1990-2012考研数学二历年真题word版
- 格式:doc
- 大小:9.49 MB
- 文档页数:51
2012考研数学二真题在2012年的考研数学二真题中,涵盖了多个知识点和难度级别的数学问题。
本文将对这些问题进行逐一分析和解答,以帮助考生更好地理解和掌握这些内容。
一、选择题解析1. 题目:若函数f(x)=x^3-3x^2+2x+a在区间[0,1]上的最大值为3,则a的取值范围是?解析:题目中给出了函数f(x)在区间[0,1]上的最大值为3。
我们可以通过求导和寻找极值的方法来求解。
首先,求导得到f'(x)=3x^2-6x+2。
然后,令f'(x)=0,求解得到x=1/3或x=2。
再通过求二阶导数f''(x)=6x-6判断这两个点是否为极值点。
发现f''(1/3)>0,f''(2)<0,所以x=1/3为极小值,x=2为极大值。
由于题目要求的最大值为3,因此只有极大值为3的解才符合题意,即a=f(2)=2^3-3*2^2+2*2-3=3。
综上所述,a的取值范围是3。
2. 题目:已知平面上一段圆弧是以直角坐标方程x^2+y^2=1表示的单位圆,长度为l,则l的取值范围是?解析:题目中给出了圆弧的方程为x^2+y^2=1。
由于这是一个单位圆,所以圆弧的长度等于圆周的长度。
我们可以使用弧长公式来计算圆周长。
设圆周长为l,则有l=2πr=2π(1)=2π。
综上所述,l的取值范围是2π。
3. 题目:设集合A={x|lgx<0},则A的取值范围是?解析:题目中给出了集合A的定义为{ x | lgx<0 }。
我们知道,对数函数在定义域内是递增的。
而lgx<0表示x在(0,1)之间,所以集合A表示的是区间(0,1)。
综上所述,A的取值范围是(0,1)。
二、解答题解析1. 题目:求函数f(x,y)=2x^2+y^2的最大值,其中x与y满足条件x-2y+1=0。
解析:题目中给出了函数f(x,y)=2x^2+y^2以及约束条件x-2y+1=0。
1990 年全国硕士研究生入学统一考试数学一、二、三、四、五试题 完整版附答案及评分标准数 学(试卷一)一、填空题:(本题满分15分,每小题3分)(1)过点)1,2,1(-M 且与直线⎪⎩⎪⎨⎧-=-=+-=1432t z t y t x 垂直的平面方程是 x -3y -z +4=0 .(2)设a 为非零常数,则a xx e a x a x 2)(lim =-+∞→.(3)设函数11,0,1)(>≤⎩⎨⎧=x x x f , 则)]([x f f = ___1___. (4)积分dy e dx xy ⎰⎰-2022的值等于4(1)/2e --.(5)已知向量组 1α=(1,2,3,4),2α=(2,3,4,5),3α=(3,4,5,6),4α=(4,5,6,7),则该向量组的秩是2二、选择题:(本题满分15分,每小题3分) (1)设()f x 是连续函数,且⎰-=x e xdt t f x F )()(则)(x F '等于(A)(A ))()(x f e f e x x ----(B) )()(x f e f e x x +---(C))()(x f e f e x x ---(D) )()(x f e f e x x +--(2)已知函数()f x 具有任意阶导数,且[]2)()(x f x f =', 则当n 为大于2的正整数时,()f x 的n 阶导数)()(x fn 是(A)(A) 1)]([!+n x f n (B) 1)]([+n x f n (C) nx f 2)]([ (D) nx f n 2)]([!(3)设α为常数,则级数]1)sin([12nn na n -∑∞=(C )(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与α的取值有关.(4)已知()f x 在0x =的某个邻域内连续 ,且(0)0f =,2cos 1)(lim0=-→xx f x 则在点0x =处()f x (D)(A)不可导(B)可导,且0)0(≠'f (C)取得极大值(D)取得极小值(5)已知1β和2β是非齐次线性方程组AX = b 的两个不同的解,21,αα是对应导出组AX = 0基础解系,21,k k 为任意常数,则方程组AX = b 的通解(一般解)必是(B)(A) 2)(2121211ββααα-+++k k (B) 2)(2121211ββααα++-+k k (C) 2)(2121211ββββα-+++k k (D) 2)(2121211ββββα++-+k k 三、(本题满分15分,每小题5分)(1)求dx x x ⎰-+102)2()1ln(.解:11200ln(1)1ln(1)(2)2x dx x d x x +=+--⎛⎛⎜⎜⎠⎠110011ln(1)2(1)(2)x dx x x x =+--+-⎛⎜⎠……2分 101111ln 2()ln 232(1)3dx x x =-+=-+⎰.……5分 (2)设(2,sin )z f x y y x =-,其中(,)f u v 具有连续的二阶偏导数,求yx z∂∂∂2.解:2cos z f fy x x u v ∂∂∂=+∂∂∂.……2分 2222222(2sin cos )sin cos cos z f f f fx y x y x x x x y u u v v v∂∂∂∂∂=-+-++∂∂∂∂∂∂∂. ……5分 (3) 求微分方程x e y y y 244-=+'+''的通解(一般解).解:特征方程为2440r r ++=的根为1,22r =-.对应齐次方程的通解为212()x Y C C x e -=+,其中12,C C 为任意常数. ……2分 设原方程的特解为*2()x y x Ax e 2-=,代入原方程得12A =.……4分 因此,原方程的通解为2*2212()()2xx x y x Y y C C x ee --=+=++. ……5分四、(本题满分6分) 求幂级数∑∞=+0)12(n nxn 的收敛域, 并求其和函数.解:因为123limlim 121n n n n a n a n ρ+→∞→∞+===+,所以11R ρ==.显然幂级数(21)nn n x∞=+∑在1x =±时发散,故此幂级数的收敛域为(1,1)-.……2分又0()(21)2nnnn n n S x n x nx x ∞∞∞====+=+∑∑∑012()1n n x x x∞='=+-∑……5分 2221111(1)1(1)x xx x x x +=+=-<<---.……6分五、(本题满分8分) 求曲面积分I=⎰⎰+sdxdy yzdzdx .2其中S 是球面4222=++z y x外侧在0≥z 的部分解:令2214x y S z ⎧+≤=⎨=⎩,其法向量与z 轴的负向相同. 设1S S 和所围成的区域为Ω,则由奥-高公式有12S I yzdzdx dxdy zdxdydz Ω++=⎰⎰⎰⎰⎰. ……2分而221140,228S S x y yzdzdx dxdy dxdy π+≤==-=-⎰⎰⎰⎰⎰⎰.……4分2222cos sin 4zdxdydz d d r r dr ππθϕϕϕπΩ=⋅=⎰⎰⎰⎰⎰⎰.……7分 所以12I π=.……8分六、(本题满分8分)设不恒为常数的函数)(x f 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()()f a f b =. 证明:在(,)a b 内至少存在一点ξ, 使0)(>'ξf .证:因()()()f a f b f x =且不恒为常数,故至少存在一点(,)c a b ∈,使得()()()f c f a f b ≠=.于是()()()()f c f a f c f a ><或.……2分现设()()f c f a >,则在[,]a c 上因()f x 满足拉格朗日定理的条件,故至少存在一点(,)(,)a c a b ξ∈⊂,使得1()[()()]0f f c f a c a ξ'=->-. ……6分对于()()f c f a <情形,类似地可证得此结果.……7分七、(本题满分8分) 设四阶矩阵=B ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1000110001100011,=C ⎪⎪⎪⎪⎪⎭⎫⎝⎛2000120031204312且矩阵A 满足关系式E C B C E A =''--)(1, 其中E 为四阶单位矩阵, 1-C 表示C 的逆矩阵,C '表示C 的转置矩阵, 将上述关系化简并求矩阵A .解:因11()[()]()A E C B C A C E C B A C B --''''-=-=-,故()A C B E '-=……2分因此 1[()]A C B -'=-11000210032104321-⎛⎫⎪⎪= ⎪⎪⎝⎭……4分1000210012100121⎛⎫⎪-⎪= ⎪-⎪-⎝⎭……6分八、(本题满分8分)求一个正交变换化二次型32312123222184444x x x x x x x x x f -+-++=成标准形.解:二次型的矩阵122244244-⎛⎫⎪=-- ⎪ ⎪-⎝⎭A ……1分由2122||244(9)244λλλλλλ---=---=----A E ,A 的特征值为1230,9λλλ===.……3分对于120λλ==,122122244000244000λ--⎛⎫⎛⎫⎪ ⎪-=--→ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭A E ,从而可取特征向量1011P ⎛⎫ ⎪= ⎪ ⎪⎝⎭及与1P 正交的另一特征向量2411P ⎛⎫ ⎪= ⎪ ⎪-⎝⎭. ……5分 对于39λ=,822245254099245000λ----⎛⎫⎛⎫ ⎪ ⎪-=---→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A E ,取特征向量3122P ⎛⎫⎪=- ⎪ ⎪⎝⎭. ……6分将上述相互正交的特征向量单位化,得1231032,,323ξξξ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪===- ⎪ ⎪⎪ ⎪⎝⎭, ……7分故在正交变换1122331032323x y x y x y ⎛⎫ ⎪⎪⎛⎫⎛⎫⎪ ⎪ ⎪=-=⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎭下,二次型239f y =. ……8分九、(本题满分8分)质点P 沿着以A,B 为直径的半圆周,从点A(1,2)运动到点B(3,4)的过程中受变力→F 作用 (见图),→F 的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且于y 轴正向的夹角小于2π.求变力→F 对质点P 所作的功.解:按题意,变力y x =-+F i j .……3分圆弧AB的参数方程是23443x y θππθθ⎧=⎪-≤≤⎨=⎪⎩.……5分 变力F 所作的功ABW ydx xdy =-+⎰434)sin )cos ]d ππθθθθθ-=⎰()21π=-……8分十、填空题:(本题满分6分,每小题2分)(1)已知随机变量X 的概率密度函数f (x )=x e -21, +∞<<∞-x ,则X 的概率分布函数()F x =1212010xx e x ex -⎧<⎨-≥⎩.(2)设随机事件A ,B 及其事件A B 的概率分别为6.0,3.0,4.0和,若_B 表示B 的对立事件,那么积事件B A 的概率3.0)B A (P =(3)已知离散型随机变量X 服从参数为2的泊松分布,则随机变量32Z X =-的数学期望()E Z = 4 .