PLC控制电机变频调速系统的设计
- 格式:doc
- 大小:635.00 KB
- 文档页数:26
摘要步进电动机具有快速起停、精确步进和定位等特点,所以常用作工业过程控制及仪器仪表,使用PLC可编程控制器实现步进电动机驱动,可使步进电动机的抗干扰能力强,可靠性高,同时,由于实现了模块化结构,是系统结构十分灵活,而且编程语言简短易学,便于掌握,可以进行在线修改,柔性好,体积小,维修方便。
本设计是利用PLC做进电动机的控制核心,用按钮开关的通断来实现对步进电机正,反转控制,而且正,反转切换无须经过停车步骤。
其次可以通过对按钮的控制来实现对高,低速度的控制。
充分发挥PLC的功能,最大限度地满足被控对象的控制要求,是设计PLC 控制系统的首要前提,这也是设计最重要的一条原则。
本设计更加便于实现对步进电机的制动化控制。
其主要内容如下:1了解PLC控制步进电机的工作原理2掌握PLC的硬件构成,完成硬件选型3设计PLC的控制系统4用STEP 7完成PLC的编程关键词:步进电机;PLC控制;电机正反转;高低速控制AbstractStepper motor has a quick starts and stops, precision stepping and positioning features, commonly used for industrial process control and instrumentation, PLC programmable controller stepper motor drive can stepper motor anti-interference ability, high reliability, at the same time, due to the modular structure, the system structure is very flexible, and programming languages brief to learn, easy to master, can be modified online, good flexibility, small size, easy maintenance.This design is the use of PLC built into the core of the motor control button to switch on and off to the stepper motor is the reverse control, and positive, reverse switch without having to go through the parking step. Followed by the button control to achieve the high and low speed control. Give full play to the functions of PLC as possible to meet the control requirements of the controlled object is the most important prerequisite for the design PLC control system, which is designed to the most important principle. This design is easier to achieve braking control of the stepper motor. Its main contents are as follows:An understanding of PLC control the working principle of the stepper motor2 grasp the PLC hardware structure, the completion hardware selection3 Design of PLC control system4 complete PLC programming with STEP 7Key words: Stepper motor; PLC control; motor reversing; high and low speed control目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1 PLC步进驱动控制系统研究和意义 (1)1.2 国内外PLC的发展 (1)1.3 国内外步进电机的发展概况 (2)1.4 PLC步进驱动控制系统主要研究工作 (3)2 步进电机及PLC简介 (4)2.1 步进电机简介 (4)2.1.1步进电机的分类 (4)2.1.2步进电机的基本参数 (4)2.1.3步进电机的特点 (5)2.2 步进电机在工业中的应用 (5)2.3 PLC的特点 (6)2.4 PLC技术在步进电机控制中的应用 (6)3 PLC控制步进电机工作方式的选择 (8)3.1 常见的步进电机的工作方式 (8)3.2 步进电机控制原理 (8)3.2.1控制步进电机换向顺序 (8)3.2.2控制步进电机的转向 (8)3.2.3控制步进电机的速度 (8)3.3 PLC控制步进电机的方法 (9)3.4 PLC控制步进电机的设计思路 (10)4 S7-200PLC控制步进电机硬件设计 (12)4.1 S7-200PLC的介绍 (12)4.1.1硬件系统 (12)4.1.2软元件 (13)4.2 步进电机的选择 (14)4.3 步进电机驱动电路设计 (15)4.3.1驱动器的选择 (15)4.3.2步进电机驱动电路 (16)4.3.3驱动电路接口 (16)4.3.4电气原理图 (17)4.4 PLC驱动步进电机 (17)5 S7-200PLC控制步进电机软件设计 (19)5.1 STEP7-MICRO/WIN32概述 (19)5.1.1基本功能 (19)5.1.2运动控制 (19)5.1.3创建调制解调模块程序 (19)5.2 程序的编写 (21)5.3 梯形图程序设计 (22)5.3.1CPU的选择 (22)5.3.2输入输出编址 (22)5.3.3状态真值表 (22)5.4 梯形图程序 (23)6 总结 (30)6.1 全文总结 (30)6.2 不足之处及展望 (30)致谢 (31)参考文献 (32)基于S7-200PLC步进电机调速控制—步进驱动控制系统设计1绪论1.1 PLC步进驱动控制系统研究和意义基于步进电动机良好的控制和准确定位特性,被广泛应用在精确定位方面,诸如数控机床、喷绘机、工业控制系统、自动控制计算装置、自动记录仪表等自动控制领域。
基于PLC的全变频调速控制自动扶梯设计自动扶梯是现代城市中常见的交通设施,它能够方便乘客快速地在楼梯间进行上下运输,为人们的出行带来了极大的便利。
