3﹣x﹣2y|的取值与x,y均无关,则实数a的取范围是[,+∞).【考点】圆方程的综合应用.【分析】根据实数x,y满足x2+y2=1,设x=cosθ,y=sinθ,求出x+2y的取值范围,再讨论a的取值范围,求出|x+2y+a|+|3﹣x﹣2y|的值与x,y均无关时a的取范围.【解答】解:∵实数x,y满足x2+y2=1,可设x=cosθ,y=sinθ,则x+2y=cosθ+2sinθ=sin(θ+α),其中α=arctan2;∴﹣≤x+2y≤,∴当a≥时,|x+2y+a|+|3﹣x﹣2y|=(x+2y+a)+(3﹣x﹣2y)=a+3,其值与x,y均无关;∴实数a的取范围是[,+∞).故答案为:.二、选择题(每小题5分,满分20分)13.在空间,α表示平面,m,n表示二条直线,则下列命题中错误的是()A.若m∥α,m、n不平行,则n与α不平行B.若m∥α,m、n不垂直,则n与α不垂直C.若m⊥α,m、n不平行,则n与α不垂直D.若m⊥α,m、n不垂直,则n与α不平行【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】对于A,若m∥α,m、n不平行,则n与α可能平行、相交或n⊂α,即可得出结论.【解答】解:对于A,若m∥α,m、n不平行,则n与α可能平行、相交或n ⊂α,故不正确.故选A.14.已知函数在区间[0,a](其中a>0)上单调递增,则实数a的取值范围是()A.B.C.D.【考点】正弦函数的单调性.【分析】由条件利用正弦函数的单调性,可得2a+≤,求得a的范围.【解答】解:∵函数在区间[0,a](其中a>0)上单调递增,则2a+≤,求得a≤,故有0<a≤,故选:B.15.如图,在圆C中,点A、B在圆上,则的值()A.只与圆C的半径有关B.既与圆C的半径有关,又与弦AB的长度有关C.只与弦AB的长度有关D.是与圆C的半径和弦AB的长度均无关的定值【考点】平面向量数量积的运算.【分析】展开数量积,结合向量在向量方向上投影的概念可得=.则答案可求.【解答】解:如图,过圆心C作CD⊥AB,垂足为D,则=||||•cos∠CAB=.∴的值只与弦AB的长度有关.故选:C.16.定义f(x)={x}(其中{x}表示不小于x的最小整数)为“取上整函数”,例如{2.1}=3,{4}=4.以下关于“取上整函数”性质的描述,正确的是()①f(2x)=2f(x);②若f(x1)=f(x2),则x1﹣x2<1;③任意x1,x2∈R,f(x1+x2)≤f(x1)+f(x2);④.A.①②B.①③C.②③D.②④【考点】函数与方程的综合运用.【分析】充分理解“取上整函数”的定义.如果选项不满足题意,只需要举例说明即可【解答】解:对于①,当x=1.4时,f(2x)=f(2.8)=3.2,f(1.4)=4.所以f (2x)≠2f(x);①错.对于②,若f(x1)=f(x2).当x1为整数时,f(x1)=x1,此时x2>x1﹣1,即x1﹣x2<1.当x1不是整数时,f(x1)=[x1]+1.[x1]表示不大于x1的最大整数.x2表示比x1的整数部分大1的整数或者是和x1保持相同整数的数,此时﹣x1﹣x2<1.故②正确.对于③,当x1,x2∈Z,f(x1+x2)=f(x1)+f(x2),当x1,x2∉Z,f(x1+x2)<f(x1)+f(x2),故正确;对于④,举例f(1.2)+f(1.2+0.5)=4≠f(2.4)=3.故④错误.故选:C.三、解答题(本大题满分76分)17.在正三棱锥P﹣ABC中,已知底面等边三角形的边长为6,侧棱长为4.(1)求证:PA⊥BC;(2)求此三棱锥的全面积和体积.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积;直线与平面垂直的性质.【分析】(1)取BC的中点M,连AM、BM.由△ABC是等边三角形,可得AM ⊥BC.再由PB=PC,得PM⊥BC.利用线面垂直的判定可得BC⊥平面PAM,进一步得到PA⊥BC;(2)记O是等边三角形的中心,则PO⊥平面ABC.由已知求出高,可求三棱锥的体积.求出各面的面积可得三棱锥的全面积.【解答】(1)证明:取BC的中点M,连AM、BM.∵△ABC是等边三角形,∴AM⊥BC.又∵PB=PC,∴PM⊥BC.∵AM∩PM=M,∴BC⊥平面PAM,则PA⊥BC;(2)解:记O是等边三角形的中心,则PO⊥平面ABC.∵△ABC是边长为6的等边三角形,∴.∴,,∵,∴;.18.如图,我海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其北偏东30°方向与它相距20海里的B处有一外国船只,且D岛位于海监船正东18海里处.(1)求此时该外国船只与D岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D岛12海里的E处(E在B的正南方向),不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时).【考点】直线与圆的位置关系.【分析】(1)依题意,在△ABD中,∠DAB=60°,由余弦定理求得DB;(2)法一、过点B作BH⊥AD于点H,在Rt△ABH中,求解直角三角形可得HE、AE的值,进一步得到sin∠EAH,则∠EAH可求,求出外国船只到达E处的时间t,由求得速度的最小值.法二、建立以点A为坐标原点,AD为x轴,过点A往正北作垂直的y轴.可得A,D,B的坐标,设经过t小时外国船到达点,结合ED=12,得,列等式求得t,则,,再由求得速度的最小值.【解答】解:(1)依题意,在△ABD中,∠DAB=60°,由余弦定理得DB2=AD2+AB2﹣2AD•AB•cos60°=182+202﹣2×18×15×cos60°=364,∴,即此时该外国船只与D岛的距离为海里;(2)法一、过点B作BH⊥AD于点H,在Rt△ABH中,AH=10,∴HD=AD﹣AH=8,以D为圆心,12为半径的圆交BH于点E,连结AE、DE,在Rt△DEH中,HE=,∴,又AE=,∴sin∠EAH=,则≈41.81°.外国船只到达点E的时间(小时).∴海监船的速度(海里/小时).又90°﹣41.81°=48.2°,故海监船的航向为北偏东48.2°,速度的最小值为6.4海里/小时.法二、建立以点A为坐标原点,AD为x轴,过点A往正北作垂直的y轴.则A(0,0),D(18,0),,设经过t小时外国船到达点,又ED=12,得,此时(小时).则,,∴监测船的航向东偏北41.81°.∴海监船的速度(海里/小时).19.已知二次函数f(x)=ax2﹣4x+c的值域为[0,+∞).(1)判断此函数的奇偶性,并说明理由;(2)判断此函数在[,+∞)的单调性,并用单调性的定义证明你的结论;(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.【考点】二次函数的性质.【分析】(1)由二次函数f(x)=ax2﹣4x+c的值域,推出ac=4,判断f(﹣1)≠f(1),f(﹣1)≠﹣f(1),得到此函数是非奇非偶函数.(2)求出函数的单调递增区间.设x1、x2是满足的任意两个数,列出不等式,推出f(x2)>f(x1),即可判断函数是单调递增.(3)f(x)=ax2﹣4x+c,当,即0<a≤2时,当,即a>2时求出最小值即可.【解答】解:(1)由二次函数f(x)=ax2﹣4x+c的值域为[0,+∞),得a>0且,解得ac=4.…∵f(1)=a+c﹣4,f(﹣1)=a+c+4,a>0且c>0,从而f(﹣1)≠f(1),f(﹣1)≠﹣f(1),∴此函数是非奇非偶函数.…(2)函数的单调递增区间是[,+∞).设x1、x2是满足的任意两个数,从而有,∴.又a>0,∴,从而,即,从而f(x2)>f(x1),∴函数在[,+∞)上是单调递增.…(3)f(x)=ax2﹣4x+c,又a>0,,x∈[1,+∞)当,即0<a≤2时,最小值g(a)=f(x0)=0当,即a>2时,最小值综上,最小值…当0<a≤2时,最小值g(a)=0当a>2时,最小值综上y=g(a)的值域为[0,+∞)…20.椭圆C:过点M(2,0),且右焦点为F(1,0),过F 的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2.(1)求椭圆C的方程;(2)如果直线l的斜率等于﹣1,求出k1•k2的值;(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.【考点】直线与椭圆的位置关系.【分析】(1)利用已知条件求出b,即可求解椭圆方程.(2)直线l:y=﹣x+1,设AB坐标,联立利用韦达定理以及斜率公式求解即可.(3)当直线AB的斜率不存在时,不妨设A,B,求出斜率,即可;当直线AB 的斜率存在时,设其为k,求直线AB:y=k(x﹣1),联立直线与椭圆的方程组,利用韦达定理以及斜率公式化简求解即可.【解答】解:(1)∵a=2,又c=1,∴,∴椭圆方程为…(2)直线l:y=﹣x+1,设A(x1,y1)B(x2,y2),由消y得7x2﹣8x﹣8=0,有,.……(3)当直线AB的斜率不存在时,不妨设A(1,),B(1,﹣),则,,故k1+k2=2.…当直线AB的斜率存在时,设其为k,则直线AB:y=k(x﹣1),设A(x1,y1)B (x2,y2),由消y得(4k2+3)x2﹣8k2x+(4k2﹣12)=0,有,.…=…21.已知函数f(x)=2|x+2|﹣|x+1|,无穷数列{a n}的首项a1=a.(1)如果a n=f(n)(n∈N*),写出数列{a n}的通项公式;(2)如果a n=f(a n﹣1)(n∈N*且n≥2),要使得数列{a n}是等差数列,求首项a 的取值范围;(3)如果a n=f(a n﹣1)(n∈N*且n≥2),求出数列{a n}的前n项和S n.【考点】数列与函数的综合.【分析】(1)化简函数f(x)为分段函数,然后求出a n=f(n)=n+3.(2)如果{a n}是等差数列,求出公差d,首项,然后求解a的范围.(3)当a≥﹣1时,求出前n项和,当﹣2≤a≤﹣1时,当a≤﹣2时,分别求出n项和即可.【解答】解:(1)∵函数f(x)=2|x+2|﹣|x+1|=,…又n≥1且n∈N*,∴a n=f(n)=n+3.…(2)如果{a n}是等差数列,则a n﹣a n﹣1=d,a n=a n﹣1+d,由f(x)知一定有a n=a n﹣1+3,公差d=3.当a1≥﹣1时,符合题意.当﹣2≤a1≤﹣1时,a2=3a1+5,由a2﹣a1=3得3a1+5﹣a1=3,得a1=﹣1,a2=2.当a1≤﹣2时,a2=﹣a1﹣3,由a2﹣a1=3得﹣a1﹣3﹣a1=3,得a1=﹣3,此时a2=0.综上所述,可得a的取值范围是a≥﹣1或a=﹣3.…(3)当a≥﹣1时,a n=f(a n﹣1)=a n﹣1+3,∴数列{a n}是以a为首项,公差为3的等差数列,.…当﹣2≤a≤﹣1时,a2=3a1+5=3a+5≥﹣1,∴n≥3时,a n=a n﹣1+3.∴n=1时,S1=a.n ≥2时,又S1=a也满足上式,∴(n∈N*)…当a≤﹣2时,a2=﹣a1﹣3=﹣a﹣3≥﹣1,∴n≥3时,a n=a n﹣1+3.∴n=1时,S1=a.n ≥2时,又S1=a也满足上式,∴(n∈N*).综上所述:S n=.….。
2017年上海市高考数学模拟试卷一、填空题(本大题满分54分,1-6每小题4分,7-12每小题4分)1.计算:=.2.设函数f(x)=的反函数是f﹣1(x),则f﹣1(4)=.3.已知复数(i为虚数单位),则|z|=.4.函数,若存在锐角θ满足f(θ)=2,则θ=.5.已知球的半径为R,若球面上两点A,B的球面距离为,则这两点A,B 间的距离为.6.若(2+x)n的二项展开式中,所有二项式的系数和为256,则正整数n=.7.设k为常数,且,则用k表示sin2α的式子为sin2α=.8.设椭圆的两个焦点为F1,F2,M是椭圆上任一动点,则的取值范围为.9.在△ABC中,内角A,B,C的对边分别是a,b,c,若,sinC=2 sinB,则A角大小为.10.设f(x)=lgx,若f(1﹣a)﹣f(a)>0,则实数a的取值范围为.11.已知数列{a n}满足:a1=1,a n+a n=()n,n∈N*,则=.+112.已知△ABC的面积为360,点P是三角形所在平面内一点,且,则△PAB的面积为.二、选择题(本大题满分20分)13.已知集合A={x|x>﹣1},则下列选项正确的是()A.0⊆A B.{0}⊆A C.∅∈A D.{0}∈A14.设x,y∈R,则“|x|+|y|>1”的一个充分条件是()A.|x|≥1 B.|x+y|≥1 C.y≤﹣2 D.且15.图中曲线的方程可以是()A.(x+y﹣1)•(x2+y2﹣1)=0 B.C.D.16.已知非空集合M满足:对任意x∈M,总有x2∉M且,若M⊆{0,1,2,3,4,5},则满足条件M的个数是()A.11 B.12 C.15 D.16三、解答题(本大题满分76分)17.已知A是圆锥的顶点,BD是圆锥底面的直径,C是底面圆周上一点,BD=2,BC=1,AC与底面所成角的大小为,过点A作截面ABC,ACD,截去部分后的几何体如图所示.(1)求原来圆锥的侧面积;(2)求该几何体的体积.18.已知双曲线Γ:(a>0,b>0),直线l:x+y﹣2=0,F1,F2为双曲线Γ的两个焦点,l与双曲线Γ的一条渐近线平行且过其中一个焦点.(1)求双曲线Γ的方程;(2)设Γ与l的交点为P,求∠F1PF2的角平分线所在直线的方程.19.某租车公司给出的财务报表如下:1014年(1﹣121015年(1﹣121016年(1﹣11月)月)月)接单量(单)144632724012512550331996油费(元)214301962591305364653214963平均每单油费t(元)14.8214.49平均每单里程k(公里)1515每公里油耗a(元)0.70.70.7有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里)20.已知数列{a n},{b n}与函数f(x),{a n}是首项a1=15,公差d≠0的等差数列,{b n}满足:b n=f(a n).(1)若a4,a7,a8成等比数列,求d的值;(2)若d=2,f(x)=|x﹣21|,求{b n}的前n项和S n;(3)若d=﹣1,f(x)=e x,T n=b1•b2•b3…b n,问n为何值时,T n的值最大?21.对于函数f(x),若存在实数m,使得f(x+m)﹣f(m)为R上的奇函数,则称f(x)是位差值为m的“位差奇函数”.(1)判断函数f(x)=2x+1和g(x)=2x是否为位差奇函数?说明理由;(2)若f(x)=sin(x+φ)是位差值为的位差奇函数,求φ的值;(3)若f(x)=x3+bx2+cx对任意属于区间中的m都不是位差奇函数,求实数b,c满足的条件.2017年上海市高考数学模拟试卷参考答案与试题解析一、填空题(本大题满分54分,1-6每小题4分,7-12每小题4分)1.计算:=﹣2.【考点】二阶矩阵.【分析】利用二阶行列式对角线法则直接求解.【解答】解:=4×1﹣3×2=﹣2.故答案为:﹣2.2.设函数f(x)=的反函数是f﹣1(x),则f﹣1(4)=16.【考点】反函数.【分析】先求出x=y2,y≥0,互换x,y,得f﹣1(x)=x2,x≥0,由此能求出f﹣1(4).【解答】解:∵函数f(x)=y=的反函数是f﹣1(x),∴x=y2,y≥0,互换x,y,得f﹣1(x)=x2,x≥0,∴f﹣1(4)=42=16.故答案为:16.3.已知复数(i为虚数单位),则|z|=2.【考点】复数代数形式的乘除运算.【分析】利用复数模的计算公式即可得出.【解答】解:复数(i为虚数单位),则|z|==2.故答案为:2、4.函数,若存在锐角θ满足f(θ)=2,则θ=.【考点】三角函数的化简求值.【分析】运用两角和的正弦公式和特殊角的正弦函数值,计算即可得到所求值.【解答】解:函数=2(sinx+cosx)=2sin(x+),由若存在锐角θ满足f(θ)=2,即有2sin(θ+)=2,解得θ=﹣=.故答案为:.5.已知球的半径为R,若球面上两点A,B的球面距离为,则这两点A,B 间的距离为R.【考点】球面距离及相关计算.【分析】两点A、B间的球面距离为,可得∠AOB=,即可求出两点A,B 间的距离.【解答】解:两点A、B间的球面距离为,∴∠AOB=.∴两点A,B间的距离为R,故答案为:R.6.若(2+x)n的二项展开式中,所有二项式的系数和为256,则正整数n=8.【考点】二项式系数的性质.【分析】由题意可得:2n=256,解得n.【解答】解:由题意可得:2n=256,解得n=8.故答案为:8.7.设k为常数,且,则用k表示sin2α的式子为sin2α=2k2﹣1.【考点】二倍角的正弦.【分析】利用两角差的余弦函数公式化简已知等式,进而两边平方利用二倍角的正弦函数公式,同角三角函数基本关系式即可求解.【解答】解:∵,∴(cosα+sinα)=k,可得:cosα+sinα=k,∴两边平方可得:cos2α+sin2α+2cosαsinα=2k2,可得:1+sin2α=2k2,∴sin2α=2k2﹣1.故答案为:sin2α=2k2﹣1.8.设椭圆的两个焦点为F1,F2,M是椭圆上任一动点,则的取值范围为[﹣2,1] .【考点】椭圆的简单性质.【分析】由题意可知:焦点坐标为F1(﹣,0),F2(,0),设点M坐标为M(x,y),可得y2=1﹣,=(﹣﹣x,﹣y)•(﹣x,﹣y)=x2﹣3+1﹣=﹣2,则x2∈[0,4],的取值范围为[﹣2,1].【解答】解:如下图所示,在直角坐标系中作出椭圆:由椭圆,a=2,b=1,c=,则焦点坐标为F1(﹣,0),F2(,0),设点M坐标为M(x,y),由,可得y2=1﹣;=(﹣﹣x,﹣y),﹣=(﹣x,﹣y);=(﹣﹣x,﹣y)•(﹣x,﹣y)=x2﹣3+1﹣=﹣2,由题意可知:x∈[﹣2,2],则x2∈[0,4],∴的取值范围为[﹣2,1].故答案为:[﹣2,1].9.在△ABC中,内角A,B,C的对边分别是a,b,c,若,sinC=2 sinB,则A角大小为.【考点】余弦定理;同角三角函数基本关系的运用.【分析】先利用正弦定理化简sinC=2sinB,得到c与b的关系式,代入中得到a2与b2的关系式,然后利用余弦定理表示出cosA,把表示出的关系式分别代入即可求出cosA的值,根据A的范围,利用特殊角的三角函数值即可求出A的值.【解答】解:由sinC=2sinB得:c=2b,所以=•2b2,即a2=7b2,则cosA===,又A∈(0,π),所以A=.