十一、(本题满分6分)设二维变量(X ,Y )在区域 x y x D <<<,10:内服从均匀分布,求关于X 的边缘概率密度函数及随机变量 Z =2X +1的方差D (Z ).解:(,)X Y 的联合概率密度函数是1,01,||,(,)0,x y x f x y <<<⎧=⎨⎩其它,因此关于X 的边缘概率密度函数是2,01()(,)0,X x x f x f x y dy +∞-∞<<⎧==⎨⎩⎰其它. ……2分22D(Z)(21)4[()(())]D X E X E X =+=-()22X X 4()()x f x dx xf x dx +∞+∞-∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰……4分()21132001424224299x dx x dx ⎡⎤⎛⎫=-=-= ⎪⎢⎥⎝⎭⎣⎦⎰⎰.……6分数 学(试卷二)一、填空题【 同数学一 第一题 】 二、选择题【 同数学一 第二题 】三、(本题满分15分,每小题5分)【 同数学一 第三题 】 四、(本题满分18分,每小题6分) (1)【 同数学一 第四、(1)题 】(2)求微分方程0)ln (ln =-+dx x y xdy x 满足条件1==ex y的特解.解:将原方程化为11,(1)ln y y x x x x'+=≠.……1分 由公式()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰……3分 得2ln ln 111ln ln 2dx dx x x x xy e e dx C x C x x -⎛⎫⎛⎫⎰⎰=+=+ ⎪ ⎪⎝⎭⎝⎭. ……4分 又由|1x e y ==,可解出12C =,所以方程的特解是11ln 2ln y x x ⎛⎫=+ ⎪⎝⎭.……6分(3)过点(1,0)P 作抛物线2-=x y 的切线与上述抛物线及x 轴围成一平面图形,求此图形绕x 轴旋转一周所成旋转体的体积.解:设所作切线与抛物线相切于点0(x .因00|x x y =='==,故此切线的方程为)y x x =-.……1分又因该切线过点(1,0)P ,所以有03x =. 从而切线的方程为1(1)2y x =-. ……3分 因此,所求旋转体的体积332121(1)(2)4V x dx x dxππ=---⎰⎰……5分 6π=.……6分五、(本题满分8分)【 同数学一第五题 】 六、(本题满分7分)【 同数学一 第六题 】 七、(本题满分6分)【 同数学一 第七题 】 八、(本题满分8分)【 同数学一 第八题 】 九、(本题满分8分)【 同数学一 第九题】数 学(试卷三)一、填空题:(本题满分15分,每小题3分)(1)曲线⎩⎨⎧==ty t x 33sin cos 上对应于6π=t 点处的法线方程是13-=x y .(2)设x e y x tg 1sin 1⋅=,则='y 1tan 221111(sec sin cos )x e x x x x-⋅+.(3)=-⎰11dx x x15/4(4)下列两个积分的大小关系是:dx e dxe x x ⎰⎰----->121233.(5)【 同数学一 第一、(3) 题 】二、选择题:(本题满分15分,每小题3分)(1)已知0)1(lim 2=--+∞→b ax x x x ,其中,a b 常数,则(C)(A)1,1a b ==(B)1,1a b =-=(C)1,1a b ==-(D)1,1a b =-=-(2)设函数)(x f 在),(+∞-∞上连续,则⎰])([dx x f d 等于(B)(A))(x f (B)dxx f )((C)cx f +)((D)dxx f )('(3)【 同数学一 第二、(3) 题 】(4)【 同数学一 第二、(4) 题 】(5)设⎪⎩⎪⎨⎧=≠=0),0(0,)()(x f x x x f x F ,其中()f x 在0x =处可导,(0)0,(0)0f f '≠=,则0x =是()F x 的 (B )(A)连续点 (B) 第一类间断点 (C) 第二类间断点(D)连续点或间断点不能由此确定三、(本题满分15分,每小题3分) (1)已知9)(lim =-+∞→xx ax a x ,求常数a . 解:因2(1)lim()lim (1)x x a x x xa x a x e ax a x→∞→∞++==--……3分 故29a e =,ln 3a =.……5分(2)求由2()ln()y x x y x y -=--所确定的函数()y y x =的微分dy .解:对方程两边求微分2()ln()()dx dydy dx dx dy x y x y x y--=--+--, ……3分故2ln(),3ln()2x y xdy dx dy dx x y x y +-==+--或.……5分 (3)求曲线)0(112>+=x xy 的拐点. 解:22223231,2(1)(1)x x y y x x -'''=-=++. ……2分 令0y ''=,解得x =.因在x =的左右邻近"y 变号,故x =是拐点的横坐标.所以曲线的拐点是3)4.……5分 (4)计算 ⎰-dx x x2)1(ln . 解:原式1ln 1xd x =-⎰ln 11(1)x dxxx x =---⎰……2分 10ln 11()11x dxx x x =-+--⎰……4分 ln |1|ln 1x x C x x-=++-.……5分 (5)见【 数学二 第四(2)题 】四、(本题满分9分)在椭圆12222=+by a x 的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积为最小(其中0,0a b >>).解:设00(,)P x y 为所求之点,则此点处的切线方程为00221xx yya b+=. ……2分令0x =,得该切线在y 轴上的截距20b y .令0y =,得该切线在x 轴上的截距2a x . ……4分于是所围图形的面积为2200011,(0,)24a b S ab x a x y π=⋅-∈.……6分 求S的最小值时,不妨设00A x y ==22b A a '=. ……7分令0A '=,解得在(0,)a 内唯一驻点0x =……8分由A '在0x =右侧为负,得知0x =A 的极大点,即S 的极小点.所以0x =S 为最小,此时0y =,即为所求之点.……9分 五、(本题满分9分)证明:当0x >时,有不等式 21π>+x arctgx . 解:考虑函数1()arctan ,02f x x x x π=+->.……2分 有2211()0,01f x x x x '=-<>+. ……4分 所以()f x 在(0,)+∞上是单调减少的.……5分 又lim ()0x f x →+∞=……7分知当10,()arctan 02x f x x x π>=+->时. ……8分 即1arctan 2x x π+>. ……9分六、(本题满分9分)设dt t t x f x⎰+=11ln )(, 其中0,x >求 1()().f x f x+解:111ln ()1xt f dt xt =+⎰. 令1t y =,得11ln ()(1)x y f dy x y y =+⎰. ……3分 于是111ln ln ()()(1)(1)x x t t f x f dt dt x t t t +=+++⎰⎰111()ln (1)(1)x tdtt t t =+++⎰……5分 1111()ln 11x tdt t t t =+-++⎰……7分 21ln 1ln 2x t dt x t ==⎰. ……9分七、(本题满分9分)【 同数学二 第四、(3)题 】 八、(本题满分9分)求微分方程ax e y y y =+'+''44之通解,其中a 为实数.解:特征方程为2440r r ++=,特征根为1,22r =-.对应齐次方程的通解为212()x y C C x e -=+ .……2分 当2a ≠-时,设非齐次方程的特解为*()ax y x Ae =, ……3分代入原方程,可得21(2)A a =+,*21()(2)axy x e a =+. 当2a =-时,设非齐次方程的特解为*21()xy x A x e 2-=.代入原方程,得12A =,*21()2x y x x e 2-=.……8分故通解为212222121()2(2)()()()22x axx C C x e e a a y x x y x C C x e a --⎧++≠-⎪+⎪=⎨⎪=++=⎪⎩,当,当.……9分数 学(试卷四)一、填空题:(本题满分15分,每小题3分) (1)极限n →∞=2(2)设函数()f x 有连续的导函数,0)0(=f 且b f =')0(,若函数00,sin )()(=≠⎪⎩⎪⎨⎧+=x x A xx a x f x F 在0x =处连续,则常数A = a + b .(3)曲线2y x =与直线2y x =+所围成的平面图形的面积为 4.5 .(4)若线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=+=+-=+414343232121a x x a x x a x x a x x 有解,则常数4321,,,a a a a 应满足条件04321=+++a a a a (5)一射手对同一目标独立的进行四次射击,若至少命中一次的概率为8180,则射手的命中率为2/3二、选择题:(本题满分15分,每小题3分) (1)设函数x e tgx x x f sin )(⋅⋅=,则)(x f 是 (B )(A )偶函数(B)无界函数(C)周期函数(D)单调函数(2)设函数()f x 对任意x 均满足等式(1)()f x a f x +=, 且有b f =')0(,其中,a b 为非零常数,则 (D)(A )()f x 在1x =处不可导(B )()f x 在1x =处可导,且a f =')1((C )()f x 在1x =处可导,且 f (1)b '= (D )()f x 在1x =处可导,且 f (1)ab '=. (3)向量组s ααα,,21⋅⋅⋅⋅线性无关的充分条件是(A)s ααα,,21⋅⋅⋅⋅均不为零向量(B) s ααα,,21⋅⋅⋅⋅中任意两个向量的分量不成比例(C) s ααα,,21⋅⋅⋅⋅中任意一个向量均不能由其余1s -个向量线形表示 (D) s ααα,,21⋅⋅⋅⋅中有一部分向量线形无关(4)设A ,B 为两随机事件,且A B ⊂,则下列式子正确的是(A)(A)P (A+B )= P (A )(B)P(AB )=P(A )(C)P (A B )= P (B )(D)P (B -A )=P (B )-P (A )(5)设随机变量X 和Y 相互独立,其概率分布为则下列式子正确的是 (C )(A )X =Y(B ){}0P X Y ==(C ){}P X Y ==21(D ){}1P X Y ==三、(本题满分20分,每小题5分) (1)求函数()I x =dt t t t xe ⎰+-12ln 2在区间[2,e e ]上的最大值.解:由222ln ln ()0,[,]21(1)x x I x x e e x x x '==>∈-+-, ……1分可知()I x 在2[,]e e 上单调增加,故222ln max ()(1)e e x e e t I x dt t ≤≤==-⎛⎜⎠21ln 1e e tdt --⎛⎜⎠22ln 1111e e e e t dt t t t =-+⋅--⎛⎜⎠……3分 22121ln11e e t e e t -=-+--11ln ln(1)11e e e e e e+=+=+-++. ……5分(2)计算2y Dxe dxdy -⎰⎰,其中D 是曲线24y x =和29y x =在第一象限所围成的区域.