模拟电子技术第3章 功率放大器
- 格式:ppt
- 大小:434.00 KB
- 文档页数:10
模拟电子技术根底主编:黄瑞祥副主编:周选昌、查丽斌、郑利君杨慧梅、肖铎、赵胜颖目录绪论第1章集成运算放大器1.1 抱负运算放大器的功能与特性抱负运算放大器的电路符号与端口抱负运算放大器的功能与特性1.2 运算放大器的反相输入阐发闭环增益输入、输出阻抗有限开环增益的影响加权加法器运算放大器的同相输入阐发闭环增益输入、输出阻抗有限开环增益的影响电压跟随器1.4 运算放大器的差分输入阐发1.5 仪表放大器1.6 积分器与微分器1.6.1 具有通用阻抗的反相输入方式1.6.2 反相积分器1.6.3 反相微分器1.7 运算放大器的电源供电1.7.1 运算放大器的双电源供电1.7.2 运算放大器的单电源供电本章小结习题第2章半导体二极管及其底子电路2.1 半导体根底常识2 本征半导体2 杂质半导体2 两种导电机理——扩散和漂移2.2 PN结的形成和特性2.2.1 PN结的形成2.2.2 PN结的单向导电性2.2.3 PN结的反向击穿2.2.4 PN结的电容特性2.3 半导体二极管的布局及指标参数2 半导体二极管的布局2 二极管的主要参数2 半导体器件型号定名方法2.4 二极管电路的阐发方法与应用2.4.1 二极管电路模型2.4.2 二极管电路的阐发方法2 二极管应用电路2.5 特殊二极管2.5.1 肖特基二极管2.5.2 光电子器件本章小结习题第3章三极管放大电路根底3.1 三极管的物理布局与工作模式3 物理布局与电路符号3 三极管的工作模式3.2 三极管放大模式的工作道理3.2.1 三极管内部载流子的传递3.2.2 三极管的各极电流3.3 三极管的实际布局与等效电路模型3.3.1 三极管的实际布局3.3.2 三极管的等效电路模型3.4 三极管的饱和与截止模式3.4.1 三极管的饱和模式3.4.2 三极管的截止模式3.5 三极管特性的图形暗示3.5.1 输入特性曲线3.5.2 输出特性曲线3.5.3 转移特性曲线3.6 三极管电路的直流阐发3.6.1 三极管直流电路的阐发方法3.6.2 三极管直流电路阐发实例3.7 三极管放大器的主要参数3.7.1 三极管放大器电路3.7.2 集电极电流与跨导3.7.3 基极电流与基极的输入电阻发射极电流与发射极的输入电阻电压放大倍数3.8 三极管的交流小信号等效模型3.8.1 混合∏型模型3.8.2 T型模型3.8.3 交流小信号等效模型应用3.9 放大器电路的图解阐发3.10 三极管放大器的直流偏置3.10.1 单电源供电的直流偏置3.10.2 双电源供电的偏置电路集电极与基极接电阻的偏置电路恒流源偏置电路3.11 三极管放大器电路3.11.1 放大器的性能指标3.11.2 三极管放大器的底子组态共发射极放大器发射极接有电阻的共发射极放大器共基极放大器共集电极放大器本章小结习题第4章场效应管及其放大电路4.1 MOS场效应管及其特性4 增强型MOSFET〔EMOSFET〕4 耗尽型MOSFET〔DMOSFET〕4 四种MOSFET的比较4 小信号等效电路模型4.2 结型场效应管及其特性4 工作道理4 伏安特性4 JFET的小信号模型4.3 场效应管放大电路中的偏置4 直流状态下的场效应管电路4 分立元件场效应管放大器的偏置4 集成电路中场效应管放大器的偏置4.4 场效应管放大电路阐发4 FET放大电路的三种底子组态4 共源放大电路4 共栅放大电路4 共漏放大电路4 有源电阻本章小结习题第5章差分放大器与多级放大器5.1 电流源5 镜像电流源5 微电流源比例电流源5.2 差分放大器差分放大器模型差分放大器电路差分放大器的主要指标差分放大器的传输特性5.2.5 FET差分放大器5.2.6 差分放大器的零点漂移5.3 多级放大器5 多级放大器的一般布局5 多级放大器级间耦合方式5 多级放大器的阐发计算5.4 模拟集成电路读图操练5.4.1 模拟集成电路内部布局框图5.4.2 