在自动扶梯的设计中,全变频调速控制系统是其中一个重要的部分,它能够有效地控制自动扶梯的运行速度和运行稳定性。
本文将针对基于PLC的全变频调速控制自动扶梯进行设计,并对设计流程和关键技术进行详细介绍。
一、自动扶梯的基本结构自动扶梯由扶梯步、扶手链、主框架、传动系统等部分组成。
其中传动系统是自动扶梯的核心部分,它通过电机驱动使扶梯运行,传动系统通常由电机、减速器、链轮、链条和导轮等组成。
在自动扶梯运行过程中,通过调整电机的转速来控制扶梯的运行速度,这就需要用到全变频调速控制系统。
二、全变频调速控制系统的原理全变频调速控制系统是一种通过改变电机输入端的频率,从而实现电机转速调节的系统。
其基本原理是利用PLC控制电机变频器,通过改变输出频率来调节电机的转速。
全变频调速控制系统通常由电机、变频器、PLC和感应器等部分组成。
1. 变频器选型:根据自动扶梯的负载特性和运行要求,选择适当的变频器型号和额定功率。
4. 控制算法设计:设计全变频调速控制系统的控制算法,包括速度闭环控制、过载保护、故障检测等控制策略。
5. 电气连线设计:根据自动扶梯的电气布置和控制要求,设计全变频调速控制系统的电气连线方案。
6. 性能测试与调试:对设计好的全变频调速控制系统进行性能测试和调试,确保其能够满足自动扶梯的运行要求。
四、关键技术与难点1. 电机调速控制:在全变频调速控制系统中,如何通过变频器精确地调节电机的转速是一个关键技术和难点。
3. 故障检测与保护:如何通过全变频调速控制系统实现自动扶梯的故障检测和过载保护是一个关键技术和难点。
全变频调速控制系统在自动扶梯中的应用,可以提高自动扶梯的运行效率和安全性,减少能源消耗和运行成本,提高设备的可靠性和稳定性,延长设备的使用寿命,减少维护成本。
PLC和变频器桥式起重机控制系统设计毕业设计毕业设计题目:PLC和变频器桥式起重机控制系统设计摘要:本文以桥式起重机为研究对象,通过PLC和变频器控制系统设计,实现对桥式起重机的自动化控制。
首先,对桥式起重机的工作原理和结构进行了详细介绍;然后,分析了PLC和变频器在桥式起重机控制系统中的优势和应用;最后,进行了PLC和变频器桥式起重机控制系统设计。
关键词:桥式起重机;PLC;变频器;控制系统;自动化一、引言桥式起重机是一种非常常见的起重设备,广泛应用于工厂、码头、港口等场所。
它具有运载能力强、工作灵活、结构稳定等特点。
目前,为了提高桥式起重机的操作效率和安全性,许多企业将自动化控制引入到桥式起重机中。
二、桥式起重机的工作原理和结构桥式起重机一般由桥架、行车和起重机构等组成。
工作时,起重机电机通过驱动机构提供动力。
起重机构由卷筒、悬挂系统和钩组成。
具体工作原理和结构可参考相关教材。
三、PLC和变频器在桥式起重机控制系统中的应用PLC和变频器作为现代自动化控制的重要组成部分,广泛应用于桥式起重机控制系统中。
PLC主要负责控制逻辑的实现,如控制起升、小车前后移动、大车左右移动等操作;变频器则用于控制电机的转速,实现对起重机各部分的精确控制和调速。
四、PLC和变频器桥式起重机控制系统设计1.系统硬件设计根据桥式起重机的实际需求和控制要求,选择合适的PLC和变频器设备,并搭建起相应的控制系统硬件平台。
2.系统软件设计利用PLC编程软件进行控制逻辑的设计和实现,包括起升、小车前后移动、大车左右移动等操作的代码编写。
同时,利用变频器的调试软件,设置合适的参数,实现电机的精确调速。
3.系统测试和调试将设计好的控制系统连接到实际的桥式起重机上,进行系统的测试和调试。
通过不断调整参数,检查系统运行状态,确保系统性能满足要求。
五、总结通过本文的研究,我们成功设计出了基于PLC和变频器的桥式起重机控制系统。
该控制系统具有自动化程度高、操作灵活、性能稳定等优点,可以提高桥式起重机的工作效率和安全性。
金华职业技术学院JINHUA COLLEGE OF VOCATION AND TECHNOLOGY变频调速系统实验报告专业电气自动化技术班级自动化092学号200931010350217姓名周望敏指导教师黄敏2012年12月10日项目一变频器参数设置一、任务描述了解三菱A7000变频器的特点和主要功能,能设置变频器的工作模式、运行频率和多段速运行等参数。
二、训练目标1.了解三菱A7000变频器的主要功能;2.能设置变频器的工作模式;3.能设置变频器的运行频率;4.能设置变频器多段速运行的频率;5.能对出现的问题进行分析和讨论,通过共同协作完成规定任务。
三、实验过程四、小结项目二变频器驱动电机运行一、任务描述变频器带一台电动机,通过变频器控制电机的启动和停止,在变频器上改变变频器的输出频率,从而改变电机的运行速度。
二、训练目标1.理解变频器的输入和输入端子功能,能正确的接线;2.能通过变频器控制电机的启动和停止;3.能通过变频器控制调节电机的转速。
三、实验过程(画出主电路和控制电路,简要说明工作原理)四、小结项目三工频运行和变频运行切换一、任务描述设计一个能实现电机工频运行和变频切换的控制电路,要求能控制电机的启动和停止,并且可以实现工频运行和变频运行的切换。
工频运行时三相交流电源直接接入电动机;变频运行时,由变频器带动电机运行。
二、训练目标1.能使用PLC和变频器,正确地安装和接线;2.能编写PLC控制程序;3.能对出现的问题进行分析和讨论,通过共同协作完成规定任务。
三、实验过程(画出主电路和控制电路,简要说明工作原理)四、小结项目四工业洗衣机变频控制系统的设计一、任务描述设计工业洗衣机变频控制系统,要求如下:(1)洗衣机有强洗和弱洗的工作方式;(2)强洗的工作频率如下:低速正转(30Hz)→高速正转(45Hz)→低速正转(30Hz)→反转(40Hz);(3)弱洗的工作频率如下:低速正转(10Hz)→高速正转(20Hz)→低速正转(10Hz)→反转(15Hz)。
【摘要】随着电力电子技术及控制技术的发展,使得交流变频调速在工业电机拖动领域得到了广泛应用。
由于PLC的功能强大、容易使用、高可靠性,常常被用来作为现场数据的采集和设备的控制。
组态软件技术作为用户可定制功能的软件平台工具,在PC机上可开发出友好人机界面,通过PLC可以对自动化设备进行“智能”控制。
经过研究分析确定在本系统中采用通用变频器MM420,对电机进行转速调节,实现了能源的充分利用和生产的需要。
此变频器的FS型加减速功能和转矩提升功能,能很好的解决转速之间的切换。
系统中PLC完成数据的采集和对变频器、电机等设备的控制任务。
基于S7—200 PLC的编程软件STEP 7,采用模块化的程序设计方法,减少了软件的开发和维护。
利用组态软件良好的人机界面和通信能力,使工作人员可以在中央控制室的PC机上就可以方便的浏览现场的工业流程、实现变频器的参数设置、故障诊断及电机的启动和停止。