解:原式2302yy y edy xdx+∞-=⎰⎰……2分 20111()249y y y e dy +∞-=-⎰……3分 205572144y ye dy +∞-==⎰.……5分(3)求级数的∑∞=-12)3(n nn x 收敛域. 解:21n a n=,121(1)n a n +=+,212lim lim 1(1)n n n n a n a n +→∞→∞==+, ……2分 因此当131x -<-<,即24x <<级数收敛. ……3分当2x =时,得交错级数211(1)n n n ∞=-∑;当4x =时,得级数211n n∞=∑,二者都收敛,于是原级数的收敛域为[2,4].……5分(4)求微分方程x e x x y y sin )(ln cos -=+'的通解解:cos cos sin (ln )xdxxdx x y e x e e dx C --⎰⎰=⋅⋅+⎰……3分 sin (ln )x e xdx C -=+⎰……4分 sin (ln )x e x x x C -=-+.……5分四、(本题满分9分)某公司可通过电台和报纸两种方式做销售某种商品广告,根据统计资料,销售收入R (万 元)与电台广告费用1x (万元) 及报纸广告费用2x (万元) 之间的关系有如下经验公式:222121211028321415x x x x x x R ---++=. (1)在广告费用不限的情况下, 求最优广告策略;(2)若提供的广告费用为1.5 万元, 求相应的最优广告策略.解:(1) 利润函数为22121212121514328210()x x x x x x x x π=++----+221212121513318210x x x x x x =++---……1分 由12121248130,820310x x x x x x ππ∂∂=--+==--+=∂∂……2分 解得10.75x =(万元),2 1.25x =(万元). 因利润函数12(,)x x ππ=在(0.75,1.25)处的二阶偏导数为:2222211224,8,20A B C x x x x πππ∂∂∂==-==-==-∂∂∂∂. ……3分 故有26480160,40B AC A -=-=-<=-<,……4分 所以函数12(,)x x ππ=在(0.75,1.25)处达到极大值,亦即最大值.……5分(2)若广告费用为1.5万元,则只需求利润12(,)x x ππ=在12 1.5x x +=时的条件极值.拉格朗日函数为221212121212(,,)1513318210( 1.5)L x x x x x x x x x x λλ=++---++-……7分令120,0,0L L L x x λ∂∂∂===∂∂∂,有121212481308203101.50x x x x x x λλ--++=⎧⎪--++=⎨⎪+-=⎩……8分由此可得10x =,2 1.5x =,即将广告费1.5万元全部用于报纸广告,可使利润最大.……9分五、(本题满分6分)设)(x f 在闭区间[0,c]上连续,其导数)(x f '在开区间(0,)c 内存在且单调减少.(0)0f =,试应用拉格郎日中值定理证明不等式()()()f a b f a f b +≤+,其中常 数,a b 满足条件c b a b a ≤+≤≤≤0.证:当0a =时,(0)0f =有()()()()f a b f b f a f b +==+. ……1分当0a >时,在[0,]a 和[,]b a b +上分别应用拉格朗日定理,有()11()(0)()(),0,0f a f f a f a a aξξ-'==∈-;……3分 ()22()()()()(),,()f a b f b f a b f b f b a b a b b aξξ+-+-'==∈++-.……4分 显然120a b a b c ξξ<<≤<<+≤. 因()f x '在[0,]c 上单调减少,故21()()f f ξξ''≤.从而有()()()f a b f b f a a a+-≤.……5分 故由0a >,有()()()f a b f a f b +≤+. ……6分六、(本题满分8分)已知线性方程组 1234512345234512345323022654332x x x x x ax x x x x x x x x bx x x x x ++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩(1)问,a b 为何值时,方程组有解?(2)方程组有解时,求出方程组的导出组的一个基础解系;(3)方程组有解时, 求出方程组的全部解.解:(1) 考虑方程组的增广矩阵1111111111321130012263012260000035433120000022a aa A bb a a ⎛⎫⎛⎫ ⎪⎪- ⎪ ⎪=→ ⎪ ⎪- ⎪⎪--⎝⎭⎝⎭……2分当30b a -=且220a -=,即13a b ==且时,方程组的系数矩阵与增广矩阵之秩相等,故1,3a b ==时,方程组有解.……3分(2)当1,3a b ==时,有11111101152012263012263000000000000000000000000a a A ----⎛⎫⎛⎫⎪⎪⎪ ⎪→→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,因此,原方程组的同解方程组为13452345522263x x x x x x x x ---=-⎧⎨+++=⎩,故导出组的基础解系为123115226,,100010001v v v ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ……6分(3)令3450x x x ===,得原方程组的特解23000u -⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,于是原方程组的全部解为1231234521153226010000100001x x u x c c c x x -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪==+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,其中123,,c c c 为任意常数.……8分 七、(本题满分5分)已知对于n 阶方阵A ,存在自然数k ,使得0=kA ,试证明矩阵E A -可逆,并写出 其逆矩阵的表达式(E 为n 阶单位阵).解:由0kA =及1k k E A E A A E A --+++=-()() ,得1k E A E A A E--+++=()() ……3分 可知E A -可逆,且有11()k E A E A A ---=+++ .……5分八、(本题满分6)设A 为n 阶矩阵,1λ和2λ是A 的两个不同的特征值,21,x x 是分别属于1λ和2λ的特征向量,试证明:21x x +不是A 的特征向量.解:因11122212,,Ax x Ax x λλλλ==≠,故12121122()A x x Ax Ax x x λλ+=+=+……2分 设21x x +是A 的特征向量,则1212()()A x x x x λ+=+,即112212()x x x x λλλ+=+, 于是有1122()()0x x λλλλ-+-=.……4分由于12,x x 属于不同的特征值,所以12,x x 线性无关,故有120,0λλλλ-=-=,即12λλ=, 这与假设矛盾,因此21x x +不是A 的特征向量.……6分九、(本题满分4分)从0,1,2,…,9等十个数字中任意选出三个不同的数字,试求下列事件的概率:=1A { 三个数字中不含0和5 } ;=2A { 三个数字中含0但不含5 }解:3813107()15C P A C ==……2分 33982310214()15C C P A C -==. ……4分十、(本题满分5分)一电子仪器由两个部件构成,以X 和Y 分别表示两个部件的寿命(单位:千小时),已知X 和Y 的联合分布函数为:⎩⎨⎧≥≥+--=+---它其00,01),()(5.05.05.0y x e e e y x F y x y x .(1)问X 和Y 是否独立?(2)求两个部件的寿命都超过100小时的概率α.解 X 的分布函数1()F x 和Y 的分布函数2()F y 分别为:0.511,0;()(,)0,0x e x F x F x x -⎧-≥=+∞=⎨<⎩若若,0.521,0;()(,)0,0y e y F y F y y -⎧-≥=+∞=⎨<⎩若若……2分 显然12(,)()()F x y F x F y =,故X 和Y 独立,……3分 于是{0.1,0.1}{0.1}{0.1}P X Y P X P Y α=>>=>⋅>……4分 0.050.050.112[1(0.1)][1(0.1)]F F e e e ---=-⋅-=⋅=.……5分十一、(本题满分7分)某地抽样调查结果表明,考生的外语成绩(百分制)近似服从正态分布,平均成绩为72 分,96分以上的占考生总数的2.3 %,试求考生的外语成绩在60分至84分之间的概率.[附表] (表中)(x Φ是标准正态分布函数)解:设X 为考生的外语成绩,由题设知2~(,)X N μσ,其中72μ=. ……1分由条件知{96}0.023P X ≥=,即9672{}0.023X P μσσ--≥=,亦即24()0.977σΦ=,由()x Φ的数值表,可见242σ=.因此12σ=.这样2~(72,12)X N .……4分所求概率为60728472{6084}{}{11}1212X X P X P P μμσσ----≤≤=≤≤=-≤≤(1)(1)2(1)120.84110.682=Φ-Φ-=Φ-=⨯-=.……7分数 学(试卷五)一、填空题 (本题满分15分,每小题3分) (1)【 同数学四 第一、(1) 题 】(2)【 同数学四 第一、(2) 题 】(3)【 同数学四 第一、(3) 题 】(4)【 同数学四 第一、(4) 题 】(5)已知随机变量(3,1),(2,1)X N Y N - ,且,X Y 相互独立,设随机变量27Z X Y =-+,则Z ~ N (0,5) .二、选择题 (本题满分15分,每小题3分) (1)【 同数学四 第二、(1) 题 】(2)【 同数学四 第二、(2) 题 】(3)【 同数学四 第二、(1) 题 】(4)设A 为n 阶可逆矩阵,*A 是A 的伴随矩阵,则*A =(A)(A) 1-n A(B) A (C) nA(D) 1-A(5)已知随机变量X 服从二项分布,且EX=2.4,DX=1.44,则二项分布的参数n ,p 的值为 (B )(A )n = 4,p = 0.6(B )n = 6,p = 0.4(C )n = 8,p = 0.3(D )n = 24,p = 0.1三、(本题满分20分,每小题5分) (1)求极限dte t x x t x x 22)1(1lim20-∞→⎰+解:原式22222202(1)(1)limlim(12)xt x x x x x t e dt x e xex e→∞→∞++==+⎰……3分22(1)1lim (12)2x x x →∞+==+. ……5分(2)求不定积分dx x x x ⎰34sin 2cos . 