简单集成运放电路道理通用型模拟集成电路读图操练集成运算放大器的主要技术指标集成运算放大器的分类正确选择集成运算放大器集成运算放大器的使用要点本章小结习题第6章滤波电路及放大电路的频率响应6.1 有源滤波电路6 滤波电路的底子概念与分类6 低通滤波器高通滤波器带通滤波器带阻滤波器6.2 放大电路的频率响应6 三极管的高频等效模型6 单管共射极放大电路的频率特性阐发多级放大电路的频率特性本章小结习题第7章反响放大电路7.1 反响的底子概念与判断方法7 反响的底子概念7 负反响放大电路的四种底子组态反响的判断方法7.2 负反响放大电路的方框图及一般表达式7.2.1 负反响放大电路的方框图7.2.2 负反响放大电路的一般表达式7.3 负反响对放大电路性能的影响7.3.1 提高增益的不变性7.3.2 改变输入电阻和输出电阻7.3.3 减小非线性掉真和扩展频带7.4 深度负反响放大电路的阐发深度负反响条件下增益的近似计算虚短路和虚断路7.5 负反响放大电路的不变性问题负反响放大电路自激振荡及不变工作的条件负反响放大电路不变性的阐发负反响放大电路自激振荡的消除方法本章小结习题第8章功率放大电路8.1 概述8 功率放大电路的主要特点8 功率放大电路的工作状态与效率的关系8.2 互补对称功率放大电路8.2.1 双电源互补对称电路〔OCL电路〕8.2.2 单电源互补对称功率放大器〔OTL〕8.2.3 甲乙类互补对称功率放大器8.2.4 复合管互补对称功率放大器8.2.5 实际功率放大电路举例8.3 集成功率放大器8.3.1 集成功率放大器概述8.3.2 集成功放应用简介8.4 功率放大器实际应用电路OCL功率放大器实际应用电路OTL功率放大器实际应用电路集成功率放大器实际应用电路功率放大器应用中的几个问题本章小结习题第9章信号发生电路9.1 正弦波发生电路9.1.1 正弦波发生电路的工作道理和条件9.1.2 RC正弦波振荡电路9.1.3 LC正弦波振荡电路9.1.4 石英晶体正弦波振荡电路9.2 电压比较器单门限电压比较器迟滞比较器窗口比较器集成电压比较器9.3 非正弦波发生电路9.3.1 方波发生电路9.3.2 三角波发生电路9.3.3 锯齿波发生电路集成函数发生器简介本章小结习题第10章直流稳压电源10.1 引言10.2 整流电路10.2.1 单相半波整流电路单相全波整流电路10.2.3 单相桥式整流电路10.3 滤波电路10.3.1 电容滤波电路10.3.2 电感滤波电路10.3.3 LC滤波电路Π型滤波电路10.4 线性稳压电路10.4.1 直流稳压电源的主要性能指标10.4.2 串联型三极管稳压电路10.4.3 提高稳压性能的办法和庇护电路10.4.4 三端集成稳压器10.5 开关式稳压电路10.5.1 开关电源的控制方式10.5.2 开关式稳压电路的工作道理及应用电路10.5.3 脉宽调制式开关电源的应用电路本章小结习题。
第3章 习题1. 概念题:(1)在放大电路中,三极管或场效应管起的作用就是 将一种形式的电量转换为另一种形式的电量 。
(2)电源的作用是 为能量转换提供能源 ,如果离开电源,放大器可以工作吗?( 不能 )(3)单管放大器的讲解从电容耦合形式开始,这是因为 阻容耦合放大器设计和计算相对来说要简单点 ,如果信号和负载直接接入,其 工作点 的计算将要复杂的多。
(4)在共射放大器的发射极串接一个小电阻,还能认为是共射放大器吗?( 能 )在共集放大器的集电极串接一个小电阻,还能认为是共集放大器吗?( 能 )(5)在模电中下列一些说法是等同的,(A 、C 、F )另一些说法也是等同的。
(B 、D 、E )A. 直流分析B. 交流分析C. 静态分析D. 动态分析E. 小信号分析F. 工作点分析(6)PN 结具有单向导电性,信号电压和电流的方向是随时间变化的,而交流信号却能在放大电路中通过并获得放大,这是因为 放大器输出端获取的交流信号其实就是电流或电压的相对变化量 。