故答案为:10.设f(x)=lgx,若f(1﹣a)﹣f(a)>0,则实数a的取值范围为.【考点】对数函数的图象与性质.【分析】由题意,f(x)=lgx在(0,+∞)上单调递增,利用f(﹣a)﹣f(a)>0,可得﹣a>a>0,即可求出实数a的取值范围.【解答】解:由题意,f(x)=lgx在(0,+∞)上单调递增,∵f(1﹣a)﹣f(a)>0,∴1﹣a>a>0,∴a∈,故答案为11.已知数列{a n}满足:a1=1,a n+a n=()n,n∈N*,则=﹣.+1【考点】极限及其运算.【分析】由已知推导出S2n=(1﹣),S2n﹣1=1+,从而a2n=S2n =﹣[1+(1﹣)],由此能求出.﹣S2n﹣1【解答】解:∵数列{a n}满足:a1=1,,n∈N*,∴(a1+a2)+(a3+a4)+…+(a2n﹣1+a2n)===(1﹣)=(1﹣),∴S2n=(1﹣),a1+(a2+a3)+(a4+a5)+…+(a2n+a2n﹣1)﹣2=1+=1+=1+,=1+,∴S2n﹣1∴a2n=S2n﹣S2n﹣1=﹣[1+(1﹣)],∴=﹣[1+(1﹣)]==﹣.故答案为:.12.已知△ABC的面积为360,点P是三角形所在平面内一点,且,则△PAB的面积为90.【考点】平面向量的基本定理及其意义.【分析】取AB的中点D,AC的中点E,则P为DE的中点,利用相似比,可得结论.【解答】解:取AB的中点D,AC的中点E,则P为DE的中点,∵△ABC的面积为360,∴△PAB的面积=△ADE的面积==90.故答案为90.二、选择题(本大题满分20分)13.已知集合A={x|x>﹣1},则下列选项正确的是()A.0⊆A B.{0}⊆A C.∅∈A D.{0}∈A【考点】元素与集合关系的判断.【分析】根据元素与集合的关系,用∈,集合与集合的关系,用⊆,可得结论.【解答】解:根据元素与集合的关系,用∈,集合与集合的关系,用⊆,可知B 正确.故选B.14.设x,y∈R,则“|x|+|y|>1”的一个充分条件是()A.|x|≥1 B.|x+y|≥1 C.y≤﹣2 D.且【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:A.当x=1,y=0时,满足|x|≥1时,但|x|+|y|=1>1不成立,不满足条件.B.当x=1,y=0时,满足|x+y|≥1时,但|x|+|y|=1>1不成立,不满足条件.C.当y≤﹣2时,|y|≥2,则|x|+|y|>1成立,即充分性成立,满足条件.D.当且,则|x|+|y|≥1,等取等号时,不等式不成立,即充分性不成立,不满足条件.故选:C.15.图中曲线的方程可以是()A.(x+y﹣1)•(x2+y2﹣1)=0 B.C.D.【考点】曲线与方程.【分析】由图象可知曲线的方程可以是x2+y2=1或x+y﹣1=0(x2+y2≥1),即可得出结论.【解答】解:由图象可知曲线的方程可以是x2+y2=1或x+y﹣1=0(x2+y2≥1),故选C.16.已知非空集合M满足:对任意x∈M,总有x2∉M且,若M⊆{0,1,2,3,4,5},则满足条件M的个数是()A.11 B.12 C.15 D.16【考点】集合的包含关系判断及应用.【分析】由题意M是集合{2,3,4,5}的非空子集,且2,4不同时出现,同时出现有4个,即可得出结论.【解答】解:由题意M是集合{2,3,4,5}的非空子集,有15个,且2,4不同时出现,同时出现有4个,故满足题意的M有11个,故选:A.三、解答题(本大题满分76分)17.已知A是圆锥的顶点,BD是圆锥底面的直径,C是底面圆周上一点,BD=2,BC=1,AC与底面所成角的大小为,过点A作截面ABC,ACD,截去部分后的几何体如图所示.(1)求原来圆锥的侧面积;(2)求该几何体的体积.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积. 【分析】(1)设BD 的中点为O ,连结OA ,OC ,则OA ⊥平面BCD .由经能求出S 圆锥侧.(2)该几何体的体积V=(S △BCD +S 半圆)•AO ,由此能求出结果. 【解答】解:(1)设BD 的中点为O ,连结OA ,OC , ∵A 是圆锥的顶点,BD 是圆锥底面的直径, ∴OA ⊥平面BCD .∵BD=2,BC=1,AC 与底面所成角的大小为,过点A 作截面ABC ,ACD ,∴在Rt △AOC 中,OC=1,,AC=2,AO=,∴S 圆锥侧=πrl==2π.(2)该几何体为三棱锥与半个圆锥的组合体, ∵AO=,∠BCD=90°,∴CD=,该几何体的体积V=(S △BCD +S 半圆)•AO ==.18.已知双曲线Γ:(a>0,b>0),直线l:x+y﹣2=0,F1,F2为双曲线Γ的两个焦点,l与双曲线Γ的一条渐近线平行且过其中一个焦点.(1)求双曲线Γ的方程;(2)设Γ与l的交点为P,求∠F1PF2的角平分线所在直线的方程.【考点】双曲线的简单性质.【分析】(1)依题意,双曲线的渐近线方程为y=±x,焦点坐标为F1(﹣2,0),F2(2,0),即可求双曲线Γ的方程;(2)设Γ与l的交点为P,求出P的坐标,利用夹角公式,即可求∠F1PF2的角平分线所在直线的方程.【解答】解:(1)依题意,双曲线的渐近线方程为y=±x,焦点坐标为F1(﹣2,0),F2(2,0),∴双曲线方程为x2﹣y2=2;(2),显然∠F1PF2的角平分线所在直线斜率k存在,且k>0,,,于是.∴为所求.19.某租车公司给出的财务报表如下:1014年(1﹣12月)1015年(1﹣12月)1016年(1﹣11月)接单量(单)144632724012512550331996油费(元)214301962591305364653214963平均每单油费t(元)14.8214.49平均每单里程k(公里)1515每公里油耗a(元)0.70.70.7有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里)【考点】函数模型的选择与应用.【分析】(1)根据空驶率的计算公式为,带入计算即可;(2)根据T2016的值,求出k的值,从而求出2016年前11个月的平均每单油费和平均每单里程.【解答】解:(1),,∴2014、2015年,该公司空驶率分别为41.14%和38.00%.(2),T2016=38%﹣20%=18%.由,∴2016年前11个月的平均每单油费为12.98元,平均每单里程为15.71km.20.已知数列{a n},{b n}与函数f(x),{a n}是首项a1=15,公差d≠0的等差数列,{b n}满足:b n=f(a n).(1)若a4,a7,a8成等比数列,求d的值;(2)若d=2,f(x)=|x﹣21|,求{b n}的前n项和S n;(3)若d=﹣1,f(x)=e x,T n=b1•b2•b3…b n,问n为何值时,T n的值最大?【考点】数列的求和;数列递推式.【分析】(1)由a4,a7,a8成等比数列,可得=a4•a8,可得(15+6d)2=(15+3d)(15+7d),化简解出即可得出..(2)依题意,a n=15+2(n﹣1)=2n+13,b n=|2n﹣8|,对n分类讨论,利用等差数列的求和公式即可得出.(3)依题意,a n=15﹣(n﹣1)=16﹣n,,利用指数运算性质、等差数列的求和公式及其二次函数的单调性即可得出.【解答】解:(1)∵a4,a7,a8成等比数列,∴=a4•a8,∴(15+6d)2=(15+3d)(15+7d),化为:d2+2d=0,∵d≠0,∴d=﹣2.(2)依题意,a n=15+2(n﹣1)=2n+13,b n=|2n﹣8|,∴,∴.(3)依题意,a n=15﹣(n﹣1)=16﹣n,,,∴当n=15或16时,T n最大.21.对于函数f(x),若存在实数m,使得f(x+m)﹣f(m)为R上的奇函数,则称f(x)是位差值为m的“位差奇函数”.(1)判断函数f(x)=2x+1和g(x)=2x是否为位差奇函数?说明理由;(2)若f(x)=sin(x+φ)是位差值为的位差奇函数,求φ的值;(3)若f(x)=x3+bx2+cx对任意属于区间中的m都不是位差奇函数,求实数b,c满足的条件.【考点】抽象函数及其应用;函数奇偶性的性质.【分析】(1)根据“位差奇函数”的定义.考查h(x)=g(x+m)﹣g(m)=2x+m ﹣2m=2m(2x﹣1)即可,(2)依题意,是奇函数,求出φ;(3)记h(x)=f(x+m)﹣f(m)=(x+m)3+b(x+m)2+c(x+m)﹣m3﹣bm2﹣cm=x3+(3m+b)x2+(3m2+2bm+c)x.假设h(x)是奇函数,则3m+b=0,此时.故要使h(x)不是奇函数,必须且只需.【解答】解:(1)对于f(x)=2x+1,f(x+m)﹣f(m)=2(x+m)+1﹣(2m+1)=2x,∴对任意实数m,f(x+m)﹣f(m)是奇函数,即f(x)是位差值为任意实数m的“位差奇函数”;对于g(x)=2x,记h(x)=g(x+m)﹣g(m)=2x+m﹣2m=2m(2x﹣1),由h(x)+h(﹣x)=2m(2x﹣1)+2m(2﹣x﹣1)=0,当且仅当x=0等式成立,∴对任意实数m,g(x+m)﹣g(m)都不是奇函数,则g(x)不是“位差奇函数”;(2)依题意,是奇函数,∴(k∈Z).(3)记h(x)=f(x+m)﹣f(m)=(x+m)3+b(x+m)2+c(x+m)﹣m3﹣bm2﹣cm=x3+(3m+b)x2+(3m2+2bm+c)x.依题意,h(x)对任意都不是奇函数,若h(x)是奇函数,则3m+b=0,此时.故要使h(x)不是奇函数,必须且只需,且c∈R.2017年2月1日。
2017年上海市高三二模数学填选难题2017-41. 虹口11. 在直角△ABC 中,2A π∠=,1AB =,2AC =,M 是△ABC 内一点,且12AM =,若AM AB AC λμ=+u u u u r u u u r u u u r ,则2λμ+的最大值为12. 无穷数列{}n a 的前n 项和为n S ,若对任意的正整数n 都有12310{,,,,}n S k k k k ∈L ,10a 的可能取值最多..有_____ 个16. 已知点(,)M a b 与点(0,1)N -在直线3450x y -+=的两侧,给出以下结论:①3450x y -+>;② 当0a >时,a b +有最小值,无最大值;③ 221a b +>;④ 当0a >且1a ≠时,11b a +-的取值范围是93(,)(,)44-∞-+∞U .正确的个数是( )A. 1B. 2C. 3D. 42. 黄浦11. 三棱锥P ABC -满足:AB AC ⊥,AB AP ⊥,2AB =,4AP AC +=,则该三棱锥的体积V 的取值范围是12. 对于数列{}n a ,若存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 是以T 为周期的周期数列,设1b m =(01)m <<,对任意正整数n 有11,11,01n n n n nb b b b b +->⎧⎪=⎨<≤⎪⎩,若数列{}n b 是以5为周期的周期数列,则m 的值可以是 (只要求填写满足条件的一个m 值即可)16. 如图所示,23BAC π∠=,圆M 与AB 、AC 分别相切于点D 、E ,1AD =,点P 是圆M 及其内部任意一点,且AP x AD y AE =+u u u r u u u r u u u r (,)x y R ∈,则x y +取值范围是( )A. [1,4+B. [4-+C. [1,2+D. [2-+3. 杨浦11. 已知0a >,0b >,当21(4)a b ab++取到最小值时,b =12. 设函数()||||a f x x x a =+-,当a 在实数范围内变化时,在圆盘221x y +≤内,且不在任一()a f x 的图像上的点的全体组成的图形的面积为16. 对于定义在R 上的函数()f x ,若存在正常数a 、b ,使得()()f x a f x b +≤+对一切x R ∈均成立,则称()f x是“控制增长函数”,在以下四个函数中:① 2()1f x x x =++;② ()f x = 2()sin()f x x =;④ ()sin f x x x =⋅.是“控制增长函数”的有( )A. ②③B. ③④C. ②③④D. ①②④4. 奉贤11. 已知实数x 、y 满足方程22(1)(1)1x a y -++-=,当0y b ≤≤()b R ∈时,由此方程可以确定一个偶函数()y f x =,则抛物线212y x =-的焦点F 到点(,)a b 的轨迹上点的距离最大值为12. 设1x 、2x 、3x 、4x 为自然数1、2、3、4的一个全排列,且满足1234|1||2||3||4|6x x x x -+-+-+-=,则这样的排列有 个16. 如图,在△ABC 中,BC a =,AC b =,AB c =,O 是△ABC 的外心,OD BC ⊥于D ,OE AC ⊥于E ,OF AB ⊥于F ,则::OD OE OF 等于( )A. ::a b cB. 111::a b cC. sin :sin :sin A B CD. cos :cos :cos A B C5. 长宁金山青浦11. 已知函数()||f x x x a =-,若对任意1[2,3]x ∈,2[2,3]x ∈,12x x ≠,恒有1212()()()22x x f x f x f ++>,则实数a 的取值范围为12. 对于给定的实数0k >,函数()k f x x=的图像上总存在点C ,使得以C 为圆心,1为半径的圆上有两个不同的点到原点O 的距离为1,则k 的取值范围是16. 设1x 、2x 、…、10x 为1、2、…、10的一个排列,则满足对任意正整数m 、n ,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为( )A. 512B. 256C. 255D. 646. 浦东11. 已知各项均为正数的数列{}n a 满足11(2)(1)0n n n n a a a a ++--=*()n N ∈,且110a a =,则首项1a 所有可能取值中最大值为12. 已知平面上三个不同的单位向量a r 、b r 、c r 满足12a b b c ⋅=⋅=r r r r ,若e r 为平面内的任意单位向量,则 ||2||3||a e b e c e ⋅+⋅+⋅r r r r r r 的最大值为16. 已知等比数列1a 、2a 、3a 、4a 满足)1,0(1∈a ,)2,1(2∈a ,)4,2(3∈a ,则4a 的取值范围是( )A. (3,8)B. (2,16)C. (4,8)D.7. 闵行11. 已知定点(1,1)A ,动点P 在圆221x y +=上,点P 关于直线y x =的对称点为P ',向量AQ OP '=u u u r u u u r ,O 是坐标原点,则||PQ uuu r 的取值范围是12. 已知递增数列{}n a 共有2017项,且各项均不为零,20171a =,如果从{}n a 中任取两项i a 、j a ,当i j <时,j i a a -仍是数列{}n a 中的项,则数列{}n a 的各项和2017S =16. 设函数()y f x =的定义域是R ,对于以下四个命题:① 若()y f x =是奇函数,则(())y f f x =也是奇函数;② 若()y f x =是周期函数,则(())y f f x =也是周期函数;③ 若()y f x =是单调递减函数,则(())y f f x =也是单调递减函数;④ 若函数()y f x =存在反函数1()y f x -=,且函数1()()y f x f x -=-有零点,则函数()y f x x =-也有零点. 其中正确的命题共有( )A. 1个B. 2个C. 3个D. 4个8. 普陀11. 设0a <,若不等式22sin (1)cos 10x a x a +-+-≥对于任意的R x ∈恒成立,则a 的取值范围是12. 在△ABC 中,D 、E 分别是AB 、AC 的中点,M 是直线DE 上的动点. 若△ABC 的面积为1,则2MB MC BC ⋅+u u u r u u u u r u u u r 的最小值为16. 关于函数2sin y x =的判断,正确的是( )A. 最小正周期为2π,值域为[1,1]-,在区间[,]22ππ-上是单调减函数 B. 最小正周期为π,值域为[1,1]-,在区间[0,]2π上是单调减函数 C. 最小正周期为π,值域为[0,1],在区间[0,]2π上是单调增函数 D. 最小正周期为2π,值域为[0,1],在区间[,]22ππ-上是单调增函数9. 徐汇11. 如图:在△ABC 中,M 为BC 上不同于B 、C 的任意一点,点N 满足2AN NM =u u u r u u u u r ,若AN xAB y AC =+u u u r u u u r u u u r,则229x y +的最小值为12. 设单调函数()y p x =的定义域为D ,值域为A ,如果单调函数()y q x =使得函数(())y p q x =的值域也是A ,则称函数()y q x =是函数()y p x =的一个“保值域函数”,已知定义域为[,]a b 的函数2()|3|h x x =-,函数()f x 与()g x 互为反函数,且()h x 是()f x 的一个“保值域函数”, ()g x 是()h x 的一个“保值域函数”,则b a -=16. 过椭圆2214x y m m +=-(4)m >右焦点F 的圆与圆22:1O x y +=外切,则该圆直径FQ 的端点Q 的轨迹是( )A. 一条射线B. 两条射线C. 双曲线的一支D. 抛物线10. 静安10. 若适合不等式2|4||3|5x x k x -++-≤的x 最大值为3,则实数k 的值为11. 已知1()1x f x x -=+,数列{}n a 满足112a =,对于任意*n N ∈都满足2()n n a f a +=,且0n a >,若2018a a =,则20162017a a +=15. 曲线C 为:到两定点(2,0)M -、(2,0)N 的距离乘积为常数16的动点P 的轨迹,以下结论: ① 曲线C 经过原点;② 曲线C 关于x 轴对称,但不关于y 轴对称;③ △MPN 的面积不大于8;④ 曲线C 在一个面积为60的矩形范围内. 其中正确的个数为( )A. 0B. 1C. 2D. 311. 崇明11. 