解 443333cos cos cos1222sin 88sin cos sin 222x x x x x x dx dx dx x x x x ==⎰⎰⎰……2分3211sin sin sin 42282x x x x d xd --==-⎛⎛⎜⎜⎠⎠……3分 22111sin 828sin 2x x dx x-=-+⎛⎜⎜⎠……4分 21cot 428sin 2x x C x -=-+211csc cot 8242x xx C =--+.……5分 (3)设)(22y z y z x ϕ=+,其中ϕ为可微函数,求 yz∂∂.解 将原式两边同时对y 求偏导,得2112()()()z z z z z y z y y y y y yϕϕ∂∂'=+-∂∂ ……3分 解出z y ∂∂,得 ()()()()2()2()z z z z z y z zy y yy y zzyz yz y yyϕϕϕϕϕϕ''--∂==∂''--. ……5分(4)【 同数学四 第三、(2) 题 】四、(本题满分9分)【 同数学四 第四题 】五、(本题满分6分)证明不等式1ln(()x x x +≥-∞<<+∞证:记()1ln(f x x x =++()ln(ln(f x x x x '=+=.……2分 令()0f x '=,知0x =为驻点.由()0f x ''=>……4分可知0x =为极小值点,亦即最小值点.()f x 的最小值为(0)0f =,于是,对于一切(,)x ∈-∞+∞,有()0f x ≥,即1ln(()x x x +≥-∞<<+∞. ……6分六、(本题满分4分)设A 为1010⨯矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡00001010000 (0010000010)10,计算行列式E A λ-,其中E 为10阶单位矩阵,λ为常数.解:1010000100().......................00011000A E λλλλλ---=--按第一列展开……1分101000100000100100010..............................................00010001101λλλλλλλ-------=-……2分9101010()()1010λλλ=---=-.……4分七、(本题满分5分)设方阵A 满足条件TA A E =,其中TA 是A 的转置矩阵,E 为单位阵.试证明所对应的 特征值的绝对值等于1.证:设x 是A 的实特征向量,其所对应的特征值为λ,则Ax x λ=,即T T Tx A x λ=,于是有2T T T x A Ax x x λ=,即2T Tx x x x λ=,2(1)0T x x λ-=.……3分 因为x 为实特征向量,故0Tx x >,所以得210λ-=,即||1λ=.……5分八、(本题满分8分)【 同数学四 第六题 】九、(本题满分5分)【 同数学四 第九题 分值不同 】 十、(本题满分6分)甲乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的为0.5,以X 和Y 分别表示甲和乙的命中次数,试求X 和Y 联合概率分布.解:X Y 和都服从二项分布,参数相应为(2,0.2)和(2,0.5).因此X Y 和的概率分布分别为:0120.640.320.04X ⎛⎫⎪⎝⎭,0120.250.50.25Y ⎛⎫ ⎪⎝⎭ ……3分故由独立性,知X Y 和的联合分布为6分十一、(本题满分7分)【 同数学四第十一题 】。
20GG 年全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x xy x +=-渐近线的条数()(A)0(B)1(C)2(D)3 【答案】C【考点】函数图形的渐近线 【难易度】★★【详解】本题涉及到的主要知识点:(i )当曲线上一点M 沿曲线无限远离原点时,如果M 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
(ii )渐近线分为水平渐近线(lim ()x f x b →∞=,b 为常数)、垂直渐近线(0lim ()x x f x →=∞)和斜渐近线(lim[()()]0x f x ax b →∞-+=,,a b 为常数)。
(iii )注意:如果(1)()lim x f x x→∞不存在;(2)()limx f x a x →∞=,但lim[()]x f x ax →∞-不存在,可断定()f x 不存在斜渐近线。
在本题中,函数221x xy x +=-的间断点只有1x =±.由于1lim x y →=∞,故1x =是垂直渐近线.(而11(1)1lim lim(1)(1)2x x x x y x x →-→-+==+-,故1x =-不是渐近线). 又211lim lim111x x x y x →∞→∞+==-,故1y =是水平渐近线.(无斜渐近线) 综上可知,渐近线的条数是2.故选C.(2)设函数2()(1)(2)()x x n xf x e e e n =---,其中n 为正整数,则(0)f '=()(A)1(1)(1)!n n ---(B)(1)(1)!n n --(C)1(1)!n n --(D)(1)!n n - 【答案】A【考点】导数的概念 【难易度】★★【详解一】本题涉及到的主要知识点:00000()()()limlimx x f x x f x yf x x x→→+-'==. 在本题中,按定义200()(0)(1)(2)()(0)lim lim0x x nx x x f x f e e e n f x x →→----'==-1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--.故选A.【详解二】本题涉及到的主要知识点:()[()()]()()()()f x u x v x u x v x u x v x ''''==+.在本题中,用乘积求导公式.含因子1x e -项在0x =为0,故只留下一项.于是20(0)[(2)()]x x nx x f e e e n ='=--1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--故选(A ).(3)设0(1,2,)n a n >=,123n n S a a a a =++++,则数列{}n S 有界是数列{}n a 收敛的()(A )充分必要条件(B )充分非必要条件(C )必要非充分条件(D )既非充分也非必要条件 【答案】B 【考点】数列极限 【难易度】★★★【详解】因0(1,2,)n a n >=,所以123n n S a a a a =++++单调上升.若数列{}n S 有界,则lim n n S →∞存在,于是11lim lim()lim lim 0n n n n n n n n n a S S S S --→∞→∞→∞→∞=-=-=反之,若数列{}n a 收敛,则数列{}n S 不一定有界.例如,取1n a =(1,2,)n =,则n S n =是无界的.因此,数列{}n S 有界是数列{}n a 收敛的充分非必要条件.故选(B ). (4)设20sin (1,2,3)k x K e xdx k π==⎰I 则有()(A)123I I I <<(B)321I I I <<(C)231I I I <<(D)213I I I << 【答案】D【考点】定积分的基本性质 【难易度】★★★【详解】本题涉及到的主要知识点:设a c b <<,则()()()bcbaacf x dx f x dx f x dx =+⎰⎰⎰.在本题中,210sin x I e xdx π=⎰,2220sin x I e xdx π=⎰,2330sin x I e xdx π=⎰222121sin 0x I I e xdx I I ππ-=<⇒<⎰,2332322sin 0x I I e xdx I I ππ-=>⇒>⎰,222323312sin sin sin x x x I I e xdx e xdx e xdx ππππππ-==+⎰⎰⎰2233()22sin()sin t x e t dt e xdxππππππ-=-+⎰⎰223()312[]sin 0x x e e xdx I I πππ-=->⇒>⎰因此213I I I <<.故选D.(5)设函数(,)f x y 可微,且对任意的,x y 都有(,)0f x y x∂>∂,(,)0f x y y∂<∂,则使不等式1122(,)(,)f x y f x y <成立的一个充分条件是() (A )12x x >,12y y <(B )12x x >,12y y > (C )12x x <,12y y <(D )12x x <,12y y > 【答案】D【考点】多元函数的偏导数;函数单调性的判别 【难易度】★★★【详解】本题涉及到的主要知识点:函数单调性的判定法设函数()y f x =在[,]a b 上连续,在(,)a b 内可导.①如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; ②如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少. 在本题中,因(,)0f x y x∂>∂,当y 固定时对x 单调上升,故当12x x <时1121(,)(,)f x y f x y <又因(,)0f x y y∂<∂,当x 固定时对y 单调下降,故当12y y >时2122(,)(,)f x y f x y <因此,当12x x <,12y y >时112122(,)(,)(,)f x y f x y f x y << 故选D.(6)设区域D 由曲线sin y x =,2x π=±,1y =围成,则5(1)Dxy dxdy -=⎰⎰()(A )π (B )2 (C )-2 (D )π- 【答案】D【考点】二重积分的计算 【难易度】★★★【详解】本题涉及到的主要知识点:10,(,)(,)2(,),(,)D D f x y x y f x y dxdy f x y dxdy f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰对或为奇函数,对或为偶函数 在本题中,11555222sin sin 221(1)(1)()2x xDx y dxdy dx x y dy x y y dx ππππ---=-=-⎰⎰⎰⎰⎰5222221(1sin )(1sin )2x x dx x dx πππππ--=---=-⎰⎰ 其中521(1sin )2x x -,sin x 均为奇函数,所以52221(1sin )02x x dx ππ--=⎰,22sin 0xdx ππ-=⎰故选(D )(7)设1100c α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201c α⎛⎫⎪= ⎪⎪⎝⎭,3311c α⎛⎫ ⎪=- ⎪ ⎪⎝⎭,4411c α-⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为()(A)123,,ααα(B)124,,ααα(C)134,,ααα(D)234,,ααα 【答案】C【考点】向量组的线性相关与线性无关 【难易度】★★【详解】本题涉及到的主要知识点:n 个n 维向量相关12,,,0n ααα⇔=在本题中,显然134123011,,0110c c c ααα-=-=,所以134,,ααα必线性相关.