本文综述了组态软件、PLC技术、变频调速技术的概况。
分析了PLC的基本原理,变频调速的基本原理、变频器的结构及其控制算法等变频调速技术。
关键词: PLC、、变频调速、PID调节Abstract:With the development of electric power and electronic technology and control technology,AC frequency conversion velocity modulation technology is widely used in theindustry motor dragging fields.Because of the characteristics with powerful function,easy operation and high dependability,PLC is usually used for the field of data gathering andequipment control.Configuration software technology is one software platform tool that with custom-made function,friendly human-machine windows,which can be developed on the PC machine,used the PLC to intelligently control the automatic equipment.Through the rigorouse research and analysis,this system adjusts general transducer KASUGA+Mini MM420 to control the speed of motor,consequently actualizes the full use ofenergy and the need of production.The transducer’s functions of adding or decreasing speedin S form and promoting torque can solve the adjustment of speeds well.In this system,PLC is used to collect data and control equipments such as electromotor and transducer.Based on S7-200 PLC’s programming software STEP 7.which adopts the modularization method inprogramming design,can reduce the software exploitation and maintenance.By the virtue of HMI with nice configuration software and strong communication ability,the staff can conveniently browse the industry flowFig on the locale,set the parameter of the transducer,diagnose the fault,and start or stop the electromotor on the PC machine in the control-centerr00m.This paper summarizes the configurationsoftware technology,PLC technology and AC frequency conversion for speed adjustment technology.Key words:PLC,cold-rocold rolling mill,Frequency conversion velocity modulation,PID regulator目录1 绪论................................................................................................................................................. - 1 -2 S7-200 PLC的构成........................................................................................................................ - 2 -2.1S7-200CPU224型PLC的结构 (2)2.2CPU224型PLC的技术参数 (4)2.3S7-200PLC的构成 (5)2.4PLC的工作原理 (13)3 系统硬件选择............................................................................................................................... - 16 -3.1西门子S7-200型PLC (16)3.2EM235模拟量模块 (16)3.3M ICRO M ASTER420变频器 (18)3.4PID调节原理 (19)4 PLC编程设计................................................................................................................................ - 20 -4.1梯形图 (20)4.2语句表 (24)4.3功能块图 (26)结束语 (30)致谢 (31)参考文献 (32)1 绪论随着变频调速技术的应用日益广泛,应用水平的不断提高,对变频调速控制系统的精度要求也越来越高。
摘要本文主要阐述了三相三拍步进电动机结构和步进电机原理,以及对步进电机的调速和正反转的研究。
采用PLC基本逻辑指令和常用指令的方法对步进电机调速很正反转控制。
步进电机是一种将脉冲信号转换成直线位移或角位移的执行元件。
步进电机的输出位移量与输入脉冲个数成正比,其速度与单位时间内输入的脉冲数(即脉冲频率)成正比,其转向与脉冲分配到步进电机的各相绕组的相序有关。
所以只要控制指令脉冲的数量、频率及电机绕组通电的相序,便可控制步进电机的输出位移量、速度和方向。
步进电机具有较好的控制性能,其启动、停车、反转及其它任何运行方式的改变都可在少数脉冲内完成,且可获得较高的控制精度,因而得到了广泛的应用。