已知函数22sin(),0()3cos(),0x x x f x x x x πα⎧++>⎪=⎨⎪-++<⎩,[0,2)απ∈是奇函数,则α=12. 已知△ABC 是边长为PQ 为△ABC 外接圆O 的一条直径,M 为△ABC 边长的动点,则PM MQ ⋅u u u u r u u u u r 的最大值是16. 设函数()x x x f x a b c =+-,其中0c a >>,0c b >>,若a 、b 、c 是△ABC 的三条边长,则下列结论:① 对于一切(,1)x ∈-∞都有()0f x >;② 存在0x >使x xa 、x b 、x c 不能构成一个三角形的三边长;③ 若△ABC 为钝角三角形,存在(1,2)x ∈,使()0f x =. 其中正确的个数为( )A. 3个B. 2个C. 1个D. 0个12. 松江11. 如图同心圆中,大、小圆的半径分别为2和1,点P 在大圆上,PA 与小圆相切于点A ,Q 为小圆上的点,则PA PQ ⋅u u u r u u u r 的取值范围是12题、16题同闵行12题、16题13. 嘉定11. 设等差数列{}n a 的各项都是正数,前n 项和为n S ,公差为d . 若数列也是公差为d 的等差数列,则}{n a 的通项公式为n a =12. 设x ∈R ,用[]x 表示不超过x 的最大整数(如[2.32]2=,[ 4.76]5-=-),对于给定的*n ∈N ,定义(1)([]1)(1)([]1)x n n n n x C x x x x --+=--+L L ,其中[1,)x ∈+∞,则当3[,3)2x ∈时,函数x C x f 10)(=的值域是16. 已知()f x 是偶函数,且()f x 在[0,)+∞上是增函数,若(1)(2)f ax f x +≤-在1[,1]2x ∈上恒成立,则实数a 的取值范围是( )A. [2,1]-B. [2,0]-C. [1,1]-D. [1,0]-14. 宝山11. 设向量(,)m x y =u r ,(,)n x y =-r ,P 为曲线1m n ⋅=u r r (0)x >上的一个动点,若点P 到直线10x y -+=的距离大于λ恒成立,则实数λ的最大值为12题同长宁16题15. 如图,在同一平面内,点P 位于两平行直线1l 、2l 两侧,且P 到1l 、2l 距离分别为1、3,点M 、N 分别在1l 、2l 上,||8PM PN +=u u u u r u u u r ,则PM PN ⋅u u u u r u u u r 的最大值为( )A. 15B. 12C. 10D. 916. 若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”,设2()x f x xλ+=(0)x >,若对于任意t ∈,总存在正数m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ取值范围是( )A. (0,2]B. (1,2]C. [1,2]D. [1,4]。
虹口区2017学年度第二学期高三等级考试物 理 试 卷考生注意:1.试卷满分100分。
考试时间60分钟。
2.本考试分设试卷和答题纸。
试卷包括三部分,第一部分为选择题,第二部分为填空题,第三部分为综合题。
3.作答必须写在答题纸上,在试卷上作答一律不得分。
一、选择题(共40分。
第1-8小题,每小题3分。
第9-12小题,每小题4分。
每小题只有一个正确答案。
)1.某移动电源上标志的4500mAh 反映的物理量是 ( ) A .电压 B .电量 C .功率 D .能量2.太阳放出的能量来自于 ( ) A .重核裂变 B .天然衰变 C .轻核聚变 D .人工转变3.下列射线中,属于原子核的高速电子流是 ( ) A .阴极射线 B .β射线 C .α射线 D .γ射线4.雷达通过发射一定波长的无线电波来探测空中目标,我国研制的米波雷达对隐形战机有较强的探测能力,其发出的无线电波的频率约为 ( )A .102 HzB .104 HzC .106 HzD .108Hz5.用一束紫外线照射某金属时不能产生光电效应,可能使该金属产生光电效应的措施是( )A .改用紫光照射B .改用X 射线照射C .增大紫外线强度D .延长照射时间6.如图所示,一定质量的理想气体,从状态1变化到状态2,气体温度变化是 ( )A .逐渐升高B .逐渐降低C .不变D .先升高后降低7.有四个电源,电动势均为8V ,阻分别为2Ω、3Ω、5Ω、8Ω,这四个电源现分别对一个R =5Ω的定值电阻供电,为使R 上获得最大的功率应选择的电源阻为 ( ) A .2Ω B .3Ω C .5Ω D .8Ω 8.如图所示,一个条形磁铁从线圈上方很远处开始向下匀速穿过一环形线圈,t 1表示磁铁中部与线圈共面的时刻,能够正确反映环形线圈中电流随时间变化情况的图是(规定俯视逆时针方向电流为正方向) ( )p N S9.人在平地上静止站立时,受到的支持力等于人的重力。
2017年上海市高三二模数学填选难题解析2017-4-251. 虹口11. 在直角△ABC 中,2A π∠=,1AB =,2AC =,M 是△ABC 内一点,且12AM =,若AM AB AC λμ=+,则2λμ+的最大值为【解析】将直角三角形放入直角坐标系中,问题可以 简化,(0,0)A 、(0,1)B 、(2,0)C 、(cos ,sin )M θθ(0,)2πθ∈,11(cos ,sin )22AM θθ=,AB AC λμ+(0,1)(2,0)(2,)λμμλ=+=,112sin cos )22242πλμθθθ+=+=+≤.12. 无穷数列{}n a 的前n 项和为n S ,若对任意的正整数n 都有12310{,,,,}n S k k k k ∈,10a 的可能取值最多..有_____ 个【解析】若910S S =,100a =;若910S S ≠,在12310{,,,,}k k k k 中有序任取2个作为9S 和10S ,10109a S S =-,有21090P =种取法;所以综上最多有91个16. 已知点(,)M a b 与点(0,1)N -在直线3450x y -+=的两侧,给出以下结论:①3450x y -+>;② 当0a >时,a b +有最小值,无最大值;③ 221a b +>;④ 当0a >且1a ≠时,11b a +-的取值范围是93(,)(,)44-∞-+∞.正确的个数是( )A. 1B. 2C. 3D. 4【解析】① ∵将(0,1)N -代入304(1)50⨯-⨯-+>,∴将(,)M a b 代入3450x y -+<;② ∵(,)M a b 取不到点5(0,)4,∴没有最小值;③ ||MO 大于点O 到直线3450x y -+=的距离1d =,∴221a b +>; ④ 可看作点(,)M a b 与点(1,1)-连线的斜率,数形结合可知斜率范围 为93(,)(,)44-∞-+∞;③④正确,选B 2. 黄浦11. 三棱锥P ABC -满足:AB AC ⊥,AB AP ⊥,2AB =,4AP AC +=,则该三棱锥的体积V 的取值范围是【解析】1233APC APC V S AB S ∆∆=⋅⋅=,12APC S AC AP ∆≤⋅⋅∵4AP AC +=≥,∴4AC AP ⋅≤,122APC S AC AP ∆≤⋅⋅≤,∴4(0,]3V ∈12. 对于数列{}n a ,若存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 是以T 为周期的周期数列,设1b m =(01)m <<,对任意正整数n 有11,11,01n n n n nb b b b b +->⎧⎪=⎨<≤⎪⎩,若数列{}n b 是以5为周期的周期数列,则m 的值可以是 (只要求填写满足条件的一个m 值即可)【解析】1b m =,21b m =,311b m =-. 观察可得12m =不符(1)当1(0,)2m ∈,412b m =-;(2)当1(,1)2m ∈,41m b m =-;① 1(0,)3m ∈,513b m =-; ② 11[,)32m ∈,512m b m =-;③ 1(,1)2m ∈,5211m b m -=-;a. 当1(0,)4m ∈,614b m =-;614b m m =-=,解得2m =,舍去负值b. 当11[,)43m ∈,613mb m m==-,解得0m =,舍去c. 当11[,)32m ∈,63112m b m m-==-,解得m =d. 当12(,]23m ∈,6121m b m m -==-,解得2m =,舍去 e. 当2(,1)3m ∈,6321m b m m-==-,解得1m =,舍去负值综上,2m =或12m =或1m = 16. 如图所示,23BAC π∠=,圆M 与AB 、AC 分别相切于点D 、E ,1AD =,点P 是圆M 及其内部任意一点,且AP x AD y AE =+(,)x y R ∈,则x y +取值范围是( )A. [1,4+B. [4-+C. [1,2+D. [2-+【解析】如图所示,当P 点位于右图位置时,x y +最大,此时2MA =,MD MP ==2AP AH AG ===,∴2x y ==+,4x y +=+P 位于线段MA 与M 的交点时,可得最小值4x y +=- B.3. 杨浦11. 已知0a >,0b >,当21(4)a b ab++取到最小值时,b = 【解析】2221111(4)16888168a b a b ab ab ab ab ab ab ab ab ++=+++≥++=+≥,当1164ab ab==且4a b =时等号成立,即1a =,14b =12. 设函数()||||a f x x x a =+-,当a 在实数范围内变化时,在圆盘221x y +≤内,且不在任一()a f x 的图像上的点的全体组成的图形的面积为【解析】根据题意,()||||||a f a a a a a =+-=,即 当a 在实数范围内变化时,图像一个分段点为(,||)a a , 该点轨迹为||y x =,∴结合图像可得图像面积为34π 16. 对于定义在R 上的函数()f x ,若存在正常数a 、b ,使得()()f x a f x b +≤+对一切x R ∈均成立,则称()f x是“控制增长函数”,在以下四个函数中:① 2()1f x x x =++;② ()f x = 2()sin()f x x =;④()sin f x x x =⋅.是“控制增长函数”的有( )A. ②③B. ③④C. ②③④D. ①②④ 【解析】① 2()()2f x a f x ax a a R +-=++∈,不成立;② 存在1a =,1b =, 使得不等式(1)()1f x f x +-≤恒成立;③ 存在2b =,使得()()2f x a f x +-≤恒成立;③ 存在2a π=,2b π=,使得(2)()(2)sin(2)sin 2sin 2f x f x x x x x x πππππ+-=++-=≤恒成立;故选C.4. 奉贤11. 已知实数x 、y 满足方程22(1)(1)1x a y -++-=,当0y b ≤≤()b R ∈时,由此方程可以确定一个偶函数()y f x =,则抛物线212y x =-的焦点F 到点(,)a b 的轨迹上点的距离最大值为【解析】根据题意,∵偶函数,∴1a =,∵是一个函数,∴[0,1]b ∈,即点(,)a b 的轨迹是一条线段,抛物线的焦点1(0,)2F -,数形结合可知,焦点F 到(1,1)12. 设1x 、2x 、3x 、4x 为自然数1、2、3、4的一个全排列,且满足1234|1||2||3||4|6x x x x -+-+-+-=,则这样的排列有 个【解析】若11x =,2x 、3x 、4x 共有6种排列,一一代入,没有符合的情况; 若12x =,2x 、3x 、4x 有6种排列,符合情况的有2431、2413、2341三种排列; 若13x =,2x 、3x 、4x 有6种排列,符合情况的有3142、3241两种排列;若14x =,2x 、3x 、4x 有6种排列,符合情况的有4123、4132、4213、4231四种排列; 综上,符合条件的排列共有9个16. 如图,在△ABC 中,BC a =,AC b =,AB c =,O 是△ABC 的外心,OD BC ⊥于D ,OE AC ⊥于E ,OF AB ⊥于F ,则::OD OE OF 等于( ) A. ::a b c B.111::a b cC. sin :sin :sin A B CD. cos :cos :cos A B C【解析】如右图所示,::::cos 1:cos 2:cos 3OD OE OFOD OE OF OB OC OA==∠∠∠,根据圆的性质, 112BOC A ∠=∠=∠,同理2B ∠=∠,3C ∠=∠,故选D5. 长宁金山青浦11. 已知函数()||f x x x a =-,若对任意1[2,3]x ∈,2[2,3]x ∈,12x x ≠,恒有1212()()()22x x f x f x f ++>,则实数a 的取值范围为【解析】根据题意,()||f x x x a =-在[2,3]上为上凸函数(图像上表现为在[2,3]上的函数图象在两区间端点连线的上方),数形结合可得3a ≥ 12. 对于给定的实数0k >,函数()kf x x=的图像上总存在点C ,使得以C 为圆心,1为半径的圆上有两个不同的点到原点O 的距离为1,则k 的取值范围是【解析】根据题意,即函数图像上至少有一点到原点的距离小于2,∵2222k x k x+≥,2<,解得(0,2)k ∈. 或者数形结合,这个距离原点最近的点在y x =上,代入2<,解得(0,2)k ∈.16. 设1x 、2x 、…、10x 为1、2、…、10的一个排列,则满足对任意正整数m 、n ,且110m n ≤<≤,都有m n x m x n+≤+成立的不同排列的个数为( )A. 512B. 256C. 255D. 64【解析】直接思考这个问题会有难度,我们可以改变一些条件,试着从简单开始① 比如前9个数字固定排列为1、2、3、4、5、6、7、8、9,那么最后一个数字只能是10,这时候符合条件的排列个数为1;② 放宽条件,比如前8个数字固定排列为1、2、3、4、5、6、7、8,那么最后2个数字可以是9、10,也可以是10、9,符合条件的排列个数为2;③ 再放宽条件,比如前7个数字固定排列为1、2、3、4、5、6、7,那么最后3个数字可以是8、9、10,或8、10、9,或9、8、10,或10、9、8,符合条件的排列个数为4; ……,继续放宽条件,当前6个数字固定排列为1、2、3、4、5、6时,符合的有8个; 规律出来了,以此类推下去,……,当前2个数字固定为1、2时,符合的有72个, 当第一个数字固定为1时,符合的有82个,当这列数全排列时,符合的有92个.6. 浦东11. 已知各项均为正数的数列{}n a 满足11(2)(1)0n n n n a a a a ++--=*()n N ∈,且110a a =,则首项1a 所有可能取值中最大值为 【解析】根据题意,112n n a a +=或11n n a a +=,取极端情况,1982a a =,81019112a a a a ===∴2812a =,41216a ==. 12. 已知平面上三个不同的单位向量a 、b 、c 满足12a b b c ⋅=⋅=,若e 为平面内的任意单位向量,则 ||2||3||a e b e c e ⋅+⋅+⋅的最大值为【解析】如图构造,31(,)2a =-,(0,1)b =,31(,)2c =, 设(cos ,sin )e θθ=,根据题意,||2||3||a e b e c e ⋅+⋅+⋅=11sin |2|sin |3|sin |22θθθθθ-+++,要取 得最大,∴||2||3||23cos 3sin a e b e c e θθ⋅+⋅+⋅=+≤16. 已知等比数列1a 、2a 、3a 、4a 满足)1,0(1∈a ,)2,1(2∈a ,)4,2(3∈a ,则4a 的取值范围是( ) A.(3,8) B. (2,16) C. (4,8) D. 【解析】33221(1,4)a q a aa ==⋅∈,233111(2,)a q a a a ==⋅∈+∞,综上,q ∈,∴43a a q =⋅∈,故选D.7. 闵行11. 已知定点(1,1)A ,动点P 在圆221x y +=上,点P 关于直线y x =的对称点为P ',向量AQ OP '=,O 是坐标原点,则||PQ 的取值范围是【解析】设(cos ,sin )P θθ',∵OQ OA AQ OA OP '=+=+, ∴Q 坐标为(cos 1,sin 1)θθ++,∵(sin ,cos )P θθ,∴222||(cos 1sin )(sin 1cos )PQ θθθθ=+-++-22(sin cos)242sin 2[2,6]θθθ=-+=-∈∴||PQ 的取值范围是.12. 已知递增数列{}n a 共有2017项,且各项均不为零,20171a =,如果从{}n a 中任取两项i a 、j a ,当i j <时,j i a a -仍是数列{}n a 中的项,则数列{}n a 的各项和2017S =【解析】∵递增,∴1232017a a a a <<<⋅⋅⋅<,∵当i j <时,j i a a -仍是数列{}n a 中的项, ∴213141201710a a a a a a a a <-<-<-<⋅⋅⋅<-,且1j a a -都是数列{}n a 中的项, ∴201712016a a a -=、201612015a a a -=、…、211a a a -=,∴{}n a 是首项为1a ,公差为1a 的等差数列,根据201711201620171a a d a =+==,可得112017a d ==,∴20171009S =. 16. 设函数()y f x =的定义域是R ,对于以下四个命题: ① 若()y f x =是奇函数,则(())y f f x =也是奇函数; ② 若()y f x =是周期函数,则(())y f f x =也是周期函数; ③ 若()y f x =是单调递减函数,则(())y f f x =也是单调递减函数;④ 若函数()y f x =存在反函数1()y f x -=,且函数1()()y f x f x -=-有零点,则函数()y f x x =-也有零点. 其中正确的命题共有( )A. 1个B. 2个C. 3个D. 4个【解析】① ∵()y f x =是奇函数,∴()()f x f x -=-, ∴(())(())(())f f x f f x f f x -=-=-,∴①正确; ②()()f x T f x +=,(())(())f f x T f f x +=,②正确; ③ 当x 增大,()f x 减小,(())f f x 增大,∴③错误; ④ 反例如图所示,④错误;故①②正确,选B.8. 