故选C.(8)设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫⎪= ⎪⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -=() (A)100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(B)100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(C)200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(D)200020001⎛⎫⎪ ⎪⎪⎝⎭【答案】B【考点】矩阵的初等变换;初等矩阵 【难易度】★★★【详解】本题涉及到的主要知识点:设A 是一个m n ⨯矩阵,对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵.在本题中,由于P 经列变换为Q ,有12100110(1)001Q P PE ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦, 那么111112121212[(1)][(1)](1)()(1)Q AQ PE A PE E P AP E ----== 100110011101110100120012⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 故选B.二、填空题:914小题,每小题4分,共24分.请将答案写在答题..纸.指定位置上. (9)设()y y x =是由方程21y x y e -+=所确定的隐函数,则22x d y dx == .【答案】1【考点】隐函数的微分 【难易度】★★【详解】本题涉及到的主要知识点: 隐函数求导的常用方法有:1. 利用复合函数求导法,将每个方程两边对指定的自变量求偏导数(或导数),此时一定要注意谁是自变量,谁是因变量,对中间变量的求导不要漏项。
2004年全国硕士研究生入学统一考试数学二试题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = .(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为____..(3)1+∞=⎰_____..(4)设函数(,)z z x y =由方程232x zz ey -=+确定, 则3z zx y∂∂+=∂∂______. (5)微分方程3()20y x dx xdy +-=满足165x y ==的特解为_______.(6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A*为A 的伴随矩阵, E 是单位矩阵, 则B =______-.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量20cos xtdt α=⎰, 20x β=⎰,30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是[](A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα (8)设()(1)f x x x =-, 则[](A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.(9)22lim (1)n nn→∞+等于[](A )221ln xdx ⎰. (B ) 212ln xdx ⎰.(C ) 212ln(1)x dx +⎰. (D ) 221ln(1)x dx +⎰(10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得 [](A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >. (D )对任意的(,0)x δ∈-有()(0)f x f >.(11)微分方程21sin y y x x ''+=++的特解形式可设为 [](A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.(D )2cos y ax bx c A x *=+++(12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于[](A)11()dx f xy dy -⎰⎰.(B)2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰. (D )2sin 200(sin cos )d f r rdr πθθθθ⎰⎰(13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为[](A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.(14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有[](A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关.三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上,2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导.(17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数;(Ⅱ)求()f x 的值域.(18)(本题满分12分)曲线2x xe e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形.该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值; (Ⅱ)计算极限()lim ()t S t F t →+∞(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e->-. (20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时.(21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z zx y x y∂∂∂∂∂∂∂. (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩ 试问a 取何值时, 该方程组有非零解, 并求出其通解.(23)(本题满分9分)设矩阵12314315a -⎛⎫⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A是否可相似对角化.2003年全国硕士研究生入学统一考试数学二试题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是__________.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为__________.(5) 设α为3维列向量,T α是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则B =________. 二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有[ ](A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e .[ ](3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为 [ ](A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x(4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有[ ](A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点. (D) 三个极小值点和一个极大值点.(5)01xdx x 02tan , 则 [ ](A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >>(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则[ ](A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e x x ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点? 四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d 五 、(本题满分9分)计算不定积分 .)1(232arctan dx x xex⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min/33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.)十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0; (2)在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'badx x f a a b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax , :2l 032=++a cy bx , :3l032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2002年全国硕士研究生入学统一考试数学(二)试题一、填空题(本题共5小题,每小题3分,满分15分)1.设函数0)(2arcsin 12tan ≤<⎪⎩⎪⎨⎧=-x x aex f xe xx在0=x 处连续,则=a ( ). 2.位于曲线xxe y -=(+∞<≤x 0)下方,x 轴上方的无界图形的面积为( ).3.02='+''y y y 满足初始条件21)0(,1)0(='=y y 的特解是( ). 4.1lim 1cos n n →∞++=( ).5.矩阵⎪⎪⎪⎭⎫⎝⎛-----222222220的非零特征值是( ).二、单项选择题(本题共5小题,每小题3分,满分15分.)1.函数)(u f 可导,)(2x f y =当自变量x 在1-=x 处取得增量1.0-=∆x 时,相应的函数增量y ∆的线性主部为0.1,则)1(f '= (A)-1; (B)0.1;(C)1; (D)0.5.2.函数)(x f 连续,则下列函数中,必为偶函数的是 (A)⎰x dt t f 02)(; (B)⎰x dt t f 02)(;(C)⎰--x dt t f t f t 0)]()([; (D)⎰-+xdt t f t f t 0)]()([.3.