(7) β大的三极管输入阻抗 也大 ,小功率三极管的基本输入阻抗可表示为EQTbb'be I U )1(r r β++≈。
(8)画直流通路比画交流通路复杂吗?(不)在画交流通路时直流电压源可认为 短路 ,直流电流源可认为 开路 ,二极管和稳压管只考虑其 动态内阻 即可。
(9)求输出阻抗时负载R L 必须 断开 ,单管放大器输出阻抗最难求的是共 集电极 放大器,其次是共 源 放大器。
(10)对晶体管来说,直流电阻指 晶体管对所加电源呈现的等效电阻 ,交流电阻指 在一定偏置下晶体管对所通过的信号呈现的等效电阻 ,对纯电阻元件有这两种电阻之区分吗?( 无 )(11)在共射级放大器或共源放大器中,电阻R C 或R D 的作用是 把电流I C 或I D 的变化转换为电压的变化 。
(12)放大电路的非线性失真包括 饱和 失真和 截止 失真,引起非线性失真的主要原因是 放大器工作点偏离放大区 。
功率放大器的原理
功率放大器是一种电子设备,它的作用是将输入信号的功率增大到更高的水平。
功率放大器的原理基于三个关键要素:输入信号,放大元件和负载。
首先,输入信号是功率放大器的输入,它可以是电压信号或电流信号。
输入信号的功率通常较低,需要经过放大才能达到所需的功率水平。
其次,放大元件是实现功率放大的关键部分。
常见的放大元件包括晶体管和场效应晶体管。
放大元件的工作原理是通过控制输入信号的增大或减小,从而使输出信号的功率增加。
最后,负载是功率放大器输出端的电阻或负载。
负载是功率放大器的目标,它需要接收到足够的功率。
负载的大小和类型取决于应用的需求。
整个功率放大器的工作过程如下:输入信号经过放大元件,放大元件将输入信号的功率增加到所需的水平,然后输出到负载。
为了保证功率放大器的稳定性和性能,还需要考虑输入输出的匹配、功率损耗等因素。
总之,功率放大器利用放大元件将输入信号的功率增大到所需的水平,并输出到负载。
它在各种电子设备中起到重要作用,如音频放大器、射频放大器等。
1 概述在介绍音频功率放大器的文章中,有时会看到“THD+N”,THD+N是英文Total Hormonic Distortion +Noise 的缩写,译成中文是“总谐波失真加噪声”。
它是音频功率放大器的一个主要性能指标,也是音频功率放大器的额定输出功率的一个条件。
THD+N性能指标THD+N表示失真+噪声,因此THD+N自然越小越好。
但这个指标是在一定条件下测试的。
同一个音频功率放大器,若改变其条件,其THD+N的值会有很大的变动。
这里指的条件是,一定的工作电压VCC(或VDD)、一定的负载电阻RL、一定的输入频率FIN(一般常用1KHZ)、一定的输出功率Po下进行测试。
若改变了其中的条件,其THD+N值是不同的。
例如,某一音频功率放大器,在VDD=3V、FIN=1kHz、RL=32Ω、Po=25mW条件下测试,其TDH+N=0.003%,若将RL改成16欧,使Po增加到50mW,VDD及FIN不变,所测的TDH+N=0.005%。
一般说,输出功率小(如几十mW)的高质量音频功率放大器(如用于MP3播放机),它的THD+N指标可达10-5,具有较高的保真度。
输出几百mW的音频功率放大器,要用扬声器放音,其THD+N一般为10-4;输出功率在1~2W,其THD+N更大些,一般为0.1~0.5%.THD+N这一指标大小与音频功率放大器的结构类别有关(如A类功放、D类功放),例如D类功放的噪声较大,则THD+N的值也较A类大。
这里特别要指出的是资料中给出的THD+N这个指标是在FIN=1kHz下给出的,在实际上音频范围是20Hz~20kHz,则在20Hz~20kHz范围测试时,其THD+N要大得多。
例如,某音频功率放大器在1kHz时测试,其TDH+N=0.08%。
若FIN改成20Hz-20kHz,,其他条件不变,其THD+N变为小于0.5%。
输出额定功率的条件过去有用“不失真输出功率是多少”这种说法来说明其输出功率大小。