SummaryThis paper describes the structure of three-phase three-beat stepper motors and stepper motor principle,and the stepper motor speed control and reversing research. Using PLC basic logic instructions and common method of instruction is reversing the stepper motor speed control.Stepper motor is a pulse signal into a linear displacement or angular displacement of the actuator.The output of the stepper motor displacement is proportional to the number of input pulses,the speed and unit time input pulses (ie pulse frequency)is proportional to its steering and pulse distribution phase stepper motor winding phase sequence of the.So long as the control command pulse number, frequency and phase sequence of the motor windings are energized,the output can be controlled stepper motor displacement, velocity and direction.Stepper motor has good control performance, and its start,stop,reverse and other changes in the way of any operation can be completed within a few pulses, and the availability of high control accuracy,and have been widely used。
《基于PLC的变频恒压供水系统的设计》篇一一、引言随着社会经济的不断发展和人民生活水平的持续提高,对于供水系统的稳定性和可靠性要求越来越高。
传统的供水系统往往存在能耗高、调节不精确等问题。
因此,基于PLC(可编程逻辑控制器)的变频恒压供水系统应运而生,其通过变频技术实现恒压供水,不仅提高了供水的稳定性和可靠性,还大大降低了能耗。
本文将详细介绍基于PLC的变频恒压供水系统的设计。
二、系统设计目标本系统设计的主要目标是实现供水系统的恒压供水,降低能耗,提高供水的稳定性和可靠性。
具体来说,包括以下几点:1. 保持供水压力的稳定性,满足用户需求。
2. 通过变频技术实现电机的节能运行。
3. 实现系统的自动化控制,降低人工干预。
4. 具备故障自诊断和保护功能,确保系统安全稳定运行。
三、系统组成基于PLC的变频恒压供水系统主要由以下几部分组成:1. 水泵:负责供水的动力来源,采用变频电机实现调速。
2. PLC控制器:负责整个系统的控制,包括压力采集、电机控制、故障诊断等功能。
3. 压力传感器:实时监测供水压力,将压力信号转换为电信号供PLC控制器处理。
4. 变频器:接收PLC控制器的指令,控制电机的运行速度,实现恒压供水。
5. 其他辅助设备:包括管网、阀门、过滤器等,保证供水的正常运行。
四、系统设计流程1. 需求分析:根据实际需求,确定系统的功能、性能指标等。
2. 硬件选型:选择合适的水泵、PLC控制器、压力传感器、变频器等硬件设备。
3. 系统布线:根据硬件设备的布局,进行合理的布线设计,确保系统的稳定性和可靠性。
4. 程序设计:编写PLC控制程序,实现压力采集、电机控制、故障诊断等功能。
5. 系统调试:对系统进行整体调试,确保系统的各项功能正常运行。
6. 运行维护:对系统进行定期检查和维护,确保系统的长期稳定运行。
五、系统实现1. 压力采集:通过压力传感器实时监测供水压力,将压力信号转换为电信号供PLC控制器处理。
基于PLC控制变频器调速实验报告电控学院电气实训目的:本次实验针对电气工程及其自动化专业。
通过综合实验,使学生对所学过的可编程控制器在电动机变频调速控制中的应用有一个系统的认识,并运用自己学过的知识,自己设计变频调速控制系统。
要求用PLC控制变频器,通过光电编码器反馈速度信号达到电动机调速的精确控制,自己设计,自己编程,最后进行硬件、软件联机的综合调试,实现自己的设计思想。
在整个试验过程中,摆脱以往由教师设计,检查处理故障的传统做法,由学生完全自己动手,互相查找处理故障,培养学生动手能力。
学生实验应做到以下几点:1. 通过电动机变频调速控制系统实验,进一步了解可编程控制器在电动机变频调速控制中的应用。
2. 通过系统设计,进一步了解PLC、变频器及编码器之间的配合关系。
3. 通过实验线路的设计,实际操作,使理论与实际相结合,增加感性认识,使书本知识更加巩固。
4. 培养动手能力,增强对可编程控制器运用的能力。
5. 培养分析,查找故障的能力。
6. 增加对可编程控制器外围电路的认识。
实训主要器件:欧姆龙CPM2AH-40CDR可编程控制器(PLC),欧瑞F1000-G系列变频器,三相异步电机第一部分采样转速的采样采用的是欧姆龙的光电编码器,结合PLC的高速计数器端子,实现高精度的采样。
编码器是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。
编码器把角位移或直线位移转换成电信号,前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是1还是0;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是1还是0,通过1和0的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。
欧姆龙(OMRON)编码器是用来测量转速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。
摘要随着工业控制要求的发展,对电机速度的控制越来越高。
传统的模拟信号控制方式存在抗干扰能力差、对设备要求复杂、控制精度不高等问题,难以适应日益复杂的工业环境。