普陀11. 设0a <,若不等式22sin (1)cos 10x a x a +-+-≥对于任意的R x ∈恒成立,则a 的取值范围是 【解析】由22sin (1)cos 10x a x a +-+-≥得22cos (1)cos 0x a x a -+-+≥,设cos t x =, 即22()(1)0f t t a t a =+--≤对[1,1]t ∈-恒成立,∴22(1)40a a ∆=-+>,2(1)110f a a -=+--≤,2(1)110f a a =+--≤,0a <,综上解得2a ≤-.12. 在△ABC 中,D 、E 分别是AB 、AC 的中点,M 是直线DE 上的动点. 若△ABC 的面积为1,则2MB MC BC ⋅+的最小值为【解析】取BC 中点F ,12MB MF FB MF BC =+=-, 12MC MF FC MF BC =+=+,∴2MB MC BC ⋅+=22222133||||44MF BC BC MF BC MF BC -+=+≥⋅∵11||||22MBC MF BC S ∆⋅≥=,即||||1MF BC ⋅≥,∴23MB MC BC ⋅+≥ 16. 关于函数2sin y x =的判断,正确的是( )A. 最小正周期为2π,值域为[1,1]-,在区间[,]22ππ-上是单调减函数 B. 最小正周期为π,值域为[1,1]-,在区间[0,]2π上是单调减函数C. 最小正周期为π,值域为[0,1],在区间[0,]2π上是单调增函数D. 最小正周期为2π,值域为[0,1],在区间[,]22ππ-上是单调增函数 【解析】21cos2sin 2xy x -==,T π=,排除A 、D ,2sin 0y x =≥,排除B ,故选C. 9. 徐汇11. 如图:在△ABC 中,M 为BC 上不同于B 、C 的任意一点,点N 满足2AN NM =,若AN xAB y AC =+, 则229x y +的最小值为【解析】23AN xAB y AC AM =+=,∴3322AM xAB y AC =+,∵B 、M 、C 三点共线,∴33122x y +=,即23x y +=,∴222222299()1012435x y x x x x +=+-=-+≥.12. 设单调函数()y p x =的定义域为D ,值域为A ,如果单调函数()y q x =使得函数(())y p q x =的值域也是A ,则称函数()y q x =是函数()y p x =的一个“保值域函数”,已知定义域为[,]a b 的函数2()|3|h x x =-,函数()f x 与()g x 互为反函数,且()h x 是()f x 的一个“保值域函数”, ()g x 是()h x 的一个“保值域函数”,则b a -= 【解析】∵()f x 、()g x 、()h x 都是单调函数,且根据题意,(())f h x 与()f x 值域相同,(())h g x 与()h x 值域相同,∴()[,]g x a b ∈,∵()f x 与()g x 互为反函数,∴()f x 定义域为[,]a b ,∴()[,]h x a b ∈,∴()h x 的定义域和值域均为[,]a b ,根据数形结合,a 、b 为23x x=-两解,∴1a =,2b =,1b a -=. 16. 过椭圆2214x y m m +=-(4)m >右焦点F 的圆与圆22:1O x y +=外切,则该圆直径FQ 的端点Q 的轨迹是( )A. 一条射线B. 两条射线C. 双曲线的一支D. 抛物线【解析】数形结合,设椭圆左焦点为F ',FQ 中点为P ,联结OP 、F Q ',∴OP 是中位线,∴2()2()2F Q F Q P O P F P OP A '-=-=-=,这符合双曲线的定义,故选C.10. 静安10. 若适合不等式2|4||3|5x x k x -++-≤的x 最大值为3,则实数k 的值为 【解析】当3x =时,2|4||3|5x x k x -++-=,即|3|5k -=,∴8k =,2k =-. ① 当8k =,2|48||3|5x x x -++-≤,即243|3|0x x x -++-≤,若3x >, 则230x x -≤,得03x ≤≤,不符,若3x ≤,2560x x -+≤,解得23x ≤≤, ∴8k =时,不等式的解为23x ≤≤,符合题意.② 当2k =-,2|42||3|5x x x --+-≤,找个反例即可,4x =符合不等式,但大于3,∴2k =-不符,综上,8k =.11. 已知1()1x f x x -=+,数列{}n a 满足112a =,对于任意*n N ∈都满足2()n n a f a +=,且0n a >,若2018a a =,则20162017a a +=【解析】∵2018a a =,∴18181811a a a -=+,解得20181a a ==,同理22242016a a a ==⋅⋅⋅=1=. 根据112a =,∴313a =,∴512a =,713a =,…,可归纳出4112k a +=,4313k a +=∴20174504112a a ⨯+==, ∴20162017a a +=11122-+=15. 曲线C 为:到两定点(2,0)M -、(2,0)N 的距离乘积为常数16的动点P 的轨迹,以下结论: ① 曲线C 经过原点;② 曲线C 关于x 轴对称,但不关于y 轴对称;③ △MPN 的面积不大于8;④ 曲线C 在一个面积为60的矩形范围内. 其中正确的个数为( )A. 0B. 1C. 2D. 3【解析】① 设原点为O ,22416OM ON ⋅=⨯=≠,∴不经过原点;②列出轨迹的表达式,16=,可知若点(,)P x y 在曲线上,代入1(,)P x y -、 2(,)P x y -、3(,)P x y --,方程均成立,∴既关于x 轴对称,也关于y 轴对称,关于原点对称;③ 11sin 822S PM PN P PM PN =⋅⋅∠≤⋅=;④ 当0x =时,y =±0y =时,x =±,由点(±±构成的矩形面积为60>;∴只有③正确,故选B.【附】16=的精确图像11. 崇明11. 已知函数22sin(),0()3cos(),0x x x f x x x x πα⎧++>⎪=⎨⎪-++<⎩,[0,2)απ∈是奇函数,则α=【解析】当0x >,则0x -<,∵()()f x f x -=-,∴2()cos()f x x x α-=-+-+,2()sin()3f x x x π-=--+,∴5cos()sin()sin()cos()336x x x x πππα-+=-+=--=+,即5cos()cos()6x x πα-=+在定义域上恒成立,∴526k παπ=-+,∴76πα=. 12. 已知△ABC 是边长为PQ 为△ABC 外接圆O 的一条直径,M 为△ABC 边长的动点,则PM MQ ⋅的最大值是【解析】()()PM MQ PO OM MO OQ ⋅=+⋅+22()()PO OM PO OM PO OM =+⋅-=-,∵边长为O 半径为2,即24PM MQ OM ⋅=-,OM 最小值为1 即PM MQ ⋅的最大值是316. 设函数()x x x f x a b c =+-,其中0c a >>,0c b >>,若a 、b 、c 是△ABC 的三条边长,则下列结论:① 对于一切(,1)x ∈-∞都有()0f x >;② 存在0x >使x xa 、x b 、x c 不能构成一个三角形的三边长;③ 若△ABC 为钝角三角形,存在(1,2)x ∈,使()0f x =. 其中正确的个数为( ) A. 3个 B. 2个 C. 1个 D. 0个【解析】① ()[()()1]x x x a b f x c c c =+-,设()()()1x x a b g x c c =+-,可知(0,1)a c ∈,(0,1)bc ∈,∴()g x 单调递减,当1x <,()(1)10a bg x g c c>=+->,∴()0f x >,正确;② 举反例,令2a =,3b =,4c =,存在3x =,3333234⋅+<,不能构成三角形;③ △ABC 为钝角三角形,∴2220a b c +-<,即(2)0f <,∵0a b c +->,即(1)0f >,∴()f x 在(1,2)上必有零点,正确. 综上所述,正确个数为3个,选A.12. 松江11. 如图同心圆中,大、小圆的半径分别为2和1,点P 在大圆上,PA 与小圆相切于点A ,Q 为小圆上的点,则PA PQ ⋅的取值范围是【解析】结合向量数量积的几何意义,PA PQ ⋅等于||PA 乘以PQ 在PA 方向上的投影,∵2OP =,1OA =,∴||3PA =,如中图所示,投影最大,P A P Q P A P ⋅=⋅1)3+=,如右图,投影最小,1)3P A P Q P A P ⋅=⋅-=[3+.12题、16题同闵行12题、16题13. 嘉定11. 设等差数列{}n a 的各项都是正数,前n 项和为n S ,公差为d . 若数列也是公差为d 的等差数列,则}{n a 的通项公式为n a =【解析】1(1)2n n n S na d -=+,也是等差数列,∴22n dS n ==d =,∴12d =或0(舍),1124d a ==,∴124n n a =-. 12. 设x ∈R ,用[]x 表示不超过x 的最大整数(如[2.32]2=,[ 4.76]5-=-),对于给定的*n ∈N ,定义(1)([]1)(1)([]1)x n n n n x C x x x x --+=--+,其中[1,)x ∈+∞,则当3[,3)2x ∈时,函数xC x f 10)(=的值域是【解析】当3[,2)2x ∈,[]1x =,101020(5,]3xC x =∈;当[2,3)x ∈,[]2x =,1090(1)xC x x =-,(1)[2,6)x x -∈, ∴90(15,45](1)x x ∈-;综上,值域为20(5,](15,45]3. 16. 已知()f x 是偶函数,且()f x 在[0,)+∞上是增函数,若(1)(2)f ax f x +≤-在1[,1]2x ∈上恒成立,则实数a 的取值范围是( )A. [2,1]-B. [2,0]-C. [1,1]-D. [1,0]- 【解析】由题得,|1|2ax x +≤-在1[,1]2x ∈时恒成立,设()|1|g x ax =+,()2h x x =-,()g x 恒过定点(0,1),数形结合可知,只需满足(1)(1)g h ≤,即|1|1a +≤,∴[2,0]a ∈-,故选B.14. 宝山11. 设向量(,)m x y =,(,)n x y =-,P 为曲线1m n ⋅=(0)x >上的一个动点,若点P 到直线10x y -+=的距离大于λ恒成立,则实数λ的最大值为【解析】1m n ⋅=即221x y -=(0)x >,根据题意,实数λ的最大值即直线1y x =+与一条渐近线y x =之间的距离,∴d ==λ最大值为2.12题同长宁16题15. 如图,在同一平面内,点P 位于两平行直线1l 、2l 两侧,且P 到1l 、2l 距离分别为1、3,点M 、N 分别在1l 、2l 上,||8PM PN +=,则PM PN ⋅的最大值为( )A. 15B. 12C. 10D. 9【解析】取MN 中点O ,222()()16PM PN PO OM PO ON PO OM OM ⋅=+⋅+=-=-,∵1l 、2l 之间距离为2,∴2OM 最小值为1,即PM PN ⋅的最大值为15,选A.精品文档精品文档16. 若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”,设2()x f x xλ+=(0)x >,若对于任意t ∈,总存在正数m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ取值范围是( )A. (0,2]B. (1,2]C. [1,2]D. [1,4]【解析】()()f t m f t m +=-,∴t m t m t m t m λλ++=-++-,2m t m t m λλ=--+,化简得:22t m λ=-,即220m t λ=->恒成立,2t λ<,∴02λ<≤,选A.本题如果理解了题意,可以从图像角度秒解如图所示,A 、B 为两对称点,满足()()f t m f t m +=-,线段AB 中垂线为x t =t <即2t λ<,∴02λ<≤。
2017年上海市虹口区高考数学二模试卷一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.(4分)集合A={1,2,3,4},B={x|(x﹣1)(x﹣5)<0},则A∩B=.2.(4分)复数所对应的点在复平面内位于第象限.3.(4分)已知首项为1公差为2的等差数列{a n},其前n项和为S n,则=.4.(4分)若方程组无解,则实数a=.5.(4分)若(x+a)7的二项展开式中,含x6项的系数为7,则实数a=.6.(4分)已知双曲线,它的渐近线方程是y=±2x,则a的值为.7.(5分)在△ABC中,三边长分别为a=2,b=3,c=4,则=.8.(5分)在平面直角坐标系中,已知点P(﹣2,2),对于任意不全为零的实数a、b,直线l:a(x﹣1)+b(y+2)=0,若点P到直线l的距离为d,则d的取值范围是.9.(5分)函数f(x)=,如果方程f(x)=b有四个不同的实数解x1、x2、x3、x4,则x1+x2+x3+x4=.10.(5分)三条侧棱两两垂直的正三棱锥,其俯视图如图所示,主视图的边界是底边长为2的等腰三角形,则主视图的面积等于.11.(5分)在直角△ABC中,,AB=1,AC=2,M是△ABC内一点,且,若,则λ+2μ的最大值.12.(5分)无穷数列{a n}的前n项和为S n,若对任意的正整数n都有S n∈{k1,k2,k3,…,k10},则a10的可能取值最多有个.二、选择题(每小题5分,满分20分)13.(5分)已知a,b,c是实数,则“a,b,c成等比数列”是“b2=ac”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件14.(5分)l1、l2是空间两条直线,α是平面,以下结论正确的是()A.如果l1∥α,l2∥α,则一定有l1∥l2B.如果l1⊥l2,l2⊥α,则一定有l1⊥αC.如果l1⊥l2,l2⊥α,则一定有l1∥αD.如果l1⊥α,l2∥α,则一定有l1⊥l215.(5分)已知函数,x1、x2、x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值()A.一定等于零B.一定大于零C.一定小于零D.正负都有可能16.(5分)已知点M(a,b)与点N(0,﹣1)在直线3x﹣4y+5=0的两侧,给出以下结论:①3a﹣4b+5>0;②当a>0时,a+b有最小值,无最大值;③a2+b2>1;④当a>0且a≠1时,的取值范围是(﹣∞,﹣)∪(,+∞).正确的个数是()A.1B.2C.3D.4三、解答题(本大题满分76分)17.(14分)如图ABC﹣A1B1C1是直三棱柱,底面△ABC是等腰直角三角形,且AB=AC =4,直三棱柱的高等于4,线段B1C1的中点为D,线段BC的中点为E,线段CC1的中点为F.(1)求异面直线AD、EF所成角的大小;(2)求三棱锥D﹣AEF的体积.18.(14分)已知定义在(﹣,)上的函数f(x)是奇函数,且当x∈(0,)时,f(x)=.(1)求f(x)在区间(﹣,)上的解析式;(2)当实数m为何值时,关于x的方程f(x)=m在(﹣,)有解.19.(14分)已知数列{a n}是首项等于且公比不为1的等比数列,S n是它的前n项和,满足.(1)求数列{a n}的通项公式;(2)设b n=log a a n(a>0且a≠1),求数列{b n}的前n项和T n的最值.20.(16分)已知椭圆C:=1(a>b>0),定义椭圆C上的点M(x0,y0)的“伴随点”为.(1)求椭圆C上的点M的“伴随点”N的轨迹方程;(2)如果椭圆C上的点(1,)的“伴随点”为(,),对于椭圆C上的任意点M 及它的“伴随点”N,求的取值范围;(3)当a=2,b=时,直线l交椭圆C于A,B两点,若点A,B的“伴随点”分别是P,Q,且以PQ为直径的圆经过坐标原点O,求△OAB的面积.21.(18分)对于定义域为R的函数y=f(x),部分x与y的对应关系如表:(1)求f{f[f(0)]};(2)数列{x n}满足x1=2,且对任意n∈N*,点(x n,x n+1)都在函数y=f(x)的图象上,求x1+x2+…+x4n;(3)若y=f(x)=A sin(ωx+φ)+b,其中A>0,0<ω<π,0<φ<π,0<b<3,求此函数的解析式,并求f(1)+f(2)+…+f(3n)(n∈N*).2017年上海市虹口区高考数学二模试卷参考答案与试题解析一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.(4分)集合A={1,2,3,4},B={x|(x﹣1)(x﹣5)<0},则A∩B={2,3,4}.【解答】解:A={1,2,3,4},B={x|(x﹣1)(x﹣5)<0}={x|1<x<5},则A∩B={2,3,4};故答案为:{2,3,4}.2.(4分)复数所对应的点在复平面内位于第四象限.【解答】解:复数==﹣i所对应的点在复平面内位于第四象限.故答案为:四.3.(4分)已知首项为1公差为2的等差数列{a n},其前n项和为S n,则=4.【解答】解:由题意,a n=1+2(n﹣1)=2n﹣1,S n=n+=n2,∴==4,故答案为:4.4.(4分)若方程组无解,则实数a=±2.【解答】解:根据题意,方程组无解,则直线ax+2y=3与直线2x+2y=2平行,则有a×a=2×2,且a×2≠2×3,即a2=4,a≠3,解可得a=±2,故答案为:±2.5.(4分)若(x+a)7的二项展开式中,含x6项的系数为7,则实数a=1.【解答】解:(x+a)7的二项展开式的通项公式:T r+1=x r a7﹣r,令r=6,则=7,解得a=1.故答案为:1.6.(4分)已知双曲线,它的渐近线方程是y=±2x,则a的值为2.【解答】解:根据题意,双曲线的方程为:,其焦点在x轴上,其渐近线方程为:y=±ax,又有其渐近线方程是y=±2x,则有a=2;故答案为:2.7.