设)(x f y =是二阶常系数微分方程xe qy y p y 3=+'+''满足初始条件0)0()0(='=y y 的特解,则极限)()1ln(lim 20x y x x +→(A)不存在; (B)等于1; (C)等于2; (D) 等于3. 4.设函数)(x f 在+R 上有界且可导,则(A)当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x ;(B)当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x ;(C) 当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x ;(D) 当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .5.设向量组321,,ααα线性无关,向量1β可由321,,ααα线性表示,而向量2β不能由321,,ααα线性表示,则对于任意常数k 必有(A)21321,,,ββααα+k 线性无关;(B) 21321,,,ββααα+k 线性相关; (C)21321,,,ββαααk +线性无关; (D) 21321,,,ββαααk +线性相关.三、(本题满分6分)已知曲线的极坐标方程为θcos 1-=r ,求该曲线对应于6πθ=处的切线与法线的直角坐标方程.四、(本题满分7分)设函数10012)(2)1(223≤≤<≤-⎪⎩⎪⎨⎧+==+x x xx x f y x x e xe ,求函数⎰-=x dt t f x F 1)()(的表达式.五、(本题满分7分)已知函数)(x f 在+R 上可导,0)(>x f ,1)(lim =+∞→x f x ,且满足x he xf hx x f h 11))()((lim 0=+→,求)(x f . 六、(本题满分7分)求微分方程0)2(=-+dx y x xdy 的一个解)(x y y =,使得由曲线)(x y y =与直线2,1==x x 以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体的体积最小. 七、(本题满分7分)某闸门的形状与大小如图所示,其中直线l 为对称轴,闸门的上部为矩形ABCD,下部由二次曲线与线段 AB所围成.当水面与闸门的上断相平时,欲使闸门矩形部分与 承受的水压与闸门下部承受的水压之比为5:4,闸门矩形部分 的高h 应为多少? 八、(本题满分8分)设30<<n x ,)3(1n n n x x x -=+(n =1,2,3,…). 证明:数列{n x }的极限存在,并求此极限.九、(本题满分8分)设0>>a b ,证明不等式aba b a b b a a 1ln ln 222<--<+.十、(本题满分8分)设函数)(x f 在x =0的某邻域具有二阶连续导数,且0)0()0()0(≠'''f f f .证明:存在惟一的一组实数c b a ,,,使得当0→h 时,)()0()3()2()(2h o f h cf h bf h af =-++.十一、(本题满分6分)已知A,B为三阶方阵,且满足E B B A 421-=-.⑴证明:矩阵E A 2-可逆;⑵若⎪⎪⎪⎭⎫⎝⎛-=200021021B ,求矩阵A. 十二、(本题满分6分)已知四阶方阵),,,(4321αααα=A , 4321,,,αααα均为四维列向量,其中432,,ααα线性无关,3212ααα-=.若4321ααααβ+++=,求线性方程组β=Ax 的通解.2001年全国硕士研究生入学统一考试数学(二)试题一、填空题(本题共5小题,每小题3分,满分15分) 1、213lim21-++--→x x xx x =( ).2、曲线1)cos(2-=-+e xy eyx 在点(0,1)处 的切线方程为 :( ). 3、xdx x x 223cos )sin (22⎰-+ππ=( ). 4、微分方程11arcsin 2=-+'x y x y 满足)(21y =0的特解为:( ).5、方程组⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛211111111321x x x a a a 有无穷多解,则a =( ).二、单项选择题(本题共5小题,每小题3分,满分15分.) 1、1101)(>≤⎩⎨⎧=x x x f 则)]}([{x f f f =( A ) 0;(B )1;(C )1101>≤⎩⎨⎧x x ; (D )111>≤⎩⎨⎧x x .2、0→x 时,)1ln()cos 1(2x x +-是比n x x sin 高阶的无穷小,而nx x sin 是比12-x e 高阶的无穷小,则正整数n 等于( A )1;(B )2;(C )3;(D )4. 3、曲线22)3()1(--=x x y 的拐点的个数为 ( A )0;(B )1;(C )2;(D )3.4、函数)(x f 在区间(1-δ,1+δ)内二阶可导,)(x f ' 严格单调减小,且)1(f =)1(f '=1,则(A )在(1-δ,1)和(1,1+δ)内均有)(x f x <; (B )在(1-δ,1)和(1,1+δ)内均有)(x f x >;(C )在(1-δ,1)内有)(x f x <,在(1,1+δ)内有)(x f x >; (D )在(1-δ,1)内有)(x f x >,在(1,1+δ)内有)(x f x <. 5、设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示: 则)(x f y '=的图形为 ( )三、(本题满分6分)求⎰++221)12(xxdx.四、(本题满分7分)求函数)(x f =sin sin sin lim()sin xt x t x t x-→的表达式,并指出函数)(x f 的间断点及其类型.五、(本题满分7分)设)(x ρρ=是抛物线x y =上任意一点M (y x ,)(1≥x )处的曲率半径,)(x s s =是该抛物线上介于点A (1,1)与M 之间的弧长,计算222)(3ds d ds d ρρρ-的值(曲率K =23)1(2y y '+''). 六、(本题满分7分))(x f 在[0,+∞)可导,)0(f =0,且其反函数为)(x g . 若x x f e x dt t g 2)(0)(=⎰,求)(x f .七、(本题满分7分)设函数)(x f ,)(x g 满足)(x f '=)(x g , )(x g '=2xe -)(x f且)0(f =0,(0)g =2,求dx x x f x x g ⎰+-+π2])1()(1)([八、(本题满分9分)设L 为一平面曲线,其上任意点P (y x ,)(0>x )到原点的距离,恒等于该点处 的切线在y 轴上的截距,且L 过点(0.5,0).1、 求L 的方程2、 求L 的位于第一象限部分的一条切线,使该切线与L 以及两坐标轴所围成的图形的面积最小.九、(本题满分7分)一个半球型的雪堆,其体积的融化的速率与半球面积S 成正比比例系数K>0.假设在融化过程中雪堆始终保持半球形状,已知半径为 r 0 的雪堆在开始融化的3小时内,融化了其体积的7/8,问雪堆全部融化需要多少时间?十、(本题满分8分))(x f 在[-a ,a]上具有二阶连续导数,且)0(f =01、 写出)(x f 的带拉格朗日余项的一阶麦克劳林公式;2、 证明在[-a ,a]上至少存在一点η,使⎰-=''a adx x f f a )(3)(3η十一、(本题满分6分)已知⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=011101110,111011001B A 且满足AXA+BXB=AXB+BXA+E ,求X .十二、(本题满分6分)设4321,,,αααα为线性方程组AX=O 的一个基础解系, 144433322211,,,ααβααβααβααβt t t t +=+=+=+=,其中t 为实常数试问t 满足什么条件时4321,,,ββββ也为AX=O 的一个基础解系.2000 年全国硕士研究生入学统一考试一、 填空题1.2.3.4.5.二、选择题6. 7.8.9.10.三、解答题11.12.13.14.15.16. 17.18.19.20.21.1999 年全国硕士研究生入学统一考试(数学二)1998 年全国硕士研究生入学统一考试(数学二)1997 年全国硕士研究生入学统一考试(数学二)1996 年全国硕士研究生入学统一考试(数学二)1995 年全国硕士研究生入学统一考试(数学二)1994 年全国硕士研究生入学统一考试(数学二)1993 年全国硕士研究生入学统一考试(数学二)1992 年全国硕士研究生入学统一考试(数学二)1991 年全国硕士研究生入学统一考试(数学二)1990 年全国硕士研究生入学统一考试(数学二)。
2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3【答案】:C【解析】:221lim 1x x xx →+=∞-,所以1x =为垂直的 22lim 11x x xx →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C (2)设函数2()(1)(2)()x x nx f x e e e n =---,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n - 【答案】:C【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+---所以'(0)f =1(1)!n n --(3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的(A)充分必要条件. (B)充分非必要条件.(C )必要非充分条件.(D )即非充分地非必要条件.【答案】:(B)(4)设2kx keI e=⎰sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3. (B) I 2< I 2< I 3. (C) I 1< I 3 <I 1,(D) I 1< I 2< I 3.【答案】:(D) 【解析】::2sin kx k eI e xdx =⎰看为以k 为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin kx k eI e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f(x 2,y 2)成立的一个充分条件是 (A) x 1> x 2, y 1< y 2. (B) x 1> x 2, y 1>y 1. (C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x ∂>∂,(,)0f x y y∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。
