铝电解电容寿命计算公式
- 格式:pdf
- 大小:419.94 KB
- 文档页数:22
铝电解电容寿命的简单推算1) 不含有纹波电流工作状态的铝电解电容器的推算。
基本依据为“10℃法则”,即环境温度每上升10℃寿命减半,反之亦然。
这个10℃法则只在零纹波电流条件下适用,在铝点解电容流过比较大的纹波电流时不一定适用。
2) 公式推算。
在额定电压下,铝电解电容器的寿命可以由下式计算:)10(200TT L L -⨯= 式中,L 和0L 分别为实际环境温度T 时的寿命和额定最高温度0T 时的寿命。
上面的推算方法仅适用于存储状态和无纹波电流(很小纹波电流)的工作状态,对于明显含有纹波电流的场合上述方法不一定适用,这时候应该将纹波电流的效应考虑在应用条件中。
铝电解电容寿命估算 环境因子 包括环境温度,应用电压,纹波电流voltage tem p K K Lr Lx ⨯⨯=Lx 估算的寿命 Lr 寿命基数temp K 温度系数 voltage K 电压系数环境温度系数铝电解电容器是一种电化学元件,化学反应速度遵循Arrhenius 方程10)(0002r T T tem p L K L Lr -⨯=⨯= 10)(02r T T tem p K -=Lr 估算寿命0L 寿命基数 0T 最高额定温度 r T 实际环境温度电压系数voltage K =1纹波电流的影响DC AC W W W +=D C D C e AC I V R I W ⨯+⨯=2W 内部功率损耗AC W 电源纹波电流造成的功率损耗 DC W 直流电源造成的功率损耗 AC I 纹波电流e R 纹波频率下的ESRDC V DC 电压 DC I 漏电流如果DC 电压在额定电压下,漏电流远远小于纹波电流,纹波功率损耗远大于直流功率损耗。
功率损耗计算公式:e AC A R I W W ⨯==2电容温度提到到一定程度,内部产生的热量与热辐射平衡。
平衡的温度计算公式。
T A R I e AC ∆⨯⨯=⨯β2 所以AR I T eAC ⨯⨯=∆β2=β热辐射常数W⨯3-10℃2cm=A 表面面积)(2Cm 、对L D ⨯ψ电容)4()4/(L D D A +=πT ∆由于纹波电流导致的核心温度上升使用条件与铝电解电容寿命的关系在很多应用中 铝电解电容器中将流过纹波电流,甚至是非常高的纹波电流。
铝电解电容寿命试验规律
电容c的计算公式:c=εs/4πkd 。
其中,ε是一个常数,s为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。
在电容元件两端电压u的参考方向给定时,若
以q表示参考正电位极板上的电荷量,则电容元件的电荷量与电压之间满足q=cu。
定义式: c=q/u。
电容器的电势能计算公式:e=cu^2/2=qu/2=q^2/2c。
多电容器并联计算公式:c=c1+c2+c3+…+cn。
多电容器串联计算公式:1/c=1/c1+1/c2+…+1/cn。
三电容器串联:c=(c1*c2*c3)/(c1*c2+c2*c3+c1*c3)。
电容优点:
1、高稳定性
液态铝电解电容可以持续在高温环境中平衡工作,采用固态铝电解电容可以轻易提高
主板性能。
同时,由于其阔温度范围的平衡电阻,适合电源滤波。
它可以有效地提供更多
平衡丰沛的电源,在超频中尤为重要。
2、寿命长
固态铝电解电容具备极长的使用寿命(使用寿命少于50年)。
与液态铝电解电容较之,可以算是“长命百岁”了。
它不能被打穿,也不必害怕液态电解质干枯以及泄漏影响主板
稳定性。
由于没液态电解质诸多问题的所苦,固态铝电解电容并使主板更加平衡可信。
3、低esr和高额定纹波电流
esr(equivalentseriesresistance)指串联耦合电阻,就是电容非常关键的指标。
esr
越高,电容充放电的速度越慢,这个性能直接影响至微处理器供电电路的脱藕性能,在高
频电路中固态电解电容的高esr特性的优势更加显著。
铝电解电容器寿命的计算方法LIFETIME CALCULATION FORMULA OF ALUMINUM ELECTROLYTIC CAPACITORS铝电解电容的寿命的计算公式1. Lifetime Calculation Formula 寿命计算公式L : Life expectancy at the time of actual use. 实际使用平均寿命Lb : Basic life at maximum operating temperature 最大工作温度下的基本寿命Tmax : Maximum operating temperature 最大工作温度Ta : Actual ambient temperature 实际环境温度ΔTjo : Internal temperature rise when maximum rated ripple current is R, USC, USG : 10℃VXP : 3.5℃Other type : 5℃ 加上最大额定波纹电流后,电容器的内部温升USR, USC, USG ::10℃VXP : 3.5℃其它类型:5℃ΔTj : Internal temperature rise when actual ripple current is applied. 