本文主要介绍了多段调速系统的结构,并完成了以PLC为控制器,以增量式光电编码器为速度采集的闭环PID控制系统,通过RS-485对变频器的控制实现了三相异步电机的多段调速。
关键字:PLC;RS-485;多段调速;光电编码器AbstractWith the requirements of the development of industrial control, the speed of motor control is more and more strict. The traditional analog signal control mode has poor capacity of resisting disturbance, the requirement of complex equipment, the control precision low and some other problems, it is difficult to adapt to the increasingly complex industrial environment. In this article, mainly introduces the structure of various speed system, and completed the closed loop PID control system through the PLC as controller and incremental photoelectric encoder for speed acquisition, achieve the multistage speed control three-phase asynchronous motor through Frequency converter based on RS-485.Key words: PLC; RS-485; multistage speed; encoder目录第一章概述 (4)1.1 课题研究的背景及意义 (4)1.2 课题研究现状 (5)1.3 本课题研究的主要内容 (6)第二章系统分析 (7)2.1 PLC基本知识 (7)2.1.1 PLC的基本功能 (8)2.1.2 PLC的特点 (9)2.1.3 PLC的展望 (11)2.2 变频器基本知识 (12)2.2.1 变频器的应用 (12)2.2.2 变频器的分类 (13)2.2.3 变频器控制的展望 (14)2.3 光电编码器 (15)2.3.1 增量式编码器 (15)2.3.2 绝对式编码器 (16)第三章系统设计 (19)3.1 总体方案 (19)3.2 硬件设计 (19)3.2.1 变频器的连接 (20)3.2.2 光电编码器的配置 (20)3.2.3 PLC输入输出口分配 (21)3.3 软件设计 (21)3.3.1 变频器的参数设置 (22)3.3.2 PLC的设计 (23)第四章结论 (28)结束语 (29)致谢 (30)参考文献 (31)第一章概述1.1 课题研究的背景及意义随着计算机技术、电子技术的不断进步,PLC(可编程逻辑控制器)技术、变频(变频器)调速技术的发展极为迅速,已渗透到各个领域,以它们为主导的现代生产技术正以史无前例的速度迅猛发展。
机电工程系基于PLC的步进电机运动控制系统设计专业:测控技术与仪器指导教师:xxx姓名: xxx _______________(2011年5月9日)目录一、步进电机工作原理 (1)1。
步进电机简介 (1)2。
步进电机的运转原理及结构 (1)3。
旋转 (1)4。
步进电动机的特征 (2)1)运转需要的三要素:控制器、驱动器、步进电动机 (2)2)运转量与脉冲数的比例关系 (2)3)运转速度与脉冲速度的比例关系 (2)二、西门子S7-200 CPU 224 XP CN (2)三、三相异步电动机DF3A驱动器 (3)1。
产品特点 (3)2。
主要技术参数 (3)四、PLC与步进电机驱动器接口原理图 (5)五、PLC控制实例的流程图及梯形图 (5)1.控制要求 (5)2。
流程图 (5)3.梯形图 (6)六、参考文献 (6)七、控制系统设计总结 (6)基于PLC的步进电机运动控制系统设计一、步进电机工作原理1.步进电机简介步进电机是一种将电脉冲转化为角位移的执行机构。
通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。
这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。
使得在速度、位置等控制领域用步进电机来控制变的非常的简单2.步进电机的运转原理及结构电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。
0、1/3て、2/3て,即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A’与齿5相对齐,(A'就是A,齿5就是齿1)3.旋转如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力,以下均同)。
基于PLC控制的无塔变频恒压供水系统设计第一章绪论1.1 概述随着改革开放的不断深入,我国中小城市的城市建设及其经济迅猛发展,人们生活水平不断提高,同时,城市需水量日益加大,对城市供水系统提出了更高的要求.供水的可靠性、稳定性、经济节能性直接影响到城区的建设和经济的发展,也影响到城区居民的正常工作和生活.我国中小城市城市传统的供水方式主要采用恒速泵加压供水以及水塔高位供水等,恒速泵加压供水方式无法对供水管网的压力做出及时的反应,水泵的增减都依赖人工进行手工操作,自动化程度低,而且为保证供水,机组常处于满负荷运行,不但效率低、耗电量大,而且在用水量较少时,管网长期处于超压运行状态,爆损现象严重,电机硬起动易产生水锤效应,破坏性大,目前较少采用。
水塔高位水箱供水具有控制方式简单、运行经济合理、短时间维修或停电可不停水等优点,但存在基建投资大,占地面积大,影响城市整体规划,维护不方便,水泵电机为硬起动,启动电流大等缺点,频繁起动易损坏联轴器,且能耗大。
综上所述,传统的供水方式普遍不同程度的存在效率低、可靠性差、自动化程度不高等缺点,难以满足当前经济生活的需要。
当前,随着可编程序控制器(PLC)技术的发展,由于其高可靠性、高性价比、广泛的工业现场适应性方便的工艺扩展性能,PLC在工业自动控制过程中得到了越来越广泛的应用。
同时,交流异步电动机变频调速技术的日益成熟,与以往任何调速方法相比具有节能效果明显、调速过程简单、起动性能优越、自动化程度高等许多优点.因此将PLC及变频器应用于供水系统,可满足城市供水系统对可靠性、稳定性、经济节能性的要求。
1.2 问题的提出及解决方案张家口市地处河北省西北部山区,城市人口约45万人,过去为军事重地,改革开放较晚,属经济欠发达地区。