2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为() (A )0(B )1 (C )2 (D )3(2)设函数2()(1)(2)()x x nx f x e ee n =---,其中n 为正整数,则'(0)f = (A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n - (3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的(A)充分必要条件.(B)充分非必要条件. (C)必要非充分条件.(D )即非充分地非必要条件. (4)设2k x k e I e =⎰ sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3.(B) I 2< I 2< I 3. (C) I 1< I 3 <I 1, (D) I 1< I 2< I 3.(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f (x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2.(B) x 1> x 2, y 1>y 1. (C) x 1< x 2, y 1< y 2. (D) x 1< x 2, y 1> y 2.(6)设区域D 由曲线,1,2,sin =±==y x x y π围成,则())(15⎰⎰=-dxdy y x ππ--)(2)(2)()(D C B A(7)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中1234,,,c c c c 为任意常数,则下列向量组线性相关的是( )(A )123,,ααα (B )124,,ααα(C )134,,ααα (D )234,,ααα(8)设A 为3阶矩阵,P 为3阶可逆矩阵,且1112P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,()123,,P ααα=,()1223,,Q αααα=+则1Q AQ -=( )(A )121⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )112⎛⎫ ⎪ ⎪ ⎪⎝⎭(C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D )221⎛⎫ ⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设()y y x =是由方程21y x y e -+=所确定的隐函数,则________。
2012考研数学二真题及参考答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:C【解析】:221lim 1x x xx →+=∞-,所以1x =为垂直的 22lim 11x x xx →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C (2)设函数2()(1)(2)()xxnx f x e e e n =---,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n ---(B )(1)(1)!nn -- (C )1(1)!n n --(D )(1)!nn - 【答案】:C 【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+---所以'(0)f =1(1)!n n --(3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的 (A)充分必要条件. (B)充分非必要条件.(C )必要非充分条件. (D )即非充分地非必要条件. 【答案】:(A)【解析】:由于0na >,则1n n a ∞=∑为正项级数,S n=a 1+a 2+…a n为正项级数1n n a ∞=∑的前n 项和。
正项级数前n 项和有界与正向级数1nn a∞=∑收敛是充要条件。
故选A(4)设2kx keI e=⎰sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3. (B) I 2< I 2< I 3.(C) I 1< I 3 <I 1,(D) I 1< I 2< I 3. 【答案】:(D) 【解析】::2sin kx k eI e xdx=⎰看为以k为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin k x k eI e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f(x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2. (B) x 1> x 2, y 1>y 1.(C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x∂>∂,(,)0f x y y ∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。
2004年全国硕士研究生入学统一考试数学二试题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = .(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为____..(3)121dx x x +∞=-⎰_____..(4)设函数(,)z z x y =由方程232x z z e y -=+确定, 则3z zx y∂∂+=∂∂______. (5)微分方程3()20y x dx xdy +-=满足165x y==的特解为_______. (6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵, 则B =______-.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. )(7)把0x +→时的无穷小量2cos xt dt α=⎰, 20tan x t dt β=⎰,30sin x t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是[](A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα(8)设()(1)f x x x =-, 则[](A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点.(C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点.(D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.(9)22212lim ln (1)(1)(1)n n nnnn→∞+++等于[](A )221ln xdx ⎰. (B ) 212ln xdx ⎰.(C ) 212ln(1)x dx +⎰. (D ) 221ln (1)x dx +⎰(10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得 [](A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >. (D )对任意的(,0)x δ∈-有()(0)f x f >. (11)微分方程21sin y y x x ''+=++的特解形式可设为 [](A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.(D )2cos y ax bx c A x *=+++(12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于[](A )221111()x x dx f xy dy ----⎰⎰. (B )222002()y y dy f xy dx -⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰. (D )2sin 200(sin cos )d f r rdr πθθθθ⎰⎰(13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为[](A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.(14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有[](A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关.三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导.(17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数;(Ⅱ)求()f x 的值域.(18)(本题满分12分)曲线2x xe e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值; (Ⅱ)计算极限()lim ()t S t F t →+∞(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e->-. (20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时.(21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z zx y x y∂∂∂∂∂∂∂. (22)(本题满分9分)设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩ 试问a 取何值时, 该方程组有非零解, 并求出其通解.(23)(本题满分9分)设矩阵12314315a -⎛⎫ ⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A 是否可相似对角化.2003年全国硕士研究生入学统一考试数学二试题一.填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= . (2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是__________.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为__________.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则B =________.