第三章多级放大电路3.1 放大电路产生零点漂移的主要原因是[ ]A.放大倍数太大B.采用了直接耦合方式C.晶体管的噪声太大D.环境温度变化引起参数变化3.2 差动放大电路的设置是为了[ ]A.稳定放大倍数B.提高输入电阻C.克服温漂D.扩展频带3.3 差动放大电路用恒流源代替Re是为了[ ]A.提高差模电压放大倍数B.提高共模电压放大倍数C.提高共模抑制比D.提高差模输出电阻3.4 在长尾式差动放大电路中, Re的主要作用是[ ]A.提高差模电压放大倍数B.抑制零点漂移C.增大差动放大电路的输入电阻D.减小差动放大电路的输出电阻3.4 差动放大电路的主要特点是[ ]A.有效地放大差模信号,强有力地抑制共模信号B.既可放大差模信号,也可放大共模信号C.只能放大共模信号,不能放大差模信号D.既抑制共模信号,又抑制差模信号3.5 若三级放大电路的AV1=AV2=20dB,AV3=30 dB,则其总电压增益为[ ]A. 50dBB. 60dBC. 70dBD. 12000dB3.6 设计一个输出功率为10W的扩音机电路,若用乙类推挽功率放大,则应选两个功率管的功率至少为[ ]A. 1WB. 2WC. 4WD. 5W3.7 与甲类功率放大方式比较,乙类推挽方式的主要优点是[ ]A.不用输出变压器B.不用输出端大电容C.无交越失真D.效率高3.8 乙类放大电路是指放大管的道通角等于[ ]A.360oB.180oC.90oD.小于 90o3.9 集成功率放大器的特点是[ ]A.温度稳定性好,电源利用率高,功耗较低,非线性失真较小。
B.温度稳定性好,电源利用率高,功耗较低,但非线性失真较大。
C.温度稳定性好,功耗较低,非线性失真较小,但电源利用率低。
D.温度稳定性好,非线性失真较小,电源利用率高,功耗也高。
3.10 填空。
1、在三级放大电路中,已知|Au1|=50,|Au2|=80,|Au3|=25,则其总电压放大倍数|Au|= ,折合为 dB。
课程名称模拟电子技术及应用实验序号 2实验项目OTL功率放大器实验地点实验学时 2 实验类型验证性指导教师专业 ____ 班级学号姓名2020 年12 月16 日(1)学会OTL 电路的调试及主要性能指标的测试方法。
(2)进一步理解OTL 功率放大器的工作原理。
二、实验内容图 3-4 所示为 OTL 低频功率放大器。
晶体管VT1组成推动级(也称前置放大级),VT2、VT3是一对参数对称的PNP型和NPN 型晶体管,它们组成互补推挽OTL功放电路。
其中VT1工作于甲类状态,它的集电极电流I C1由电位器RW1进行调节。
IC的一部分流经电位器RW2及二级管VD,给VT2、VT3提供偏压。
调节Rw2,可以使T2、T3得到合适的静态电流而工作于甲、乙类状态,以克服交越失真。
静态时,要求输出端中点A的电位UA =1/2UCC,可以通过调节RW1来实现,又由于RW1的一端接在A点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。
当输人正弦交流信号ui 时,经VT1放大、倒相后同时作用于VT2、VT3的基极,ui的负半周使VT3导通(VT2截止),有电流通过负载RL ,同时向电容C充电;在ui的正半周,VT2导通(VT3截止),则已充电完毕的电容器C0起着电源的作用,通过负载RL.放电,这样在RL上就得到完整的正弦波。
C2和R构成自举电路,用于提高输出电压正半周的幅度,扩大动态范围。
OTL 电路的主要性能指标如下:(1)最大不失真输出功率Pom。
理想情况下:。
实验中,可通过测量RL 两端的电压有效值求得实际的Pom为。
(2)效率η。
计算公式为式中 PE——直流电源供给的平均功率。
理想情况下,ηmax = 78.5%。
在实验中,可测量电源供给的平均电流IDC,从而求得PE =UccIDC用上述方法求出负载上的交流功率,就可以计算实际效率了。
(3)输人灵敏度。