(5分)在△ABC中,三边长分别为a=2,b=3,c=4,则=.【解答】解:在△ABC中,∵a=2,b=3,c=4,∴cos A==,可得:sin A==,cos B==,sin B==,∴===.另法:====.故答案为:.8.(5分)在平面直角坐标系中,已知点P(﹣2,2),对于任意不全为零的实数a、b,直线l:a(x﹣1)+b(y+2)=0,若点P到直线l的距离为d,则d的取值范围是[0,5].【解答】解:由题意,直线过定点Q(1,﹣2),PQ⊥l时,d取得最大值=5,直线l过P时,d取得最小值0,∴d的取值范围[0,5],故答案为[0,5].9.(5分)函数f(x)=,如果方程f(x)=b有四个不同的实数解x1、x2、x3、x4,则x1+x2+x3+x4=4.【解答】解:作出函数f(x)=的图象,方程f(x)=b有四个不同的实数解,等价为y=f(x)和y=b的图象有4个交点,不妨设它们交点的横坐标为x1、x2、x3、x4,且x1<x2<x3<x4,由x1、x2关于原点对称,x3、x4关于(2,0)对称,可得x1+x2=0,x3+x4=4,则x1+x2+x3+x4=4.故答案为:4.10.(5分)三条侧棱两两垂直的正三棱锥,其俯视图如图所示,主视图的边界是底边长为2的等腰三角形,则主视图的面积等于.【解答】解:由题意,正三棱锥有三个面都是等腰直角三角形,(如图:SAB,SBC,SAC)且边长相等为,其体积为V==根据俯视图可得,底面是边长为2的等边三角形.其面积为:.设主视图的高OS=h,则=.∴h=.主视图的边界是底边长为2的等腰三角形,其高为.∴得面积S=.故答案为11.(5分)在直角△ABC中,,AB=1,AC=2,M是△ABC内一点,且,若,则λ+2μ的最大值.【解答】解:如图建立平面直角坐标系,则A(0,0),B(0,1),C(2,0)M(,)(0<θ<),∵,∴(.∴,则λ+2μ=,∴当θ=时,λ+2μ最大值为,故答案为:12.(5分)无穷数列{a n}的前n项和为S n,若对任意的正整数n都有S n∈{k1,k2,k3,…,k10},则a10的可能取值最多有91个.【解答】解:a10=S10﹣S9,而S10,S9∈{k1,k2,k3,…,k10},若S10≠S9,则有A102=10×9=90种,若S10=S9,则有a10=0,根据分类计数原理可得,共有90+1=91种,故答案为:91二、选择题(每小题5分,满分20分)13.(5分)已知a,b,c是实数,则“a,b,c成等比数列”是“b2=ac”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:若a,b,c成等比数列,则b2=ac成立,若a=b=c=0,满足b2=ac,但a,b,c不能成等比数列,故“a,b,c成等比数列”是“b2=ac”的充分不必要条件,故选:A.14.(5分)l1、l2是空间两条直线,α是平面,以下结论正确的是()A.如果l1∥α,l2∥α,则一定有l1∥l2B.如果l1⊥l2,l2⊥α,则一定有l1⊥αC.如果l1⊥l2,l2⊥α,则一定有l1∥αD.如果l1⊥α,l2∥α,则一定有l1⊥l2【解答】解:若l1∥α,l2∥α,则有l1∥l2或l1与l2相交或l1与l2异面,故A错误;如果l1⊥l2,l2⊥α,则有l1∥α或l1⊂α,故B、C错误;如果l1⊥α,则l1垂直α内的所有直线,又l2∥α,则过l2与α相交的平面交α于a,则l2∥a,∴l1⊥l2,故D正确.故选:D.15.(5分)已知函数,x1、x2、x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值()A.一定等于零B.一定大于零C.一定小于零D.正负都有可能【解答】解:函数,f(﹣x)=﹣f(x),函数f(x)是奇函数,根据同增为增,可得函数f(x)是增函数,∵x1+x2>0,x2+x3>0,x3+x1>0,∴x1>﹣x2,x2>﹣x3x3>﹣x1,∴f(x1)>f(﹣x2,f(x2)>f(﹣x3),f(x3)>f(﹣x1)∴f(x1)+f(x2)>0,f(x2)+f(x3)>0,f(x3)+f(x1)>0,三式相加得:f(x1)+f(x2)+f(x3)>0,故选:B.16.(5分)已知点M(a,b)与点N(0,﹣1)在直线3x﹣4y+5=0的两侧,给出以下结论:①3a﹣4b+5>0;②当a>0时,a+b有最小值,无最大值;③a2+b2>1;④当a>0且a≠1时,的取值范围是(﹣∞,﹣)∪(,+∞).正确的个数是()A.1B.2C.3D.4【解答】解:∵点M(a,b)与点N(0,﹣1)在直线3x﹣4y+5=0的两侧,∴(3a﹣4b+5)(3×0+4+5)<0,即3a﹣4b+5<0,故①错误;当a>0时,a+b>,a+b即无最小值,也无最大值,故②错误;设原点到直线3x﹣4y+5=0的距离为d,则d=,则a2+b2>4,故③正确;当a>0且a≠1时,表示点M(a,b)与P(1,﹣1)连线的斜率.∵当a=0,b=时,=,又直线3x﹣4y+5=0的斜率为,故的取值范围为(﹣∞,﹣)∪(,+∞),故④正确.∴正确命题的个数是2个.故选:B.三、解答题(本大题满分76分)17.(14分)如图ABC﹣A1B1C1是直三棱柱,底面△ABC是等腰直角三角形,且AB=AC =4,直三棱柱的高等于4,线段B1C1的中点为D,线段BC的中点为E,线段CC1的中点为F.(1)求异面直线AD、EF所成角的大小;(2)求三棱锥D﹣AEF的体积.【解答】解:(1)以A为坐标原点,AB、AC、AA1分别为x轴,y轴,z轴建立空间直角坐标系.依题意有D(2,2,4),A(0,0,0),E(2,2,0),F(0,4,2),所以.设异面直线AD、EF所成角为α,则==,所以,即异面直线AD、EF所成角的大小为.(2)∵AB=AC=4,AB⊥AC,∴,,DE=AA1=4,∴S△DEF==4,由E为线段BC的中点,且AB=AC,∴AE⊥BC,又BB1⊥面ABC,∴AE⊥BB1,∴AE⊥面BB1C1C,∴,∴三棱锥D﹣AEF的体积为.18.(14分)已知定义在(﹣,)上的函数f(x)是奇函数,且当x∈(0,)时,f(x)=.(1)求f(x)在区间(﹣,)上的解析式;(2)当实数m为何值时,关于x的方程f(x)=m在(﹣,)有解.【解答】解:(1)设,则,∵f(x)是奇函数,则有…(4分)∴f(x)=…(7分)(2)设,令t=tan x,则t>0,而.∵1+t>1,得,从而,∴y=f(x)在的取值范围是0<y<1.…(11分)又设,则,由此函数是奇函数得f(x)=﹣f(﹣x),0<f(﹣x)<1,从而﹣1<f(x)<0.…(13分)综上所述,y=f(x)的值域为(﹣1,1),所以m的取值范围是(﹣1,1).…(14分)19.(14分)已知数列{a n}是首项等于且公比不为1的等比数列,S n是它的前n项和,满足.(1)求数列{a n}的通项公式;(2)设b n=log a a n(a>0且a≠1),求数列{b n}的前n项和T n的最值.【解答】解:(1)∵,∵q≠1,∴.整理得q2﹣3q+2=0,解得q=2或q=1(舍去).∴.(2)b n=log a a n=(n﹣5)log a2.∴数列{b n}是以log a2为公差,以﹣4log a2为首项的等差数列,∴T n=﹣4n log a2+log a2=•log a2.1)当a>1时,有log a2>0,数列{b n}是以log a2为公差,以﹣4log a2为首项的等差数列,∴{b n}是递增数列,∴T n没有最大值.由b n≤0,得n≤5.所以(T n)min=T4=T5=﹣10log a2.2)当0<a<1时,有log a2<0,数列{b n}是以log a2为公差的等差数列,∴{b n}是首项为正的递减等差数列.∴T n没有最小值.令b n≥0,得n≤5,(T n)max=T4=T5=﹣10log a2.20.(16分)已知椭圆C:=1(a>b>0),定义椭圆C上的点M(x0,y0)的“伴随点”为.(1)求椭圆C上的点M的“伴随点”N的轨迹方程;(2)如果椭圆C上的点(1,)的“伴随点”为(,),对于椭圆C上的任意点M 及它的“伴随点”N,求的取值范围;(3)当a=2,b=时,直线l交椭圆C于A,B两点,若点A,B的“伴随点”分别是P,Q,且以PQ为直径的圆经过坐标原点O,求△OAB的面积.【解答】解:(1)设N(x,y)由题意,则,又,∴,从而得x2+y2=1…(3分)(2)由,得a=2.又,得.…(5分)∵点M(x0,y0)在椭圆上,,,且,•=(x0,y0)(,)=+=x02+,由于,的取值范围是[,2](8分)(3)设A(x1,y1),B(x2,y2),则;1)当直线l的斜率存在时,设方程为y=kx+m,由,得(3+4k2)x2+8kmx+4(m2﹣3)=0;有①…(10分)由以PQ为直径的圆经过坐标原点O可得:3x1x2+4y1y2=0;整理得:②将①式代入②式得:3+4k2=2m2,…(12分)3+4k2>0,则m2>0,△=48m2>0,又点O到直线y=kx+m的距离,丨AB丨==×=×,∴…(14分)2)当直线l的斜率不存在时,设方程为x=m(﹣2<m<2)联立椭圆方程得;代入3x1x2+4y1y2=0,得,解得m2=2,从而,S△OAB=丨AB丨×d=丨m丨丨y1﹣y2丨=,综上:△OAB的面积是定值.…(16分)21.(18分)对于定义域为R的函数y=f(x),部分x与y的对应关系如表:(1)求f{f[f(0)]};(2)数列{x n}满足x1=2,且对任意n∈N*,点(x n,x n+1)都在函数y=f(x)的图象上,求x1+x2+…+x4n;(3)若y=f(x)=A sin(ωx+φ)+b,其中A>0,0<ω<π,0<φ<π,0<b<3,求此函数的解析式,并求f(1)+f(2)+…+f(3n)(n∈N*).【解答】解:(1)根据表中的数据:f{f[f(0)]}=f(f(3))=f(﹣1)=2.(2)由题意,x1=2,点(x n,x n+1)都在函数y=f(x)的图象上,即x n+1=f(x n)∴x2=f(x1)=f(2)=0,x3=f(x2)=3,x4=f(x3)=﹣1,x5=f(x4)=2∴x5=x1,∴函数y是周期为4的函数,故得:x1+x2+…+x4n=4n.(3)由题意得由(1)﹣(2)∴sin(ω+φ)=sin(﹣ω+φ)∴sinωcosφ=0.又∵0<ω<π∴sinω≠0.∴cosφ=0而0<φ<π∴从而有.∴2A2﹣4A+2﹣2A2+3A=0.∴A=2.b=1,∵0<ω<π,∴.∴.此函数的最小正周期T==6,f(6)=f(0)=3∵f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=6,∴①当n=2k(k∈N*)时.f(1)+f(2)+…+f(3n)=f(1)+f(2)+…+f(6k)=k[f(1)+f(2)+…+f(6)]=6k=3n.②当n=2k﹣1(k∈N*)时.f(1)+f(2)+…+f(3n)=f(1)+f(2)+…+f(6k)﹣f(6k﹣2)﹣f(6k﹣1)﹣f(6k)=k[f(1)+f(2)+…+f(6)]﹣5=6k﹣5=3n﹣2.。
2017年上海市虹口区高考数学二模试卷一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.集合A={1,2,3,4},B={x|(x﹣1)(x﹣5)<0},则A∩B=.2.复数所对应的点在复平面内位于第象限.3.已知首项为1公差为2的等差数列{a n},其前n项和为S n,则=.4.若方程组无解,则实数a=.5.若(x+a)7的二项展开式中,含x6项的系数为7,则实数a=.6.已知双曲线,它的渐近线方程是y=±2x,则a的值为.7.在△ABC中,三边长分别为a=2,b=3,c=4,则=.8.在平面直角坐标系中,已知点P(﹣2,2),对于任意不全为零的实数a、b,直线l:a(x﹣1)+b(y+2)=0,若点P到直线l的距离为d,则d的取值范围是.9.函数f(x)=,如果方程f(x)=b有四个不同的实数解x1、x2、x3、x4,则x1+x2+x3+x4=.10.三条侧棱两两垂直的正三棱锥,其俯视图如图所示,主视图的边界是底边长为2的等腰三角形,则主视图的面积等于.11.在直角△ABC中,,AB=1,AC=2,M是△ABC内一点,且,若,则λ+2μ的最大值.12.无穷数列{a n}的前n项和为S n,若对任意的正整数n都有S n∈{k1,k2,k3,…,k10},则a10的可能取值最多有个.二、选择题(每小题5分,满分20分)13.已知a,b,c是实数,则“a,b,c成等比数列”是“b2=ac”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件14.l1、l2是空间两条直线,α是平面,以下结论正确的是()A.如果l1∥α,l2∥α,则一定有l1∥l2B.如果l1⊥l2,l2⊥α,则一定有l1⊥αC.如果l1⊥l2,l2⊥α,则一定有l1∥αD.如果l1⊥α,l2∥α,则一定有l1⊥l215.已知函数,x1、x2、x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值()A.一定等于零 B.一定大于零 C.一定小于零 D.正负都有可能16.已知点M(a,b)与点N(0,﹣1)在直线3x﹣4y+5=0的两侧,给出以下结论:①3a﹣4b+5>0;②当a>0时,a+b有最小值,无最大值;③a2+b2>1;④当a>0且a≠1时,的取值范围是(﹣∞,﹣)∪(,+∞).正确的个数是()A.1 B.2 C.3 D.4三、解答题(本大题满分76分)17.如图ABC﹣A1B1C1是直三棱柱,底面△ABC是等腰直角三角形,且AB=AC=4,直三棱柱的高等于4,线段B1C1的中点为D,线段BC的中点为E,线段CC1的中点为F.(1)求异面直线AD、EF所成角的大小;(2)求三棱锥D﹣AEF的体积.18.已知定义在(﹣,)上的函数f(x)是奇函数,且当x∈(0,)时,f(x)=.(1)求f(x)在区间(﹣,)上的解析式;(2)当实数m为何值时,关于x的方程f(x)=m在(﹣,)有解.19.已知数列{a n}是首项等于且公比不为1的等比数列,S n是它的前n项和,满足.(1)求数列{a n}的通项公式;(2)设b n=log a a n(a>0且a≠1),求数列{b n}的前n项和T n的最值.20.已知椭圆C:=1(a>b>0),定义椭圆C上的点M(x0,y0)的“伴随点”为.(1)求椭圆C上的点M的“伴随点”N的轨迹方程;(2)如果椭圆C上的点(1,)的“伴随点”为(,),对于椭圆C上的任意点M及它的“伴随点”N,求的取值范围;(3)当a=2,b=时,直线l交椭圆C于A,B两点,若点A,B的“伴随点”分别是P,Q,且以PQ为直径的圆经过坐标原点O,求△OAB的面积.21.对于定义域为R的函数y=f(x),部分x与y的对应关系如表:(1)求f{f[f(0)]};)都在函数y=f(x)的(2)数列{x n}满足x1=2,且对任意n∈N*,点(x n,x n+1图象上,求x1+x2+…+x4n;(3)若y=f(x)=Asin(ωx+φ)+b,其中A>0,0<ω<π,0<φ<π,0<b<3,求此函数的解析式,并求f(1)+f(2)+…+f(3n)(n∈N*).2017年上海市虹口区高考数学二模试卷参考答案与试题解析一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.集合A={1,2,3,4},B={x|(x﹣1)(x﹣5)<0},则A∩B={2,3,4} .【考点】1E:交集及其运算.【分析】解关于B的不等式,求出A、B的交集即可.【解答】解:A={1,2,3,4},B={x|(x﹣1)(x﹣5)<0}={x|1<x<5},则A∩B={2,3,4};故答案为:{2,3,4}.2.复数所对应的点在复平面内位于第四象限.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数==﹣i所对应的点在复平面内位于第四象限.故答案为:四.3.已知首项为1公差为2的等差数列{a n},其前n项和为S n,则=4.【考点】6F:极限及其运算;85:等差数列的前n项和.【分析】由题意,a n=1+2(n﹣1)=2n﹣1,S n=n+=n2,即可求极限.【解答】解:由题意,a n=1+2(n﹣1)=2n﹣1,S n=n+=n2,∴==4,故答案为:4.4.若方程组无解,则实数a=±2.【考点】54:根的存在性及根的个数判断.【分析】根据题意,若方程组无解,则直线ax+2y=3与直线2x+2y=2平行,由直线平行的判定方法分析可得a的值,即可得答案.【解答】解:根据题意,方程组无解,则直线ax+2y=3与直线2x+2y=2平行,则有a×a=2×2,且a×2≠2×3,即a2=4,a≠3,解可得a=±2,故答案为:±2.5.若(x+a)7的二项展开式中,含x6项的系数为7,则实数a=1.【考点】DB:二项式系数的性质.=x r a7﹣r,令r=6,则=7,【分析】(x+a)7的二项展开式的通项公式:T r+1解得a.=x r a7﹣r,【解答】解:(x+a)7的二项展开式的通项公式:T r+1令r=6,则=7,解得a=1.故答案为:1.6.已知双曲线,它的渐近线方程是y=±2x,则a的值为2.【考点】KC:双曲线的简单性质.【分析】根据题意,由双曲线的方程可得其渐近线方程为:y=±ax,结合题意中渐近线方程可得a=2,即可得答案.【解答】解:根据题意,双曲线的方程为:,其焦点在x轴上,其渐近线方程为:y=±ax,又有其渐近线方程是y=±2x,则有a=2;故答案为:2.7.在△ABC中,三边长分别为a=2,b=3,c=4,则=.【考点】HP:正弦定理.【分析】由已知利用余弦定理可求cosA,cosB,进而利用同角三角函数基本关系式可求sinA,sinB的值,即可利用二倍角的正弦函数公式化简求值得解.【解答】解:在△ABC中,∵a=2,b=3,c=4,∴cosA==,可得:sinA==,cosB==,sinB==,∴===.故答案为:.8.在平面直角坐标系中,已知点P(﹣2,2),对于任意不全为零的实数a、b,直线l:a(x﹣1)+b(y+2)=0,若点P到直线l的距离为d,则d的取值范围是[0,5] .【考点】IT:点到直线的距离公式.【分析】由题意,直线过定点Q(1,﹣2),PQ⊥l时,d取得最大值=5,直线l过P时,d取得最小值0,可得结论.