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有[ ](A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知x x y ln =是微分方程)(yxx y y ϕ+='的解,则)(y x ϕ的表达式为 [ ](A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x(4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有[ ](A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点.yO x(5)设⎰=41tan πdx x x I ,dx xxI ⎰=402tan π, 则 [ ](A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >>(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则[ ] (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d五 、(本题满分9分)计算不定积分 .)1(232arctan dx x xe x ⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分. (1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0; (2)在(a,b)内存在点ξ,使)(2)(22ξξf dxx f ab ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'ba dx x f aa b f .)(2))((22ξξη 十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax , :2l 032=++a cy bx , :3l032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2002年全国硕士研究生入学统一考试数学(二)试题一、填空题(本题共5小题,每小题3分,满分15分)1.设函数)(2arcsin 12tan ≤<⎪⎩⎪⎨⎧=-x x aex f xe xx在0=x 处连续,则=a ( ). 2.位于曲线xxe y -=(+∞<≤x 0)下方,x 轴上方的无界图形的面积为( ). 3.02='+''y y y 满足初始条件21)0(,1)0(='=y y 的特解是( ). 4.12lim [1cos 1cos 1cos]n n n n nnπππ→∞++++++=( ).5.矩阵⎪⎪⎪⎭⎫⎝⎛-----222222220的非零特征值是( ).二、单项选择题(本题共5小题,每小题3分,满分15分.)1.函数)(u f 可导,)(2x f y =当自变量x 在1-=x 处取得增量1.0-=∆x 时,相应的函数增量y ∆的线性主部为0.1,则)1(f '= (A)-1; (B)0.1; (C)1; (D)0.5.2.函数)(x f 连续,则下列函数中,必为偶函数的是 (A)⎰x dt t f 02)(; (B)⎰x dt t f 02)(;(C)⎰--xdt t f t f t 0)]()([; (D) ⎰-+x dt t f t f t 0)]()([.3.设)(x f y =是二阶常系数微分方程xe qy y p y 3=+'+''满足初始条件0)0()0(='=y y 的特解,则极限)()1ln(lim 20x y x x +→(A)不存在; (B)等于1; (C)等于2; (D) 等于3.4.设函数)(x f 在+R 上有界且可导,则(A)当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x ;(B)当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x ;(C) 当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x ;(D) 当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .5.设向量组321,,ααα线性无关,向量1β可由321,,ααα线性表示,而向量2β不能由321,,ααα线性表示,则对于任意常数k 必有 (A)21321,,,ββααα+k 线性无关;(B) 21321,,,ββααα+k 线性相关;(C)21321,,,ββαααk +线性无关; (D)21321,,,ββαααk +线性相关.三、(本题满分6分)已知曲线的极坐标方程为θcos 1-=r ,求该曲线对应于6πθ=处的切线与法线的直角坐标方程.四、(本题满分7分)设函数10012)(2)1(223≤≤<≤-⎪⎩⎪⎨⎧+==+x x xx x f y x xe xe ,求函数⎰-=x dt t f x F 1)()(的表达式.五、(本题满分7分)已知函数)(x f 在+R 上可导,0)(>x f ,1)(lim =+∞→x f x ,且满足x he xf hx x f h 11))()((lim 0=+→,求)(x f . 六、(本题满分7分)求微分方程0)2(=-+dx y x xdy 的一个解)(x y y =,使得由曲线)(x y y =与直线2,1==x x 以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体的体积最小.七、(本题满分7分)某闸门的形状与大小如图所示,其中直线l 为对称轴,闸门的上部为矩形ABCD,下部由二次曲线与线段 AB所围成.当水面与闸门的上断相平时,欲使闸门矩形部分与 承受的水压与闸门下部承受的水压之比为5:4,闸门矩形部分 的高h 应为多少? 八、(本题满分8分)设30<<n x ,)3(1n n n x x x -=+(n =1,2,3,…). 证明:数列{n x }的极限存在,并求此极限.九、(本题满分8分)设0>>a b ,证明不等式aba b a b b a a 1ln ln 222<--<+. 十、(本题满分8分)设函数)(x f 在x =0的某邻域具有二阶连续导数,且0)0()0()0(≠'''f f f .证明:存在惟一的一组实数c b a ,,,使得当0→h 时,)()0()3()2()(2h o f h cf h bf h af =-++.十一、(本题满分6分)已知A,B为三阶方阵,且满足E B B A 421-=-.⑴证明:矩阵E A 2-可逆;⑵若⎪⎪⎪⎭⎫⎝⎛-=200021021B ,求矩阵A. 十二、(本题满分6分)已知四阶方阵),,,(4321αααα=A ,4321,,,αααα均为四维列向量,其中432,,ααα线性无关,3212ααα-=.若4321ααααβ+++=,求线性方程组β=Ax 的通解.2001年全国硕士研究生入学统一考试数学(二)试题一、填空题(本题共5小题,每小题3分,满分15分) 1、213lim21-++--→x x xx x =( ). 2、曲线1)cos(2-=-+e xy eyx 在点(0,1)处 的切线方程为 :( ). 3、xdx x x 223cos )sin (22⎰-+ππ=( ).4、微分方程11arcsin 2=-+'x y x y 满足)(21y =0的特解为:( ). 5、方程组⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛211111111321x x x a a a 有无穷多解,则a =( ).二、单项选择题(本题共5小题,每小题3分,满分15分.) 1、111)(>≤⎩⎨⎧=x x x f 则)]}([{x f f f =( A ) 0;(B )1;(C )1101>≤⎩⎨⎧x x ; (D )111>≤⎩⎨⎧x x . 2、0→x 时,)1ln()cos 1(2x x +-是比nx x sin 高阶的无穷小,而nx x sin 是比12-x e 高阶的无穷小,则正整数n 等于( A )1;(B )2;(C )3;(D )4. 3、曲线22)3()1(--=x x y 的拐点的个数为 ( A )0;(B )1;(C )2;(D )3.4、函数)(x f 在区间(1-δ,1+δ)内二阶可导,)(x f ' 严格单调减小,且 )1(f =)1(f '=1,则(A )在(1-δ,1)和(1,1+δ)内均有)(x f x <; (B )在(1-δ,1)和(1,1+δ)内均有)(x f x >;(C )在(1-δ,1)内有)(x f x <,在(1,1+δ)内有)(x f x >; (D )在(1-δ,1)内有)(x f x >,在(1,1+δ)内有)(x f x <. 5、设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示: 则)(x f y '=的图形为 ( )三、(本题满分6分)求⎰++221)12(xxdx.四、(本题满分7分)求函数)(x f =sin sin sin lim()sin xt x t x t x-→的表达式,并指出函数)(x f 的间断点及其类型.五、(本题满分7分)设)(x ρρ=是抛物线x y =上任意一点M (y x ,)(1≥x )处的曲率半径,)(x s s =是该抛物线上介于点A (1,1)与M 之间的弧长,计算222)(3ds d ds d ρρρ-的值(曲率K =23)1(2y y '+'').六、(本题满分7分))(x f 在[0,+∞)可导,)0(f =0,且其反函数为)(x g . 若x x f e x dt t g 2)(0)(=⎰,求)(x f .七、(本题满分7分)设函数)(x f ,)(x g 满足)(x f '=)(x g , )(x g '=2xe -)(xf 且)0(f =0,(0)g =2,求dx x x f x x g ⎰+-+π2])1()(1)([八、(本题满分9分)设L 为一平面曲线,其上任意点P (y x ,)(0>x )到原点的距离,恒等于该点处 的切线在y 轴上的截距,且L 过点(0.5,0).1、 求L 的方程2、 求L 的位于第一象限部分的一条切线,使该切线与L 以及两坐标轴所围成的图形的面积最小.九、(本题满分7分)一个半球型的雪堆,其体积的融化的速率与半球面积S 成正比 比例系数K>0.假设在融化过程中雪堆始终保持半球形状,已知半径为 r 0 的雪堆在开始融化的3小时内,融化了其体积的7/8,问雪堆全部融化需要多少时间? 十、(本题满分8分))(x f 在[-a ,a]上具有二阶连续导数,且)0(f =01、 写出)(x f 的带拉格朗日余项的一阶麦克劳林公式;2、 证明在[-a ,a]上至少存在一点η,使⎰-=''a adx x f f a )(3)(3η十一、(本题满分6分)已知⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=011101110,111011001B A 且满足AXA+BXB=AXB+BXA+E ,求X .十二、(本题满分6分)设4321,,,αααα为线性方程组AX=O 的一个基础解系,144433322211,,,ααβααβααβααβt t t t +=+=+=+=,其中t 为实常数试问t 满足什么条件时4321,,,ββββ也为AX=O 的一个基础解系.2000 年全国硕士研究生入学统一考试一、 填空题1.2.3.4.5.二、选择题6.7.8.9.10.三、解答题11.12.13.14.15.16.17.18.19.20.21.1999 年全国硕士研究生入学统一考试(数学二)1998 年全国硕士研究生入学统一考试(数学二)1997 年全国硕士研究生入学统一考试(数)学二1996 年全国硕士研究生入学统一考试(数学二)1995 年全国硕士研究生入学统一考试(数)学二1994 年全国硕士研究生入学统一考试(数学二)1993 年全国硕士研究生入学统一考试(数学二)1992 年全国硕士研究生入学统一考试(数学二)1991 年全国硕士研究生入学统一考试(数学二)学二)。