输人灵敏度是指输出最大不失真功率时,输入信号Ui的值(4)频率响应。
第1章半导体二极管及其基本应用1.1 填空题1.半导体中有空穴和自由电子两种载流子参与导电。
2.本征半导体中,假设掺入微量的五价元素,则形成N 型半导体,其多数载流子是电子;假设掺入微量的三价元素,则形成P型半导体,其多数载流子是空穴。
3.PN结在正偏时导通反偏时截止,这种特性称为单向导电性。
4.当温度升高时,二极管的反向饱和电流将增大,正向压降将减小。
5.整流电路是利用二极管的单向导电性,将交流电变为单向脉动的直流电。
稳压二极管是利用二极管的反向击穿特性实现稳压的。
6.发光二极管是一种通以正向电流就会发光的二极管。
7.光电二极管能将光信号转变为电信号,它工作时需加反向偏置电压。
8.测得某二极管的正向电流为1 mA,正向压降为0.65 V,该二极管的直流电阻等于650 Ω,交流电阻等于26 Ω。
1.2 单项选择题1.杂质半导体中,多数载流子的浓度主要取决于( C )。
A.温度B.掺杂工艺C.掺杂浓度D.晶格缺陷3.硅二极管的反向电流很小,其大小随反向电压的增大而(B )。
A.减小B.基本不变C.增大4.流过二极管的正向电流增大,其直流电阻将( C )。
A.增大B.基本不变C.减小5.变容二极管在电路中主要用作(D )。
、A.整流B.稳压C.发光D.可变电容器1.3 是非题1.在N型半导体中如果掺人足够量的三价元素,可将其改型为P型半导体。
(√)2.因为N型半导体的多子是自由电子,所以它带负电。
(×)3.二极管在工作电流大于最大整流电流I F时会损坏。
(×)4.只要稳压二极管两端加反向电压就能起稳压作用。
(×)第2章半导体三极管及其基本应用2.1 填空题1.晶体管从结构上可以分成PNP 和NPN两种类型,它工作时有2种载流子参与导电。
2.晶体管具有电流放大作用的外部条件是发射结正偏,集电结反偏。
3.晶体管的输出特性曲线通常分为三个区域,分别是放大、饱和、截止。
4.当温度升高时,晶体管的参数β增大,I CBO增大,导通电压U BE 减小。
模拟电子技术基础知识功率放大器的失真与校正模拟电子技术基础知识:功率放大器的失真与校正在模拟电子技术中,功率放大器起着至关重要的作用。
然而,功率放大器在实际应用中往往会产生失真的问题,影响音频、视频信号的质量。
本文将详细探讨功率放大器的失真机制以及常见的校正方法。
一、功率放大器失真的类型1. 线性失真线性失真是指当输入信号的幅度发生变化时,放大器输出信号的幅度也发生变化,但变化不符合输入信号的线性关系。
常见的线性失真包括增益非线性失真、交叉失真以及组合失真等。
2. 非线性失真非线性失真是指当输入信号幅度较小时,放大器输出信号存在非线性扭曲。
非线性失真会导致信号失真、频谱扩展、相位失真等问题,使得信号质量下降。
3. 相位失真相位失真是指放大器在对信号进行放大过程中,对信号的相位特性造成改变。
相位失真会导致信号相关性降低、音调改变等问题。
二、功率放大器失真的主要原因1. 饱和失真饱和失真是指当输入信号幅度超过放大器的输出能力时,放大器无法再将信号进一步线性放大,导致输出波形被削平,出现失真。
2. 截止失真截止失真是指当输入信号幅度较小时,放大器的输出信号不能完全线性放大,导致输出波形失真。
3. 偏置失真偏置失真是由于放大器的直流偏置电流不准确或变化导致的失真。
这种失真会导致输出信号的直流处于不稳定状态,出现直流偏移现象。
三、功率放大器失真的校正方法1. 反馈校正反馈校正是指通过将一部分输出信号引入到放大器的输入端进行比较,并将比较结果作用于放大器的输入端,来减小输出信号的失真。
反馈校正能够降低放大器的非线性失真,提高放大器的线性度。
2. 预失真校正预失真校正是通过在放大器输入端添加一个特殊的电路,使得输入信号在经过放大器之前发生特定的失真,使得在放大过程中失真得到部分抵消。
预失真校正可以有效降低功率放大器的非线性失真。