【解答】解:由题意,直线过定点Q(1,﹣2),PQ⊥l时,d取得最大值=5,直线l过P时,d取得最小值0,∴d的取值范围[0,5],故答案为[0,5].9.函数f(x)=,如果方程f(x)=b有四个不同的实数解x1、x2、x3、x4,则x1+x2+x3+x4=4.【考点】54:根的存在性及根的个数判断.【分析】作出f(x)的图象,由题意可得y=f(x)和y=b的图象有4个交点,不妨设x1<x2<x3<x4,由x1、x2关于原点对称,x3、x4关于(2,0)对称,计算即可得到所求和.【解答】解:作出函数f(x)=的图象,方程f(x)=b有四个不同的实数解,等价为y=f(x)和y=b的图象有4个交点,不妨设它们交点的横坐标为x1、x2、x3、x4,且x1<x2<x3<x4,由x1、x2关于原点对称,x3、x4关于(2,0)对称,可得x1+x2=0,x3+x4=4,则x1+x2+x3+x4=4.故答案为:4.10.三条侧棱两两垂直的正三棱锥,其俯视图如图所示,主视图的边界是底边长为2的等腰三角形,则主视图的面积等于.【考点】L7:简单空间图形的三视图.【分析】由题意,正三棱锥有三个面都是等腰直角三角形,且边长相等.根据俯视图可得,底面是边长为2的等边三角形.利用体积法,求其高,即可得主视图的高.可得主视图的面积【解答】解:由题意,正三棱锥有三个面都是等腰直角三角形,(如图:SAB,SBC,SAC)且边长相等为,其体积为V==根据俯视图可得,底面是边长为2的等边三角形.其面积为:.设主视图的高OS=h,则=.∴h=.主视图的边界是底边长为2的等腰三角形,其高为.∴得面积S=.故答案为11.在直角△ABC中,,AB=1,AC=2,M是△ABC内一点,且,若,则λ+2μ的最大值.【考点】9H:平面向量的基本定理及其意义.【分析】建立平面直角坐标系,则A(0,0),B(0,1),C(2,0),M(,),(0<θ<),由已知可得,则λ+2μ=,即可求解.【解答】解:如图建立平面直角坐标系,则A(0,0),B(0,1),C(2,0)M(,)(0<θ<),∵,∴(.∴,则λ+2μ=,∴当θ=时,λ+2μ最大值为,故答案为:12.无穷数列{a n}的前n项和为S n,若对任意的正整数n都有S n∈{k1,k2,k3,…,k10},则a10的可能取值最多有91个.【考点】8E:数列的求和.【分析】根据数列递推公式可得a10=S10﹣S9,而S10,S9∈{k1,k2,k3,…,k10},分类讨论即可求出答案.【解答】解:a10=S10﹣S9,而S10,S9∈{k1,k2,k3,…,k10},若S10≠S9,则有A102=10×9=90种,若S10=S9,则有a10=0,根据分类计数原理可得,共有90+1=91种,故答案为:91二、选择题(每小题5分,满分20分)13.已知a,b,c是实数,则“a,b,c成等比数列”是“b2=ac”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合等比数列的定义进行判断即可.【解答】解:若a,b,c成等比数列,则b2=ac成立,若a=b=c=0,满足b2=ac,但a,b,c不能成等比数列,故“a,b,c成等比数列”是“b2=ac”的充分不必要条件,故选:A.14.l1、l2是空间两条直线,α是平面,以下结论正确的是()A.如果l1∥α,l2∥α,则一定有l1∥l2B.如果l1⊥l2,l2⊥α,则一定有l1⊥αC.如果l1⊥l2,l2⊥α,则一定有l1∥αD.如果l1⊥α,l2∥α,则一定有l1⊥l2【考点】LP:空间中直线与平面之间的位置关系.【分析】由空间中直线与直线、直线与平面、平面与平面的关系逐一核对四个选项得答案.【解答】解:若l1∥α,l2∥α,则有l1∥l2或l1与l2相交或l1与l2异面,故A错误;如果l1⊥l2,l2⊥α,则有l1∥α或l1⊂α,故B、C错误;如果l1⊥α,则l1垂直α内的所有直线,又l2∥α,则过l2与α相交的平面交α于a,则l2∥a,∴l1⊥l2,故D正确.故选:D.15.已知函数,x1、x2、x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值()A.一定等于零 B.一定大于零 C.一定小于零 D.正负都有可能【考点】57:函数与方程的综合运用.【分析】先判断奇偶性和单调性,先由单调性定义由自变量的关系得到函数关系,然后三式相加得解.【解答】解:函数,f(﹣x)=﹣f(x),函数f(x)是奇函数,根据同增为增,可得函数f(x)是增函数,∵x1+x2>0,x2+x3>0,x3+x1>0,∴x1>﹣x2,x2>﹣x3x3>﹣x1,∴f(x1)>f(﹣x2,f(x2)>f(﹣x3),f(x3)>f(﹣x1)∴f(x1)+f(x2)>0,f(x2)+f(x3)>0,f(x3)+f(x1)>0,三式相加得:f(x1)+f(x2)+f(x3)>0,故选:B.16.已知点M(a,b)与点N(0,﹣1)在直线3x﹣4y+5=0的两侧,给出以下结论:①3a﹣4b+5>0;②当a>0时,a+b有最小值,无最大值;③a2+b2>1;④当a>0且a≠1时,的取值范围是(﹣∞,﹣)∪(,+∞).正确的个数是()A.1 B.2 C.3 D.4【考点】2K:命题的真假判断与应用.【分析】根据点M(a,b)与点N(1,0)在直线3x﹣4y+5=0的两侧,可以画出点M(a,b)所在的平面区域,进而结合二元一次不等式的几何意义,两点之间距离公式的几何意义,及两点之间连线斜率的几何意义,逐一分析四个命题得结论.【解答】解:∵点M(a,b)与点N(0,﹣1)在直线3x﹣4y+5=0的两侧,∴(3a﹣4b+5)(3×0+4+5)<0,即3a﹣4b+5<0,故①错误;当a>0时,a+b>,a+b即无最小值,也无最大值,故②错误;设原点到直线3x﹣4y+5=0的距离为d,则d=,则a2+b2>4,故③错误;当a>0且a≠1时,表示点M(a,b)与P(1,﹣1)连线的斜率.∵当a=0,b=时,=,又直线3x﹣4y+5=0的斜率为,故的取值范围为(﹣∞,﹣)∪(,+∞),故④正确.∴正确命题的个数是2个.故选:B.三、解答题(本大题满分76分)17.如图ABC﹣A1B1C1是直三棱柱,底面△ABC是等腰直角三角形,且AB=AC=4,直三棱柱的高等于4,线段B1C1的中点为D,线段BC的中点为E,线段CC1的中点为F.(1)求异面直线AD、EF所成角的大小;(2)求三棱锥D﹣AEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角.【分析】(1)以A为原点建立空间坐标系,求出,的坐标,利用向量的夹角公式得出AD,EF的夹角;,代入体积公式计算.(2)证明AE⊥平面DEF,求出AE和S△DEF【解答】解:(1)以A为坐标原点,AB、AC、AA1分别为x轴,y轴,z轴建立空间直角坐标系.依题意有D(2,2,4),A(0,0,0),E(2,2,0),F(0,4,2),所以.设异面直线AD、EF所成角为α,则==,所以,即异面直线AD、EF所成角的大小为.(2)∵AB=AC=4,AB⊥AC,∴,,DE=AA1=4,==4,∴S△DEF由E为线段BC的中点,且AB=AC,∴AE⊥BC,又BB1⊥面ABC,∴AE⊥BB1,∴AE⊥面BB1C1C,∴,∴三棱锥D﹣AEF的体积为.18.已知定义在(﹣,)上的函数f(x)是奇函数,且当x∈(0,)时,f(x)=.(1)求f(x)在区间(﹣,)上的解析式;(2)当实数m为何值时,关于x的方程f(x)=m在(﹣,)有解.【考点】3L:函数奇偶性的性质.【分析】(1)利用奇函数的定义,结合x∈(0,)时,f(x)=,求f(x)在区间(﹣,)上的解析式;(2)分类讨论,利用函数的解析式,可得结论.【解答】解:(1)设,则,∵f(x)是奇函数,则有…∴f(x)=…(2)设,令t=tanx,则t>0,而.∵1+t>1,得,从而,∴y=f(x)在的取值范围是0<y<1.…又设,则,由此函数是奇函数得f(x)=﹣f(﹣x),0<f(﹣x)<1,从而﹣1<f(x)<0.…综上所述,y=f(x)的值域为(﹣1,1),所以m的取值范围是(﹣1,1).…19.已知数列{a n}是首项等于且公比不为1的等比数列,S n是它的前n项和,满足.(1)求数列{a n}的通项公式;(2)设b n=log a a n(a>0且a≠1),求数列{b n}的前n项和T n的最值.【考点】8E:数列的求和;8H:数列递推式.【分析】(1)根据求和公式列方程求出q,代入通项公式即可;(2)对a进行讨论,判断{b n}的单调性和首项的符号,从而得出T n的最值.【解答】解:(1)∵,∵q≠1,∴.整理得q2﹣3q+2=0,解得q=2或q=1(舍去).∴.(2)b n=log a a n=(n﹣5)log a2.1)当a>1时,有log a2>0,数列{b n}是以log a2为公差,以﹣4log a2为首项的等差数列,∴{b n}是递增数列,∴T n没有最大值.由b n≤0,得n≤5.所以(T n)min=T4=T5=﹣10log a2.2)当0<a<1时,有log a2<0,数列{b n}是以log a2为公差的等差数列,∴{b n}是首项为正的递减等差数列.∴T n没有最小值.令b n≥0,得n≤5,(T n)max=T4=T5=﹣10log a2.20.已知椭圆C:=1(a>b>0),定义椭圆C上的点M(x0,y0)的“伴随点”为.(1)求椭圆C上的点M的“伴随点”N的轨迹方程;(2)如果椭圆C上的点(1,)的“伴随点”为(,),对于椭圆C上的任意点M及它的“伴随点”N,求的取值范围;(3)当a=2,b=时,直线l交椭圆C于A,B两点,若点A,B的“伴随点”分别是P,Q,且以PQ为直径的圆经过坐标原点O,求△OAB的面积.【考点】K4:椭圆的简单性质.【分析】(1)由,代入椭圆方程即可求得椭圆C上的点M的“伴随点”N 的轨迹方程;(2)由题意,求得椭圆的方程,根据向量的坐标运算,即可求得的取值范围;(3)求得椭圆方程,设方程为y=kx+m,代入椭圆方程,利用韦达定理,根据向量数量积的坐标求得3+4k2=2m2,弦长公式及点到直线的距离公式,即可求得△OAB的面积,直线l的斜率不存在时,设方程为x=m,代入椭圆方程,即可求得△OAB的面积.【解答】解:(1)设N(x,y)由题意,则,又,∴,从而得x2+y2=1…(2)由,得a=2.又,得.…∵点M(x0,y0)在椭圆上,,,且,•=(x,y0)(,)=+=x02+,由于,的取值范围是[,2](3)设A(x1,y1),B(x2,y2),则;1)当直线l的斜率存在时,设方程为y=kx+m,由,得(3+4k2)x2+8kmx+4(m2﹣3)=0;有①…由以PQ为直径的圆经过坐标原点O可得:3x1x2+4y1y2=0;整理得:②将①式代入②式得:3+4k2=2m2,…3+4k2>0,则m2>0,△=48m2>0,又点O到直线y=kx+m的距离,丨AB丨==×=×,∴…2)当直线l的斜率不存在时,设方程为x=m(﹣2<m<2)联立椭圆方程得;代入3x1x2+4y1y2=0,得,解得m2=2,从而,=丨AB丨×d=丨m丨丨y1﹣y2丨=,S△OAB综上:△OAB的面积是定值.…21.对于定义域为R的函数y=f(x),部分x与y的对应关系如表:(1)求f{f[f(0)]};(2)数列{x n}满足x1=2,且对任意n∈N*,点(x n,x n)都在函数y=f(x)的+1图象上,求x1+x2+…+x4n;(3)若y=f(x)=Asin(ωx+φ)+b,其中A>0,0<ω<π,0<φ<π,0<b<3,求此函数的解析式,并求f(1)+f(2)+…+f(3n)(n∈N*).【考点】H2:正弦函数的图象;3O:函数的图象.【分析】(1)根据复合函数的性质,由内往外计算可得答案.)都在函数y=f(x)的图象上,带入,化简,不难发现函(2)根据点(x n,x n+1数y是周期函数,即可求解x1+x2+…+x4n的值.(3)根据表中的数据,带入计算即可求解函数的解析式.【解答】解:(1)根据表中的数据:f{f[f(0)]}=f(f(3))=f(﹣1)=2.)都在函数y=f(x)的图象上,(2)由题意,x1=2,点(x n,x n+1=f(x n)即x n+1∴x2=f(x1)=f(2)=0,x3=f(x2)=3,x4=f(x3)=﹣1,x5=f(x4)=2∴x5=x1,∴函数y是周期为4的函数,故得:x1+x2+…+x4n=4n.(3)由题意得由(1)﹣(2)∴sin(ω+φ)=sin(﹣ω+φ)∴sinωcosφ=0.又∵0<ω<π∴sinω≠0.∴cosφ=0而0<φ<π∴从而有.∴2A2﹣4A+2﹣2A2+3A=0.∴A=2.b=1,∵0<ω<π,∴.∴.此函数的最小正周期T==6,f(6)=f(0)=3∵f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=6,∴①当n=2k(k∈N*)时.f(1)+f(2)+…+f(3n)=f(1)+f(2)+…+f(6k)=k[f(1)+f(2)+…+f(6)]=6k=3n.②当n=2k﹣1(k∈N*)时.f(1)+f(2)+…+f(3n)=f(1)+f(2)+…+f(6k)﹣f(6k﹣2)﹣f(6k﹣1)﹣f(6k)=k[f(1)+f(2)+…+f(6)]﹣5=6k﹣5=3n ﹣2.2017年5月22日。
2017年上海市虹口区高考数学一模试卷一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.已知集合A={1,2,4,6,8},B={x|x=2k,k∈A},则A∩B=.2.已知,则复数z的虚部为.3.设函数f(x)=sinx﹣cosx,且f(α)=1,则sin2α=.4.已知二元一次方程组的增广矩阵是,则此方程组的解是.5.数列{a n}是首项为1,公差为2的等差数列,S n是它前n项和,则=.6.已知角A是△ABC的内角,则“”是“的条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).7.若双曲线x2﹣=1的一个焦点到其渐近线的距离为2,则该双曲线的焦距等于.8.若正项等比数列{a n}满足:a3+a5=4,则a4的最大值为.9.一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于.10.设函数f(x)=,则当x≤﹣1时,则f[f(x)]表达式的展开式中含x2项的系数是.11.点M(20,40),抛物线y2=2px(p>0)的焦点为F,若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于.12.当实数x,y满足x2+y2=1时,|x+2y+a|+|3﹣x﹣2y|的取值与x,y均无关,则实数a的取范围是.二、选择题(每小题5分,满分20分)13.在空间,α表示平面,m,n表示二条直线,则下列命题中错误的是()A.若m∥α,m、n不平行,则n与α不平行B.若m∥α,m、n不垂直,则n与α不垂直C.若m⊥α,m、n不平行,则n与α不垂直D.若m⊥α,m、n不垂直,则n与α不平行14.已知函数在区间[0,a](其中a>0)上单调递增,则实数a的取值范围是()A.B.C.D.15.如图,在圆C中,点A、B在圆上,则的值()A.只与圆C的半径有关B.既与圆C的半径有关,又与弦AB的长度有关C.只与弦AB的长度有关D.是与圆C的半径和弦AB的长度均无关的定值16.定义f(x)={x}(其中{x}表示不小于x的最小整数)为“取上整函数”,例如{2.1}=3,{4}=4.以下关于“取上整函数”性质的描述,正确的是()①f(2x)=2f(x);②若f(x1)=f(x2),则x1﹣x2<1;③任意x1,x2∈R,f(x1+x2)≤f(x1)+f(x2);④.A.①②B.①③C.②③D.②④三、解答题(本大题满分76分)17.在正三棱锥P﹣ABC中,已知底面等边三角形的边长为6,侧棱长为4.(1)求证:PA⊥BC;(2)求此三棱锥的全面积和体积.18.如图,我海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其北偏东30°方向与它相距20海里的B处有一外国船只,且D岛位于海监船正东18海里处.(1)求此时该外国船只与D岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D岛12海里的E处(E在B的正南方向),不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时).19.已知二次函数f(x)=ax2﹣4x+c的值域为[0,+∞).(1)判断此函数的奇偶性,并说明理由;(2)判断此函数在[,+∞)的单调性,并用单调性的定义证明你的结论;(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.20.椭圆C:过点M(2,0),且右焦点为F(1,0),过F 的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2.(1)求椭圆C的方程;(2)如果直线l的斜率等于﹣1,求出k1•k2的值;(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.21.已知函数f(x)=2|x+2|﹣|x+1|,无穷数列{a n}的首项a1=a.(1)如果a n=f(n)(n∈N*),写出数列{a n}的通项公式;(2)如果a n=f(a n﹣1)(n∈N*且n≥2),要使得数列{a n}是等差数列,求首项a 的取值范围;(3)如果a n=f(a n﹣1)(n∈N*且n≥2),求出数列{a n}的前n项和S n.2017年上海市虹口区高考数学一模试卷参考答案与试题解析一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.已知集合A={1,2,4,6,8},B={x|x=2k,k∈A},则A∩B={2,4,8} .【考点】交集及其运算.【分析】先分别求出集合A和B,由此能出A∩B.【解答】解:∵集合A={1,2,4,6,8},∴B={x|x=2k,k∈A}={2,4,8,12,19},∴A∩B={2,4,8}.故答案为:{2,4,8}.2.已知,则复数z的虚部为1.【考点】复数代数形式的乘除运算.【分析】由,得,利用复数复数代数形式的乘法运算化简,求出z,则答案可求.