改革开放后,张家口加快了城市建设步伐。
但城市供水系统陈旧,城区管网多采取传统的水塔高位供水方式。
水塔分布在市区内,不仅影响城市整体规划,且存在能耗大,维护不方便,电机的启动电流对电网冲击大的缺点;各供水系统相距较远,不能及时有效地掌握各供水系统的运行状况,系统运行可靠性低,故障排除慢,系统运行中的一些参数也无法监控与记录.为满足城市需水量日益加大的要求,供水公司决定兴建新水源——在距市区南17公里的洋河边打井取水,并经西泵站二次加压为城区供水.同时为降低单位供水能耗,实现全自动、可靠、稳定的供水,需要利用变频恒压供水技术对原供水系统进行自动化改造,采用PLC控制并进行远程监控、管理及故障远程报警.在实现过程中主要研究并解决以下问题。
基于PLC 实现的三相异步电动机变频调速控制实验报告学院:电气与控制工程学院专业:电气工程及其自动化班级:1001学号:0906060124姓名:赵东兵一、实验名称:基于PLC 实现的三相异步电动机七段变频调速控制系统二、实验目的:1. 通过电动机变频调速控制系统实验,进一步了解可编程控制器在电动机变频调速控制中的应用。
2. 通过系统设计,进一步了解PLC 、变频器及编码器之间的配合关系。
3. 通过实验线路的设计,实际操作,使理论与实际相结合,增加感性认识,使书本知识更加巩固。
4. 培养动手能力,增强对可编程控制器运用的能力。
5. 培养分析,查找故障的能力。
6. 增加对可编程控制器外围电路的认识。
三、实验器件:220V PLC实验台一套、380V 变频器实验台一套、三相电动机一台(Nr=1400r/min,p=2)、光电编码器一个(864p/r)、万用表一个、导线若干。
四、实验原理:1. 实验原理:通过光电编码器将电动机的转速采集出来并送入PLC 中,通过实验程序将采集到的信息与DM3X(加速/DM4X(减速)区的设定值进行比较,当频率满足设定值时用PLC 控制变频器(变频器工作在端子调速模式下),电动机停止加速,保持匀速5S ,5S 后PLC 控制变频器加速端子继续加速。
从而实现完成七段速逐段加速。
以15HZ 为基准加速频率上限为45Hz (可以根据具体情况设定),并在最高段速保持10s, 此后电机开始减速,当到达设定的频率时,PLC 控制变频器停止加速,保持匀速5S ,5S 后PLC 控制变频器减速端子继续减速;反转的运动过程与正转正转过程相似。
2. 实验原理图实验速度曲线如下图:五、实验相关器件特点:1. 欧姆龙CPM2AH :CPM2A 在一个小巧的单元内综合有各种性能,包括同步脉冲控制,中断输入,脉冲输出,模拟量设定,和时钟功能等。
CPM2A CPU单元又是一个独立单元,能处理广泛的机械控制应用,所以它是在设备内用作内装控制单元的理想产品,完整的通信功能保证了与个人计算机、其它OMRON PC和OMRON 可编程终端的通信。
基于 PLC的步进电机控制系统设计摘要:步进电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度。
本研究以PLC为控制核心,通过PLC向步进电机输出方向信号、脉冲信号,分别控制步进电机的方向和角位移,实现对步进电机的时间和角度两种模式控制,并通过组态王上位机软件实现对电机的监控。
该套设备运用于实验室立体仓库教学设备,对控制立体仓库XYZ三轴运动的准确定位起到了关键作用。
关键词:PLC;步进电机;模式控制;组态王软件1步进电机的工作机理步进电机是机电控制系统中的一种常用执行机构,主要是通过对每相线圈中的电流和顺序切换来使电机作步进式旋转。
一般来说,机电控制系统中的驱动电路由脉冲信号来控制,调节脉冲信号的频率便可改变步进电机的转速,达到调速的目的。
步进电机三相六拍运行的供电方式为A—AB—B—BC—C—CA—A,每一循环换接6 次,共有6 种通电状态。
当A 相通电时,转子齿1、3 和定子磁极A、A'对齐。
当控制绕组A 相B 相同时通电时,转子齿2、4 受到反应转矩使转子逆时针方向转动,转子逆时针转动后,转子齿1、3 与定子磁极A、A'轴线不再重合,从而转子齿1、3 也受到一个顺时针的反应转矩,当这2 个方向相反的转矩大小相等时,电机转子停止转动。
当A 相控制绕组断电而只由B 相控制绕组通电时,转子又转过一个角度使转子齿2、4 和定子磁极B、B'对齐,三相六拍运行方式两拍转过的角度刚好与三相单三拍运行方式一拍转过的角度一样,即三相六拍运行方式的步距角为15°。
接下来的通电顺序为BC—C—CA—A,运行原理和步距角与前半段A—AB—B 一样,即通电方式每变换一次,转子继续按逆时针转过一个步距角。
如果改变通电顺序,按A—AC—C—CB—B—BA—A 顺序通电,则步进电机顺时针一步一步转动,步距角也是15°。
基于PLC的全变频调速控制自动扶梯设计自动扶梯是一种重要的公共交通工具,广泛应用于购物中心、地铁站等场所。
为了提高自动扶梯的运行效率和安全性能,在设计自动扶梯时,需要采用可靠的控制系统。
本文提出了一种基于PLC的全变频调速控制自动扶梯设计方案。
一、系统结构设计系统结构基于PLC和变频器组成。
PLC作为控制中心,采集并处理传感器信号,并控制变频器调节电机输出功率。
变频器是控制系统的关键部件,通过调整电机输出频率来实现自动扶梯的变速调节,从而满足不同负载和工作条件下的要求。
系统具有简单、可靠、易于维护等特点。
系统结构图如下所示:二、控制方案设计1、基础控制功能基础控制功能包括启动、停止、上升、下降、急停等功能。
启动和停止功能通过PLC的输出口控制变频器的启停信号实现;上升和下降功能通过调节电机的输出频率来实现。
2、变频调速控制变频调速控制是控制系统的关键功能。
根据用户的要求,通过改变电机的转速来控制自动扶梯的行进速度。
在设计中,选用变频器来实现这一功能。
变频器通过控制电机的输出频率(即功率),来改变电机的转速,从而实现自动扶梯的变速。
3、故障保护功能故障保护功能主要包括电源异常、传感器故障、电机故障、过载保护等功能。
当系统出现异常,PLC将发出报警信号,并采取相应的措施,确保系统安全运行。
三、技术要点1、 PLC型号选择PLC是控制系统的核心部件。
在本方案中,选用了SIEMENS S7-200 PLC。
该型号PLC具有良好的稳定性和可靠性,并且操作简单易学。
2、变频器型号选择在本方案中,选用了施耐德ATV312变频器。
该型号变频器具有电压范围广、运行稳定、输出效率高等优点,在自动扶梯调速方面表现出色。
在本方案中,涉及到的传感器包括安全开关、速度传感器、温度传感器等。
根据实验表现和性价比,选用了OMRON系列传感器,有效地提高了系统稳定性。
四、小结。