3. 功率拆分校正功率拆分校正是通过将输入信号进行拆分,并由多个放大器进行放大,再经过合并输出,从而降低每个放大器的失真程度。
三极管四种工作状态根据正弦信号整个周期内三极管的导通情况划分甲类:一个周期内均导通晶体管在输入信号的整个周期都导通静态I C较大,波形好, 管耗大效率低。
乙类:导通角等于180°晶体管只在输入信号的半个周期内导通,静态I C=0,波形严重失真, 管耗小效率高。
甲乙类:导通角大于180°晶体管导通的时间大于半个周期,静态I C 0,一般功放常采用。
丙类:导通角小于180°图3-4 各级电压和电流波形丙类(C类)高频功率放大器的折线分析法图3-5 3DA21静态特性曲线及其理想化cos cnm I +()cd t θωcos θ出电路 。
宽频带功率放大器没有选频作用。
因此谐波的抑制成了一个重要的问题。
为此,放大管的工作状态就只能选在非线性畸变比较小的甲类或甲乙类状态,效率较低,也就是说宽频带放大器是以牺牲效率作为代价来换取宽频带输出的 。
传输线变压器是将两根等长的导线紧靠在一起,并绕在高导磁率低损耗的磁芯上构成的。
最高工作频率可扩展到几百兆赫甚至上千兆赫。
传输线变压器与普通变压器在传输能量的方式上是不相同的,传输线变压器负载两端的电压不是次级感应电压,而是传输线的终端电压。
两根导线紧靠在一起,所以导线任意长度处的线间电容很大,且在整个线上均匀分布。
其次,两根等长导线同时绕在高μ磁芯上,所以导线上均匀分布的电感量也很大,这种电路通常又叫分布参数电路。
在传输线变压器中,线间的分布电容不影响高频能量的传输,电磁波以电磁能交换的形式在导线间介质中传播的。
u su su sR LR LR LR s R sR s (a) 结构示意图(c) 普通变压器的原理电路(b) 原理电路图u 1u 2u 1u 2u 1u 2。
模拟电子技术项目化教程教材答案第一章:引言1.1 简介本教程旨在介绍模拟电子技术的基本原理和应用,并通过项目化教学的方式帮助学生深入理解和应用这些知识。
本教材答案提供了与教材相对应的习题答案,以帮助学生检验自己的学习成果。
1.2 适用范围本教材答案适用于学习模拟电子技术的学生,包括电子工程专业的本科生和研究生。
第二章:电子元件和电路基础2.1 电子元件2.1.1 晶体管习题1:晶体管的基本结构是什么?它的工作原理是什么?答案:晶体管由三个掺杂不同材料的半导体层构成,即 P型半导体、N 型半导体和 P 型半导体。
晶体管的工作原理是通过控制基极电流,来控制集电极和发射极之间的电流流动,从而实现放大或开关功能。
2.1.2 二极管习题2:二极管的作用是什么?它的正向和反向特性有什么区别?答案:二极管的作用是将电流只能沿一个方向通过。
在正向特性下,二极管可以近似看作一个导电性很好的开关,电流可以顺畅地通过。
在反向特性下,二极管的导电性非常低,电流无法通过。
2.2 电路基础2.2.1 电阻习题3:如果在一个电路中连接了一个10 欧姆的固定电阻,通过该电阻流过的电流是 2 安培,求该电路中的电压。
答案:根据欧姆定律,电压等于电流乘以电阻,即 V = I * R,代入已知数值可得V = 2 A * 10 Ω = 20 V。
2.2.2 电容习题4:如何计算一个电容器的电流?答案:电容器的电流可以通过求解电容器两端的电压随时间变化的导数来计算,即 I = dQ/dt,其中 I 是电流,Q 是电容器的电荷量,t 是时间。
2.3 实践项目习题5:请设计一个模拟电子技术的实践项目,并给出关键步骤和所需材料。
答案:一个例子是设计一个音频放大器电路。
关键步骤包括:选择适当的放大器电路拓扑结构,设计大小适当的功率放大器模块,选择合适的音频输入输出接口,优化电路参数以提高放大效果。
所需材料包括:晶体管、电容、电阻、音频接口等。
第三章:放大电路和运算放大器3.1 放大电路3.1.1 放大器的分类习题6:请列举几种常见的放大器类型,并简要介绍它们的特点。