【解答】解:由,得=2﹣2i+i﹣i2=3﹣i,则z=3+i.∴复数z的虚部为:1.故答案为:1.3.设函数f(x)=sinx﹣cosx,且f(α)=1,则si n2α=0.【考点】二倍角的正弦.【分析】由已知可得sinα﹣cosα=1,两边平方,利用二倍角的正弦函数公式,同角三角函数基本关系式即可得解.【解答】解:∵f(x)=sinx﹣cosx,且f(α)=1,∴sinα﹣cosα=1,∴两边平方,可得:sin2α+cos2α﹣2sinαcosα=1,∴1﹣sin2α=1,可得:sin2α=0.故答案为:0.4.已知二元一次方程组的增广矩阵是,则此方程组的解是.【考点】系数矩阵的逆矩阵解方程组.【分析】先利用增广矩阵,写出相应的二元一次方程组,然后再求解即得.【解答】解:由题意,方程组解之得故答案为5.数列{a n}是首项为1,公差为2的等差数列,S n是它前n项和,则=.【考点】数列的极限.【分析】求出数列的和以及通项公式,然后求解数列的极限即可.【解答】解:数列{a n}是首项为1,公差为2的等差数列,S n==n2.a n=1+(n﹣1)×2=2n﹣1,则==故答案为:;6.已知角A是△ABC的内角,则“”是“的充分不必要条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及三角函数值判断即可.【解答】解:A为△ABC的内角,则A∈(0,180°),若命题p:cosA=成立,则A=60°,sinA=;而命题q:sinA=成立,又由A∈(0,180°),则A=60°或120°;因此由p可以推得q成立,由q推不出p,可见p是q的充分不必要条件.故答案为:充分不必要.7.若双曲线x2﹣=1的一个焦点到其渐近线的距离为2,则该双曲线的焦距等于6.【考点】双曲线的简单性质.【分析】根据焦点到其渐近线的距离求出b的值即可得到结论.【解答】解:双曲线的渐近线为y=±bx,不妨设为y=﹣bx,即bx+y=0,焦点坐标为F(c,0),则焦点到其渐近线的距离d===b=2,则c====3,则双曲线的焦距等于2c=6,故答案为:68.若正项等比数列{a n}满足:a3+a5=4,则a4的最大值为2.【考点】等比数列的性质.【分析】利用数列{a n}是各项均为正数的等比数列,可得a3a5=a42,再利用基本不等式,即可求得a4的最大值.【解答】解:∵数列{a n}是各项均为正数的等比数列,∴a3a5=a42,∵等比数列{a n}各项均为正数,∴a3+a5≥2,当且仅当a3=a5=2时,取等号,∴a3=a5=2时,a4的最大值为2.故答案是:2.9.一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于.【考点】椭圆的简单性质.【分析】利用已知条件,求出题意的长半轴,短半轴,然后求出半焦距,即可.【解答】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为:=8,∵a2=b2+c2,∴c==2,∴椭圆的焦距为;故答案为:4.10.设函数f(x)=,则当x≤﹣1时,则f[f(x)]表达式的展开式中含x2项的系数是60.【考点】分段函数的应用.【分析】根据分段函数的解析式先求出f[f(x)]表达式,再根据利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为2求得r,再代入系数求出结果【解答】解:由函数f(x)=,当x≤﹣1时,f(x)=﹣2x﹣1,此时f(x)min=f(﹣1)=2﹣1=1,∴f[f(x)]=(﹣2x﹣1)6=(2x+1)6,=C6r2r x r,∴T r+1当r=2时,系数为C62×22=60,故答案为:6011.点M(20,40),抛物线y2=2px(p>0)的焦点为F,若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于42或22.【考点】抛物线的简单性质.【分析】过P做抛物线的准线的垂线,垂足为D,则|PF|=|PD|,当M(20,40)位于抛物线内,当M,P,D共线时,|PM|+|PF|的距离最小,20+=41,解得:p=42,当M(20,40)位于抛物线外,由勾股定理可知:=41,p=22或58,当p=58时,y2=116x,则点M(20,40)在抛物线内,舍去,即可求得p的值.【解答】解:由抛物线的定义可知:抛物线上的点到焦点距离=到准线的距离,过P做抛物线的准线的垂线,垂足为D,则|PF|=|PD|,当M(20,40)位于抛物线内,∴|PM|+|PF|=|PM|+|PD|,当M,P,D共线时,|PM|+|PF|的距离最小,由最小值为41,即20+=41,解得:p=42,当M(20,40)位于抛物线外,当P,M,F共线时,|PM|+|PF|取最小值,即=41,解得:p=22或58,由当p=58时,y2=116x,则点M(20,40)在抛物线内,舍去,故答案为:42或22.12.当实数x,y满足x2+y2=1时,|x+2y+a|+|3﹣x﹣2y|的取值与x,y均无关,则实数a的取范围是[,+∞).【考点】圆方程的综合应用.【分析】根据实数x,y满足x2+y2=1,设x=cosθ,y=sinθ,求出x+2y的取值范围,再讨论a的取值范围,求出|x+2y+a|+|3﹣x﹣2y|的值与x,y均无关时a的取范围.【解答】解:∵实数x,y满足x2+y2=1,可设x=cosθ,y=sinθ,则x+2y=cosθ+2sinθ=sin(θ+α),其中α=arctan2;∴﹣≤x+2y≤,∴当a≥时,|x+2y+a|+|3﹣x﹣2y|=(x+2y+a)+(3﹣x﹣2y)=a+3,其值与x,y均无关;∴实数a的取范围是[,+∞).故答案为:.二、选择题(每小题5分,满分20分)13.在空间,α表示平面,m,n表示二条直线,则下列命题中错误的是()A.若m∥α,m、n不平行,则n与α不平行B.若m∥α,m、n不垂直,则n与α不垂直C.若m⊥α,m、n不平行,则n与α不垂直D.若m⊥α,m、n不垂直,则n与α不平行【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】对于A,若m∥α,m、n不平行,则n与α可能平行、相交或n⊂α,即可得出结论.【解答】解:对于A,若m∥α,m、n不平行,则n与α可能平行、相交或n ⊂α,故不正确.故选A.14.已知函数在区间[0,a](其中a>0)上单调递增,则实数a的取值范围是()A.B.C.D.【考点】正弦函数的单调性.【分析】由条件利用正弦函数的单调性,可得2a+≤,求得a的范围.【解答】在区间[0,a](其中a>0)上单调递增,则2a+≤,求得a≤,故有0<a≤,故选:B.15.如图,在圆C中,点A、B在圆上,则的值()A.只与圆C的半径有关B.既与圆C的半径有关,又与弦AB的长度有关C.只与弦AB的长度有关D.是与圆C的半径和弦AB的长度均无关的定值【考点】平面向量数量积的运算.【分析】展开数量积,结合向量在向量方向上投影的概念可得=.则答案可求.【解答】解:如图,过圆心C作CD⊥AB,垂足为D,则=||||•cos∠CAB=.∴的值只与弦AB的长度有关.故选:C.16.定义f(x)={x}(其中{x}表示不小于x的最小整数)为“取上整函数”,例如{2.1}=3,{4}=4.以下关于“取上整函数”性质的描述,正确的是()①f(2x)=2f(x);②若f(x1)=f(x2),则x1﹣x2<1;③任意x1,x2∈R,f(x1+x2)≤f(x1)+f(x2);④.A.①②B.①③C.②③D.②④【考点】函数与方程的综合运用.【分析】充分理解“取上整函数”的定义.如果选项不满足题意,只需要举例说明即可【解答】解:对于①,当x=1.4时,f(2x)=f(2.8)=3.2,f(1.4)=4.所以f (2x)≠2f(x);①错.对于②,若f(x1)=f(x2).当x1为整数时,f(x1)=x1,此时x2>x1﹣1,即x1﹣x2<1.当x1不是整数时,f(x1)=[x1]+1.[x1]表示不大于x1的最大整数.x2表示比x1的整数部分大1的整数或者是和x1保持相同整数的数,此时﹣x1﹣x2<1.故②正确.对于③,当x1,x2∈Z,f(x1+x2)=f(x1)+f(x2),当x1,x2∉Z,f(x1+x2)<f(x1)+f(x2),故正确;对于④,举例f(1.2)+f(1.2+0.5)=4≠f(2.4)=3.故④错误.故选:C.三、解答题(本大题满分76分)17.在正三棱锥P﹣ABC中,已知底面等边三角形的边长为6,侧棱长为4.(1)求证:PA⊥BC;(2)求此三棱锥的全面积和体积.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积;直线与平面垂直的性质.【分析】(1)取BC的中点M,连AM、BM.由△ABC是等边三角形,可得AM ⊥BC.再由PB=PC,得PM⊥BC.利用线面垂直的判定可得BC⊥平面PAM,进一步得到PA⊥BC;(2)记O是等边三角形的中心,则PO⊥平面ABC.由已知求出高,可求三棱锥的体积.求出各面的面积可得三棱锥的全面积.【解答】(1)证明:取BC的中点M,连AM、BM.∵△ABC是等边三角形,∴AM⊥BC.又∵PB=PC,∴PM⊥BC.∵AM∩PM=M,∴BC⊥平面PAM,则PA⊥BC;(2)解:记O是等边三角形的中心,则PO⊥平面ABC.∵△ABC是边长为6的等边三角形,∴.∴,,∵,∴;.18.如图,我海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其北偏东30°方向与它相距20海里的B处有一外国船只,且D岛位于海监船正东18海里处.(1)求此时该外国船只与D岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D岛12海里的E处(E在B的正南方向),不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时).【考点】直线与圆的位置关系.【分析】(1)依题意,在△ABD中,∠DAB=60°,由余弦定理求得DB;(2)法一、过点B作BH⊥AD于点H,在Rt△ABH中,求解直角三角形可得HE、AE的值,进一步得到sin∠EAH,则∠EAH可求,求出外国船只到达E处的时间t,由求得速度的最小值.法二、建立以点A为坐标原点,AD为x轴,过点A往正北作垂直的y轴.可得A,D,B的坐标,设经过t小时外国船到达点,结合ED=12,得,列等式求得t,则,,再由求得速度的最小值.【解答】解:(1)依题意,在△ABD中,∠DAB=60°,由余弦定理得DB2=AD2+AB2﹣2AD•AB•cos60°=182+202﹣2×18×15×cos60°=364,∴,即此时该外国船只与D岛的距离为海里;(2)法一、过点B作BH⊥AD于点H,在Rt△ABH中,AH=10,∴HD=AD﹣AH=8,以D为圆心,12为半径的圆交BH于点E,连结AE、DE,在Rt△DEH中,HE=,∴,又AE=,∴sin∠EAH=,则≈41.81°.外国船只到达点E的时间(小时).∴海监船的速度(海里/小时).又90°﹣41.81°=48.2°,故海监船的航向为北偏东48.2°,速度的最小值为6.4海里/小时.法二、建立以点A为坐标原点,AD为x轴,过点A往正北作垂直的y轴.则A(0,0),D(18,0),,设经过t小时外国船到达点,又ED=12,得,此时(小时).则,,∴监测船的航向东偏北41.81°.∴海监船的速度(海里/小时).19.已知二次函数f(x)=ax2﹣4x+c的值域为[0,+∞).(1)判断此函数的奇偶性,并说明理由;(2)判断此函数在[,+∞)的单调性,并用单调性的定义证明你的结论;(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.【考点】二次函数的性质.【分析】(1)由二次函数f(x)=ax2﹣4x+c的值域,推出ac=4,判断f(﹣1)≠f(1),f(﹣1)≠﹣f(1),得到此函数是非奇非偶函数.(2)求出函数的单调递增区间.设x1、x2是满足的任意两个数,列出不等式,推出f(x2)>f(x1),即可判断函数是单调递增.(3)f(x)=ax2﹣4x+c,当,即0<a≤2时,当,即a>2时求出最小值即可.【解答】解:(1)由二次函数f(x)=ax2﹣4x+c的值域为[0,+∞),得a>0且,解得ac=4.…∵f(1)=a+c﹣4,f(﹣1)=a+c+4,a>0且c>0,从而f(﹣1)≠f(1),f(﹣1)≠﹣f(1),∴此函数是非奇非偶函数.…(2)函数的单调递增区间是[,+∞).设x1、x2是满足的任意两个数,从而有,∴.又a>0,∴,从而,即,从而f(x2)>f(x1),∴函数在[,+∞)上是单调递增.…(3)f(x)=ax2﹣4x+c,又a>0,,x∈[1,+∞)当,即0<a≤2时,最小值g(a)=f(x0)=0当,即a>2时,最小值综上,最小值…当0<a≤2时,最小值g(a)=0当a>2时,最小值综上y=g(a)的值域为[0,+∞)…20.椭圆C:过点M(2,0),且右焦点为F(1,0),过F 的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2.(1)求椭圆C的方程;(2)如果直线l的斜率等于﹣1,求出k1•k2的值;(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.【考点】直线与椭圆的位置关系.【分析】(1)利用已知条件求出b,即可求解椭圆方程.(2)直线l:y=﹣x+1,设AB坐标,联立利用韦达定理以及斜率公式求解即可.(3)当直线AB的斜率不存在时,不妨设A,B,求出斜率,即可;当直线AB 的斜率存在时,设其为k,求直线AB:y=k(x﹣1),联立直线与椭圆的方程组,利用韦达定理以及斜率公式化简求解即可.【解答】解:(1)∵a=2,又c=1,∴,∴椭圆方程为…(2)直线l:y=﹣x+1,设A(x1,y1)B(x2,y2),由消y得7x2﹣8x﹣8=0,有,.……(3)当直线AB的斜率不存在时,不妨设A(1,),B(1,﹣),则,,故k1+k2=2.…当直线AB的斜率存在时,设其为k,则直线AB:y=k(x﹣1),设A(x1,y1)B (x2,y2),由消y得(4k2+3)x2﹣8k2x+(4k2﹣12)=0,有,.…=…21.已知函数f(x)=2|x+2|﹣|x+1|,无穷数列{a n}的首项a1=a.(1)如果a n=f(n)(n∈N*),写出数列{a n}的通项公式;(2)如果a n=f(a n﹣1)(n∈N*且n≥2),要使得数列{a n}是等差数列,求首项a 的取值范围;(3)如果a n=f(a n﹣1)(n∈N*且n≥2),求出数列{a n}的前n项和S n.【考点】数列与函数的综合.【分析】(1)化简函数f(x)为分段函数,然后求出a n=f(n)=n+3.(2)如果{a n}是等差数列,求出公差d,首项,然后求解a的范围.(3)当a≥﹣1时,求出前n项和,当﹣2≤a≤﹣1时,当a≤﹣2时,分别求出n项和即可.【解答】解:(1)∵函数f(x)=2|x+2|﹣|x+1|=,…又n≥1且n∈N*,∴a n=f(n)=n+3.…(2)如果{a n}是等差数列,则a n﹣a n﹣1=d,a n=a n﹣1+d,由f(x)知一定有a n=a n﹣1+3,公差d=3.当a1≥﹣1时,符合题意.当﹣2≤a1≤﹣1时,a2=3a1+5,由a2﹣a1=3得3a1+5﹣a1=3,得a1=﹣1,a2=2.当a1≤﹣2时,a2=﹣a1﹣3,由a2﹣a1=3得﹣a1﹣3﹣a1=3,得a1=﹣3,此时a2=0.综上所述,可得a的取值范围是a≥﹣1或a=﹣3.…(3)当a≥﹣1时,a n=f(a n﹣1)=a n﹣1+3,∴数列{a n}是以a为首项,公差为3的等差数列,.…当﹣2≤a≤﹣1时,a2=3a1+5=3a+5≥﹣1,∴n≥3时,a n=a n﹣1+3.∴n=1时,S1=a.n ≥2时,又S1=a也满足上式,∴(n∈N*)…当a≤﹣2时,a2=﹣a1﹣3=﹣a﹣3≥﹣1,∴n≥3时,a n=a n﹣1+3.∴n=1时,S1=a.n ≥2时,又S1=a也满足上式,∴(n∈N*).综上所述:S n=.….。