基于PLC技术的直流电机转速控制系统设计目录一、内容概括 (2)1.1 直流电机简介 (2)1.2 PLC技术概述 (3)二、系统需求分析 (4)2.1 控制要求 (6)2.2 性能指标 (6)三、系统设计 (7)3.1 系统结构设计 (9)3.2 PLC选型与配置 (10)3.3 传感器模块设计 (11)3.4 人机界面设计 (13)四、控制算法设计 (14)4.1 PID控制算法原理 (15)4.2 PID参数整定方法 (17)4.3 控制算法实现 (18)五、系统实现与调试 (20)5.1 系统搭建 (21)5.2 调试过程 (22)5.3 调试结果分析 (23)六、系统测试与应用 (24)6.1 测试环境与方法 (26)6.2 测试结果分析 (26)6.3 系统应用场景探讨 (28)七、总结与展望 (29)7.1 系统总结 (30)7.2 未来展望 (31)一、内容概括本文档主要探讨了基于PLC技术的直流电机转速控制系统的设计方案。
介绍了直流电机的基本原理和转速控制的重要性,以及PLC 技术在工业自动化中的广泛应用。
详细阐述了系统设计的目标、硬件选型、软件设计和实现方法。
在系统设计目标中,我们强调了高精度、高稳定性和实时性,以满足实际应用中对电机转速控制的高要求。
硬件选型部分,选择了功能强大的PLC作为控制核心,并配置了相应的输入输出模块和传感器,以实现对电机转速的实时监测和控制。
软件设计方面,采用了梯形图编程语言,编写了功能完善的控制程序,包括初始化、速度调节、故障处理等模块。
在实现方法上,我们描述了如何通过PLC编程实现对电机的速度控制,以及如何通过调试和优化,确保系统的稳定运行和高效性能。
本文档旨在为读者提供一个基于PLC技术的直流电机转速控制系统的设计思路和方法,具有一定的实用性和参考价值。
1.1 直流电机简介直流电机(DC Motor)是一种将电能转换为机械能的电动机,广泛应用于各种机械设备中。
「步进电机的PLC控制系统设计」步进电机是一种常见的电机类型,其特点是能够准确控制位置和速度。
PLC(Programmable Logic Controller,可编程逻辑控制器)是一种常用的工业自动化控制设备,通过PLC控制系统能够实现对步进电机的精确控制。
本文将详细介绍步进电机的PLC控制系统设计,主要包括硬件设计和软件设计两个方面。
首先是硬件设计。
PLC控制系统主要包括PLC、步进电机驱动器和步进电机三个主要组成部分。
PLC作为控制中心,负责发出控制指令和接收反馈信号。
步进电机驱动器接收PLC的指令,并将其转换为驱动步进电机所需的电流和信号。
步进电机是根据驱动器的信号进行运转的,通过其内部结构实现精确控制。
其次是软件设计。
PLC控制系统的软件设计主要包括编程和逻辑设计两个方面。
在编程方面,可以使用类似LD(Ladder Diagram,梯形图)或FBD(Function Block Diagram,功能块图)的编程语言编写。
通过编写逻辑图,可以实现对步进电机的定位、速度和运动方向的控制。
具体的代码编写需要根据实际情况进行调整和优化。
在逻辑设计方面,需要根据控制需求确定控制策略。
通常情况下,通过读取输入信号(如传感器信号)来确定当前步进电机的位置或状态,然后根据设定值进行比较,计算出控制输出信号,控制步进电机的运动。
同时,还可以根据需要添加一些保护机制,如限位开关、过载保护等,以确保步进电机运行的安全性和可靠性。
步进电机的PLC控制系统设计还需要考虑一些其他因素。
例如,需要根据步进电机的型号和规格来选择合适的驱动器和PLC,并确保它们之间的兼容性。
此外,还需要考虑电源供应和信号传输的稳定性和可靠性,以确保控制系统的正常运行。
总结起来,步进电机的PLC控制系统设计需要经过硬件设计和软件设计两个方面的工作。
在硬件设计方面,需要选取适当的PLC、步进电机驱动器和步进电机,并确保其之间的兼容性。
在软件设计方面,需要编写适当的逻辑图和程序代码,实现对步进电机的精确控制。
P L C控制电机变频调速
系统的设计
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
题目1:控制电机变频调速系统的设计
一、任务详情
1.1背景
调速系统快速性、稳定性、动态性能好是工业自动化生产中基本要求。
在科学研究和生产实践的诸多领域中调速系统占有着极为重要的地位特别是在国防、汽车、冶金、机械、石油等工业中,具有举足轻重的作用。
调速控制系统的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。
可编程控制器(PLC)可编程控制器是一种工业控制计算机,是继续计算机、自动控制技术和通信技术为一体的新型自动装置。
它具有抗干扰能力强,价格便宜,可靠性强,编程简朴,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用。
变频调速已被公认为是最理想、最有发展前景的调速方式之一,采用变频器构成变频调速传动系统的主要目的,一是为了满足提高劳动生产率、改善产品质量、提高设备自动化程度、提高生活质量及改善生活环境等要求;二是为了节约能源、降低生产成本。
用户根据自己的实际工艺要求和运用场合选择不同类型的变频器。
任务要求
通过PLC控制变频器,使三相异步电动机按图1-1所示的曲线运行,并可通过触摸屏远程控制电机的启动、停止,可对电机启动时间、减速时间设定调整,同时要求通过触摸屏实时显示数字电机转速、频率,显示转速图。
电机运行可分为三个部分:第一部分要求电机起动后在60s内从0(r/min)线性增加到1022(r/min);第二部分是进入恒转速运行阶段,运行时间为120s,转速恒定为1022(r/min);第三部分是当恒速到了规定时间,进入减速阶段,电机转速要求在40s内降到0(r/min)。
1460
1285
1022
电
机
转
速
r/min
图2 异步电动机运行曲线图
二、方案设计
电路构造思路
选用EM AM06作为smart 200plc的扩展模块给予模拟量信号。
通过计算,将1022转速转换为对应数字量输入,并对应分配到各个时间所需加的信号。
接入触摸屏控制启动停止,复位。
详细主电路图见图电气控制主电路图
PLC 控制电机变频调速控制系统主电路图见图 1-2
QS
图1-2 变频调速控制系统主电路图
PLC控制硬件设计
PLC 控制电机变频调速控制系统 I/O 配置表见表 1-1
PLC 控制电机变频调速控制系统 I/O 接口图见图1-3
图1-3 变频调速控制系统I/O接口图 PLC软件设计
PLC 变频调速控制系统流程图见图1-4
开始初始化启动T37是否到100ms AQW16= 18838
启动T38 T37关闭AC0+31.4
AC0转换复
制给AQW16T37清零
启动T37
启动T39
AC0-47.1
T39清零
启动T39
AC0转换复
制给
AQW16
AC0>= 18837.5?
是否到
2min
是否到
100ms
AC0>0?