2017年上海市虹口区高考数学二模试卷一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.集合A={1,2,3,4},B={x|(x﹣1)(x﹣5)<0},则A∩B=.2.复数所对应的点在复平面内位于第象限.3.已知首项为1公差为2的等差数列{a n},其前n项和为S n,则=.4.若方程组无解,则实数a=.5.若(x+a)7的二项展开式中,含x6项的系数为7,则实数a=.6.已知双曲线,它的渐近线方程是y=±2x,则a的值为.7.在△ABC中,三边长分别为a=2,b=3,c=4,则=.8.在平面直角坐标系中,已知点P(﹣2,2),对于任意不全为零的实数a、b,直线l:a(x﹣1)+b(y+2)=0,若点P到直线l的距离为d,则d的取值范围是.9.函数f(x)=,如果方程f(x)=b有四个不同的实数解x1、x2、x3、x4,则x1+x2+x3+x4=.10.三条侧棱两两垂直的正三棱锥,其俯视图如图所示,主视图的边界是底边长为2的等腰三角形,则主视图的面积等于.11.在直角△ABC中,,AB=1,AC=2,M是△ABC内一点,且,若,则λ+2μ的最大值.12.无穷数列{a n}的前n项和为S n,若对任意的正整数n都有S n∈{k1,k2,k3,…,k10},则a10的可能取值最多有个.二、选择题(每小题5分,满分20分)13.已知a,b,c是实数,则“a,b,c成等比数列”是“b2=ac”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件14.l1、l2是空间两条直线,α是平面,以下结论正确的是()A.如果l1∥α,l2∥α,则一定有l1∥l2B.如果l1⊥l2,l2⊥α,则一定有l1⊥αC.如果l1⊥l2,l2⊥α,则一定有l1∥αD.如果l1⊥α,l2∥α,则一定有l1⊥l215.已知函数,x1、x2、x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值()A.一定等于零 B.一定大于零 C.一定小于零 D.正负都有可能16.已知点M(a,b)与点N(0,﹣1)在直线3x﹣4y+5=0的两侧,给出以下结论:①3a﹣4b+5>0;②当a>0时,a+b有最小值,无最大值;③a2+b2>1;④当a>0且a≠1时,的取值范围是(﹣∞,﹣)∪(,+∞).正确的个数是()A.1 B.2 C.3 D.4三、解答题(本大题满分76分)17.如图ABC﹣A1B1C1是直三棱柱,底面△ABC是等腰直角三角形,且AB=AC=4,直三棱柱的高等于4,线段B1C1的中点为D,线段BC的中点为E,线段CC1的中点为F.(1)求异面直线AD、EF所成角的大小;(2)求三棱锥D﹣AEF的体积.18.已知定义在(﹣,)上的函数f(x)是奇函数,且当x∈(0,)时,f(x)=.(1)求f(x)在区间(﹣,)上的解析式;(2)当实数m为何值时,关于x的方程f(x)=m在(﹣,)有解.19.已知数列{a n}是首项等于且公比不为1的等比数列,S n是它的前n项和,满足.(1)求数列{a n}的通项公式;(2)设b n=log a a n(a>0且a≠1),求数列{b n}的前n项和T n的最值.20.已知椭圆C:=1(a>b>0),定义椭圆C上的点M(x0,y0)的“伴随点”为.(1)求椭圆C上的点M的“伴随点”N的轨迹方程;(2)如果椭圆C上的点(1,)的“伴随点”为(,),对于椭圆C上的任意点M及它的“伴随点”N,求的取值范围;(3)当a=2,b=时,直线l交椭圆C于A,B两点,若点A,B的“伴随点”分别是P,Q,且以PQ为直径的圆经过坐标原点O,求△OAB的面积.21.对于定义域为R的函数y=f(x),部分x与y的对应关系如表:(1)求f{f[f(0)]};)都在函数y=f(x)的(2)数列{x n}满足x1=2,且对任意n∈N*,点(x n,x n+1图象上,求x1+x2+…+x4n;(3)若y=f(x)=Asin(ωx+φ)+b,其中A>0,0<ω<π,0<φ<π,0<b<3,求此函数的解析式,并求f(1)+f(2)+…+f(3n)(n∈N*).2017年上海市虹口区高考数学二模试卷参考答案与试题解析一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.集合A={1,2,3,4},B={x|(x﹣1)(x﹣5)<0},则A∩B={2,3,4} .【考点】1E:交集及其运算.【分析】解关于B的不等式,求出A、B的交集即可.【解答】解:A={1,2,3,4},B={x|(x﹣1)(x﹣5)<0}={x|1<x<5},则A∩B={2,3,4};故答案为:{2,3,4}.2.复数所对应的点在复平面内位于第四象限.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数==﹣i所对应的点在复平面内位于第四象限.故答案为:四.3.已知首项为1公差为2的等差数列{a n},其前n项和为S n,则=4.【考点】6F:极限及其运算;85:等差数列的前n项和.【分析】由题意,a n=1+2(n﹣1)=2n﹣1,S n=n+=n2,即可求极限.【解答】解:由题意,a n=1+2(n﹣1)=2n﹣1,S n=n+=n2,∴==4,故答案为:4.4.若方程组无解,则实数a=±2.【考点】54:根的存在性及根的个数判断.【分析】根据题意,若方程组无解,则直线ax+2y=3与直线2x+2y=2平行,由直线平行的判定方法分析可得a的值,即可得答案.【解答】解:根据题意,方程组无解,则直线ax+2y=3与直线2x+2y=2平行,则有a×a=2×2,且a×2≠2×3,即a2=4,a≠3,解可得a=±2,故答案为:±2.5.若(x+a)7的二项展开式中,含x6项的系数为7,则实数a=1.【考点】DB:二项式系数的性质.=x r a7﹣r,令r=6,则=7,【分析】(x+a)7的二项展开式的通项公式:T r+1解得a.=x r a7﹣r,【解答】解:(x+a)7的二项展开式的通项公式:T r+1令r=6,则=7,解得a=1.故答案为:1.6.已知双曲线,它的渐近线方程是y=±2x,则a的值为2.【考点】KC:双曲线的简单性质.【分析】根据题意,由双曲线的方程可得其渐近线方程为:y=±ax,结合题意中渐近线方程可得a=2,即可得答案.【解答】解:根据题意,双曲线的方程为:,其焦点在x轴上,其渐近线方程为:y=±ax,又有其渐近线方程是y=±2x,则有a=2;故答案为:2.7.在△ABC中,三边长分别为a=2,b=3,c=4,则=.【考点】HP:正弦定理.【分析】由已知利用余弦定理可求cosA,cosB,进而利用同角三角函数基本关系式可求sinA,sinB的值,即可利用二倍角的正弦函数公式化简求值得解.【解答】解:在△ABC中,∵a=2,b=3,c=4,∴cosA==,可得:sinA==,cosB==,sinB==,∴===.故答案为:.8.在平面直角坐标系中,已知点P(﹣2,2),对于任意不全为零的实数a、b,直线l:a(x﹣1)+b(y+2)=0,若点P到直线l的距离为d,则d的取值范围是[0,5] .【考点】IT:点到直线的距离公式.【分析】由题意,直线过定点Q(1,﹣2),PQ⊥l时,d取得最大值=5,直线l过P时,d取得最小值0,可得结论.【解答】解:由题意,直线过定点Q(1,﹣2),PQ⊥l时,d取得最大值=5,直线l过P时,d取得最小值0,∴d的取值范围[0,5],故答案为[0,5].9.函数f(x)=,如果方程f(x)=b有四个不同的实数解x1、x2、x3、x4,则x1+x2+x3+x4=4.【考点】54:根的存在性及根的个数判断.【分析】作出f(x)的图象,由题意可得y=f(x)和y=b的图象有4个交点,不妨设x1<x2<x3<x4,由x1、x2关于原点对称,x3、x4关于(2,0)对称,计算即可得到所求和.【解答】解:作出函数f(x)=的图象,方程f(x)=b有四个不同的实数解,等价为y=f(x)和y=b的图象有4个交点,不妨设它们交点的横坐标为x1、x2、x3、x4,且x1<x2<x3<x4,由x1、x2关于原点对称,x3、x4关于(2,0)对称,可得x1+x2=0,x3+x4=4,则x1+x2+x3+x4=4.故答案为:4.10.三条侧棱两两垂直的正三棱锥,其俯视图如图所示,主视图的边界是底边长为2的等腰三角形,则主视图的面积等于.【考点】L7:简单空间图形的三视图.【分析】由题意,正三棱锥有三个面都是等腰直角三角形,且边长相等.根据俯视图可得,底面是边长为2的等边三角形.利用体积法,求其高,即可得主视图的高.可得主视图的面积【解答】解:由题意,正三棱锥有三个面都是等腰直角三角形,(如图:SAB,SBC,SAC)且边长相等为,其体积为V==根据俯视图可得,底面是边长为2的等边三角形.其面积为:.设主视图的高OS=h,则=.∴h=.主视图的边界是底边长为2的等腰三角形,其高为.∴得面积S=.故答案为11.在直角△ABC中,,AB=1,AC=2,M是△ABC内一点,且,若,则λ+2μ的最大值.【考点】9H:平面向量的基本定理及其意义.【分析】建立平面直角坐标系,则A(0,0),B(0,1),C(2,0),M(,),(0<θ<),由已知可得,则λ+2μ=,即可求解.【解答】解:如图建立平面直角坐标系,则A(0,0),B(0,1),C(2,0)M(,)(0<θ<),∵,∴(.∴,则λ+2μ=,∴当θ=时,λ+2μ最大值为,故答案为:12.无穷数列{a n}的前n项和为S n,若对任意的正整数n都有S n∈{k1,k2,k3,…,k10},则a10的可能取值最多有91个.【考点】8E:数列的求和.【分析】根据数列递推公式可得a10=S10﹣S9,而S10,S9∈{k1,k2,k3,…,k10},分类讨论即可求出答案.【解答】解:a10=S10﹣S9,而S10,S9∈{k1,k2,k3,…,k10},若S10≠S9,则有A102=10×9=90种,若S10=S9,则有a10=0,根据分类计数原理可得,共有90+1=91种,故答案为:91二、选择题(每小题5分,满分20分)13.已知a,b,c是实数,则“a,b,c成等比数列”是“b2=ac”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合等比数列的定义进行判断即可.【解答】解:若a,b,c成等比数列,则b2=ac成立,若a=b=c=0,满足b2=ac,但a,b,c不能成等比数列,故“a,b,c成等比数列”是“b2=ac”的充分不必要条件,故选:A.14.l1、l2是空间两条直线,α是平面,以下结论正确的是()A.如果l1∥α,l2∥α,则一定有l1∥l2B.如果l1⊥l2,l2⊥α,则一定有l1⊥αC.如果l1⊥l2,l2⊥α,则一定有l1∥αD.如果l1⊥α,l2∥α,则一定有l1⊥l2【考点】LP:空间中直线与平面之间的位置关系.【分析】由空间中直线与直线、直线与平面、平面与平面的关系逐一核对四个选项得答案.【解答】解:若l1∥α,l2∥α,则有l1∥l2或l1与l2相交或l1与l2异面,故A错误;如果l1⊥l2,l2⊥α,则有l1∥α或l1⊂α,故B、C错误;如果l1⊥α,则l1垂直α内的所有直线,又l2∥α,则过l2与α相交的平面交α于a,则l2∥a,∴l1⊥l2,故D正确.故选:D.15.已知函数,x1、x2、x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值()A.一定等于零 B.一定大于零 C.一定小于零 D.正负都有可能【考点】57:函数与方程的综合运用.【分析】先判断奇偶性和单调性,先由单调性定义由自变量的关系得到函数关系,然后三式相加得解.【解答】解:函数,f(﹣x)=﹣f(x),函数f(x)是奇函数,根据同增为增,可得函数f(x)是增函数,∵x1+x2>0,x2+x3>0,x3+x1>0,∴x1>﹣x2,x2>﹣x3x3>﹣x1,∴f(x1)>f(﹣x2,f(x2)>f(﹣x3),f(x3)>f(﹣x1)∴f(x1)+f(x2)>0,f(x2)+f(x3)>0,f(x3)+f(x1)>0,三式相加得:f(x1)+f(x2)+f(x3)>0,故选:B.16.已知点M(a,b)与点N(0,﹣1)在直线3x﹣4y+5=0的两侧,给出以下结论:①3a﹣4b+5>0;②当a>0时,a+b有最小值,无最大值;③a2+b2>1;④当a>0且a≠1时,的取值范围是(﹣∞,﹣)∪(,+∞).正确的个数是()A.1 B.2 C.3 D.4【考点】2K:命题的真假判断与应用.【分析】根据点M(a,b)与点N(1,0)在直线3x﹣4y+5=0的两侧,可以画出点M(a,b)所在的平面区域,进而结合二元一次不等式的几何意义,两点之间距离公式的几何意义,及两点之间连线斜率的几何意义,逐一分析四个命题得结论.【解答】解:∵点M(a,b)与点N(0,﹣1)在直线3x﹣4y+5=0的两侧,∴(3a﹣4b+5)(3×0+4+5)<0,即3a﹣4b+5<0,故①错误;当a>0时,a+b>,a+b即无最小值,也无最大值,故②错误;设原点到直线3x﹣4y+5=0的距离为d,则d=,则a2+b2>4,故③错误;当a>0且a≠1时,表示点M(a,b)与P(1,﹣1)连线的斜率.∵当a=0,b=时,=,又直线3x﹣4y+5=0的斜率为,故的取值范围为(﹣∞,﹣)∪(,+∞),故④正确.∴正确命题的个数是2个.故选:B.三、解答题(本大题满分76分)17.如图ABC﹣A1B1C1是直三棱柱,底面△ABC是等腰直角三角形,且AB=AC=4,直三棱柱的高等于4,线段B1C1的中点为D,线段BC的中点为E,线段CC1的中点为F.(1)求异面直线AD、EF所成角的大小;(2)求三棱锥D﹣AEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角.【分析】(1)以A为原点建立空间坐标系,求出,的坐标,利用向量的夹角公式得出AD,EF的夹角;,代入体积公式计算.(2)证明AE⊥平面DEF,求出AE和S△DEF【解答】解:(1)以A为坐标原点,AB、AC、AA1分别为x轴,y轴,z轴建立空间直角坐标系.依题意有D(2,2,4),A(0,0,0),E(2,2,0),F(0,4,2),所以.设异面直线AD、EF所成角为α,则==,所以,即异面直线AD、EF所成角的大小为.(2)∵AB=AC=4,AB⊥AC,∴,,DE=AA1=4,==4,∴S△DEF由E为线段BC的中点,且AB=AC,∴AE⊥BC,又BB1⊥面ABC,∴AE⊥BB1,∴AE⊥面BB1C1C,∴,∴三棱锥D﹣AEF的体积为.18.已知定义在(﹣,)上的函数f(x)是奇函数,且当x∈(0,)时,f(x)=.(1)求f(x)在区间(﹣,)上的解析式;(2)当实数m为何值时,关于x的方程f(x)=m在(﹣,)有解.【考点】3L:函数奇偶性的性质.【分析】(1)利用奇函数的定义,结合x∈(0,)时,f(x)=,求f(x)在区间(﹣,)上的解析式;(2)分类讨论,利用函数的解析式,可得结论.【解答】解:(1)设,则,∵f(x)是奇函数,则有…∴f(x)=…(2)设,令t=tanx,则t>0,而.∵1+t>1,得,从而,∴y=f(x)在的取值范围是0<y<1.…又设,则,由此函数是奇函数得f(x)=﹣f(﹣x),0<f(﹣x)<1,从而﹣1<f(x)<0.…综上所述,y=f(x)的值域为(﹣1,1),所以m的取值范围是(﹣1,1).…19.已知数列{a n}是首项等于且公比不为1的等比数列,S n是它的前n项和,满足.(1)求数列{a n}的通项公式;(2)设b n=log a a n(a>0且a≠1),求数列{b n}的前n项和T n的最值.【考点】8E:数列的求和;8H:数列递推式.【分析】(1)根据求和公式列方程求出q,代入通项公式即可;(2)对a进行讨论,判断{b n}的单调性和首项的符号,从而得出T n的最值.【解答】解:(1)∵,∵q≠1,∴.整理得q2﹣3q+2=0,解得q=2或q=1(舍去).∴.(2)b n=log a a n=(n﹣5)log a2.1)当a>1时,有log a2>0,数列{b n}是以log a2为公差,以﹣4log a2为首项的等差数列,∴{b n}是递增数列,∴T n没有最大值.由b n≤0,得n≤5.所以(T n)min=T4=T5=﹣10log a2.2)当0<a<1时,有log a2<0,数列{b n}是以log a2为公差的等差数列,∴{b n}是首项为正的递减等差数列.∴T n没有最小值.令b n≥0,得n≤5,(T n)max=T4=T5=﹣10log a2.20.已知椭圆C:=1(a>b>0),定义椭圆C上的点M(x0,y0)的“伴随点”为.(1)求椭圆C上的点M的“伴随点”N的轨迹方程;(2)如果椭圆C上的点(1,)的“伴随点”为(,),对于椭圆C上的任意点M及它的“伴随点”N,求的取值范围;(3)当a=2,b=时,直线l交椭圆C于A,B两点,若点A,B的“伴随点”分别是P,Q,且以PQ为直径的圆经过坐标原点O,求△OAB的面积.【考点】K4:椭圆的简单性质.【分析】(1)由,代入椭圆方程即可求得椭圆C上的点M的“伴随点”N 的轨迹方程;(2)由题意,求得椭圆的方程,根据向量的坐标运算,即可求得的取值范围;(3)求得椭圆方程,设方程为y=kx+m,代入椭圆方程,利用韦达定理,根据向量数量积的坐标求得3+4k2=2m2,弦长公式及点到直线的距离公式,即可求得△OAB的面积,直线l的斜率不存在时,设方程为x=m,代入椭圆方程,即可求得△OAB的面积.【解答】解:(1)设N(x,y)由题意,则,又,∴,从而得x2+y2=1…(2)由,得a=2.又,得.…∵点M(x0,y0)在椭圆上,,,且,•=(x,y0)(,)=+=x02+,由于,的取值范围是[,2](3)设A(x1,y1),B(x2,y2),则;1)当直线l的斜率存在时,设方程为y=kx+m,由,得(3+4k2)x2+8kmx+4(m2﹣3)=0;有①…由以PQ为直径的圆经过坐标原点O可得:3x1x2+4y1y2=0;整理得:②将①式代入②式得:3+4k2=2m2,…3+4k2>0,则m2>0,△=48m2>0,又点O到直线y=kx+m的距离,丨AB丨==×=×,∴…2)当直线l的斜率不存在时,设方程为x=m(﹣2<m<2)联立椭圆方程得;代入3x1x2+4y1y2=0,得,解得m2=2,从而,=丨AB丨×d=丨m丨丨y1﹣y2丨=,S△OAB综上:△OAB的面积是定值.…21.对于定义域为R的函数y=f(x),部分x与y的对应关系如表:(1)求f{f[f(0)]};(2)数列{x n}满足x1=2,且对任意n∈N*,点(x n,x n)都在函数y=f(x)的+1图象上,求x1+x2+…+x4n;(3)若y=f(x)=Asin(ωx+φ)+b,其中A>0,0<ω<π,0<φ<π,0<b<3,求此函数的解析式,并求f(1)+f(2)+…+f(3n)(n∈N*).【考点】H2:正弦函数的图象;3O:函数的图象.【分析】(1)根据复合函数的性质,由内往外计算可得答案.)都在函数y=f(x)的图象上,带入,化简,不难发现函(2)根据点(x n,x n+1数y是周期函数,即可求解x1+x2+…+x4n的值.(3)根据表中的数据,带入计算即可求解函数的解析式.【解答】解:(1)根据表中的数据:f{f[f(0)]}=f(f(3))=f(﹣1)=2.)都在函数y=f(x)的图象上,(2)由题意,x1=2,点(x n,x n+1=f(x n)即x n+1∴x2=f(x1)=f(2)=0,x3=f(x2)=3,x4=f(x3)=﹣1,x5=f(x4)=2∴x5=x1,∴函数y是周期为4的函数,故得:x1+x2+…+x4n=4n.(3)由题意得由(1)﹣(2)∴sin(ω+φ)=sin(﹣ω+φ)∴sinωcosφ=0.又∵0<ω<π∴sinω≠0.∴cosφ=0而0<φ<π∴从而有.∴2A2﹣4A+2﹣2A2+3A=0.∴A=2.b=1,∵0<ω<π,∴.∴.此函数的最小正周期T==6,f(6)=f(0)=3∵f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=6,∴①当n=2k(k∈N*)时.f(1)+f(2)+…+f(3n)=f(1)+f(2)+…+f(6k)=k[f(1)+f(2)+…+f(6)]=6k=3n.②当n=2k﹣1(k∈N*)时.f(1)+f(2)+…+f(3n)=f(1)+f(2)+…+f(6k)﹣f(6k﹣2)﹣f(6k﹣1)﹣f(6k)=k[f(1)+f(2)+…+f(6)]﹣5=6k﹣5=3n ﹣2.2017年5月22日。