结束是
是
是
是是
否
否否
否
图1-4 变频调速控制系统程序流
PLC梯形图
PLC 变频调速控制系统顺序功能图见图1-5
图1-5 变频调速控制系统顺序功能图PLC 变频调速控制系统梯形图程序
三、总结
个人得失
经过这次的运动控制课程设计我感觉以前学过的知识得到了实践的强化与应用,这样那些知识在我脑子中就更加影响深刻了。
然后因为是设计类的活动,使得我意识到必须要有非常清晰的思维与谨慎的态度才能做好,还有就是对知识的掌握要扎实到位,如果不了解,根本就无法成功。
还有要跟同学很好的合作才能更快的完成任务,回头去看,通过这次运动控制课程设计,我掌握了设计这门课程的基本步骤和方法,应该会为将来更高阶的设计打基础。
课程问题及解决方案
1 刚开机变频器无法工作
解答:每次开机,变频器其他参数不变,但需要将PAPAMS中的P10设置为0,表明调试停止
2 程序进行数据转化时无法进行加数
解答:当时只使用了一个AC0,并且将AC0中的数据类型转化为双整数和整数,使得ADD_R指令无法作用。
之后使用多个寄存器进行转化数据。
3 触摸屏无法通讯
解答:电脑地址和单片机地址不在同一段,修改电脑地址或者开始将触摸屏地址修改下。
4 不会使用触摸屏进行显示数据
解答:通讯延迟,修改波特率高一点
题目2:9.交通高低峰分段运行、数显倒计时交通红绿灯一、任务详情
背景
随着我国城市现代化进程的不断推进,交通问题成为影响我国社会经济发展的一个大问题,而城市道路交通问题的核心就是对十字交叉路口交通信号的控制。
因此,国外一些发达国家把城市交通信号控制研究的重点放在城市交通干线和区域的控制上,可是控制效果并不明显。
人们对十字路口交
通信号的控制方法大致有如下两种方式:其一是建立城市交通流的数学模型,提出优化算法,但由于十字路口不同时刻车辆的流量是复杂的、随机的和不确定的,所以数学模型难以建立,控制策略中的最优目标也很难实现,且算法复杂、计算量大,实践证明控制效果不理想,实时性较差;二是根据模糊控制的方法,根据十字路口交通的车辆数确定某一相位的绿灯初始时间和绿灯延长时间,对交通灯的控制实现了一定的模糊化,但是在控制过程中相位转换的顺序不变,因而面对我国城市如此复杂的交通系统,难以保证其灵活性和实时性。
因此,结合我国城市道路交通的实际情况,开发出真正适合我们自身特点的智能信号灯控制系统是当前的主要任务,以最大限度地减少了十字路口的车辆平均延误时间,提高了路口通行能力,从而达到缓解交通拥挤的目的。
本设计根据具体情况将交通情形分为高峰期、低峰期和晚间三种情形,并对三种情形进行不同的控制,以实现交通顺通的目的。
1.2任务要求
模拟实际交通灯运行情况,仅带绿闪的红绿灯部分内容可参考本书第七章第五节和附录E实验七内容。
本题的内容在前述的基础上,扩展到当下普遍采用的分时段运行、带倒计时数字显示(简称数显)的红绿灯,使课程设计题目更贴近实际。
设计高/低峰时段运行和带数显倒计时LED灯的交通红绿灯PLC控制程序,普通交通红绿灯时序图如上图所示(红灯行列向为30s一切换)。
具体要求如下。
(1)交通高峰时段为每日的上午7﹕30~9﹕00和下午的16﹕30~18﹕00,交通高峰时红灯为20s一切换。
按图7-7时序图规律,其中绿闪、黄灯时长不变,绿灯常亮缩短到15s。
(2)交通低峰时段为每日的上午6﹕00开始,除去高峰时段,到22﹕00结束,交通低峰时红灯为40s一切换。
绿灯按黄灯图7-7时序图规律同理安排。
(3)交通晚间时段为当日的22﹕00开始,到次日6﹕00结束,该时段十字路口的4个方向均按黄灯闪烁运行。
(4)由于实验模块只有一组数码管,只须编写一对方向的倒计时数码显示。
如显示东西向低峰时段红绿灯倒计时数码值,先走东西向红灯20s 倒计时,绿灯再走18s,最后黄灯亮2s;再重复下一轮……。
低峰时以此类推。
晚间时段不显示倒计时。
二、方案设计
电路构造思路
题目原来要求读取实时时钟来控制高峰、低峰、夜间子程序有效,但是由于读取时钟在实验室难于操作,用三个开关输入,控制不同时间段的红绿灯。
PLC控制硬件设计
表1为交通灯系统I/O分配表
表1 交通灯系统I/O分配表
图5为交通灯系统I/O硬件接线图
图5 交通灯系统I/O端子硬件接线图
PLC软件设计
程序流程图
系统流程图分为四个模块:主程序、高峰期子程序、低峰期子程序、晚间子程序。
其中主程序作时间段的判断从而选择相应的工作模式,时间段用三个开关模拟,通过三个开关选择对应的时间段;且流程图中SN表示南北方向,EW 表示东西方向,G、R、Y分别表示绿、红、黄三种灯,每一个反方向只有一个灯亮或者闪烁,当有一个灯处于闪烁或亮的状态时另外的两个灯熄灭。
具体流程图如图1、图2、图3、图4。
图1 交通信号灯系统工作流程图图2 晚间子程序
图3 高峰期子程序图4 低峰期子程序
PLC梯形图
三、总结
在调试过程中主要有以下几个问题:
(1)由于开关损坏,闭合后没有反应,检查程序没有错误,更换开关后工作正常。
(2)程序没有分模块,都放在主程序,逻辑混乱,控制出错。
解决的方法是将各功能模块放在不同的子程序中,在主程序对应的地方调用,控制简单,调试方便。
(3)程序运行时对应的指示灯不亮,或者有时亮有时不亮。
反复多次检查程序,无逻辑问题,确认为接线接触不良,更换指示灯后指示正确。
(4)程序中指示灯驱动采用直接输出的方法不便调试,借助辅助寄存器M 作中介,再在同一个网络统一驱动指示灯,结构清晰,方便调试。
参考文献
[1].黄永红.电气控制与PLC应用技术.北京:机械工业出版社,2011
[2].王卫兵.可编程序控制器原理及应用.北京:机械工业出版社,1998
[3].何衍庆等.可编程序控制器原理及应用技巧.化学工业出版社,2000
[4].江秀汉汤楠.可编程序控制器原理及应用.西安电子科技大学出版社,2003
[5].吴明亮蔡文忠.可编程控制器实训教程.化学工业出版社,2005。