加入实际波纹电流后,电容内部的温升F : Frequency coefficient 频率系数[这个不李理解]Io : Rated ripple current at maximum operating temperature 最高工作温度时的额定波纹电流I : Actual ripple current 实际波纹电流2. Ambient Temperature Calculation Formula 环境温度计算公式If measuring ambient temperature (Ta) is difficult, Ta can be calculated from surface temperature of the capacitor as follows. .Ta = Tc –ΔTj/α 如果测量环境温度Ta有困难,Ta可以根据电容器的表面温度按下式计算:Ta = Tc –ΔTj/αTa : Calculated ambient Temperature 计算所使用的环境温度Tc : Surface Temperature of capacitor 电容器的表面温度α : Ratio of case top and core of capacitor element [此处不太理解]CaseφD ≤ 8 10,12.5 16, 18 20, 22 25 30 35α 1.0 1.1 1.2 1.3 1.4 1.5 1.63. Ripple Current Multiplier 额定电流系数(1) Temperature coefficient 温度系数Temperature coefficients are shown as below. 温度系数选取如下:USR, USC, USG:Ambient Temp.(℃)环境温度85 ≤65Coefficien 系数 1.0 1.3Other 85°C type:Ambient Temp.(℃)环境温度85 70 ≤50Coefficien 系数 1.0 1.6 2.0105°C type:Ambient Temp.(℃)环境温度105 85 ≤65Coefficien 系数 1.0 1.7 2.1Note: Where the temperature coefficient is used, life extension cannot be expected any more because the temperature coefficient is set up on condition of the same life time at maximum operating temperature. 注意:使用温度系数,不可指望寿命延长,因为温度系数是建立在最高工作温度下的相同寿命条件下的。
铝电解电容常见应用问题解答 1.铝电解电容对开关电源的影响?性能上影响的主要是滤波效果,包括低频纹波和高频峰峰值。
另外,假设设备的每一个元器件都合理应用的话,那么设备的寿命便很大程度上由铝电解电容元件决定了(当然风扇的寿命也要重点考虑)。
因为铝电解电容是一种耗损性器件,到了一定的时间就“寿终正寝”了。
例如:新干线的一个编制16节车厢里,使用DC450V,5000uF大型铝电解电容器1760只,为了保障安全,规定三年更换一次。
半导体器件则不同,如果是正确使用,并且在器件制造过程中又没有什么潜在缺陷的话,其使用寿命是相当的长的,在设计时可以不考虑寿命问题。
2.开关电源对铝电解电容的要求?开关电源引入开关工作方式,提高工作频率,可以提高效率,减小体积。
但也带来了新的矛盾。
就电解电容来说,主要反映在:∙要求电容的耐纹波电流能力要提高。
因为频率提高,电容的交流阻抗下降了,流过电容的电流更大了。
∙小体积。
开关电源一个主要特点就是体积小,尽管提高频率后所需变压器和电容的体积自然会减小,但它还是希望电容能够越小越好,因为即使如此,电容仍然在开关电源中占去了不小的空间(尤其是AC/DC中的输入滤波)。
∙高频低阻抗。
在低频下,滤波效果主要由电容值大小决定,在高频下,电解电容中的E SR在整个阻抗中逐步上升到主要地位,因此高频滤波效果主要就由ESR决定了。
(当然更高的频率,例如大于1MHZ,则主要由ESL决定了阻抗大小,不过目前我们的产品中尚未出现此情况。
)。
鉴于此,开关电源要求电容的ESR值要做得很小。
另外,从电解电容本身来说,减小ESR也可以减小损耗,减小发热量,提高电容的耐纹波电流能力。
∙可靠性要高。
正常工作起来不爆炸或失效的概率极低是理所当然的要求。
另外尽管属有效寿命器件,当然也希望它寿命越长越好。
∙安全性问题。
越来越成为关注的焦点,及异常情况下爆炸时也不要起火燃烧。
尽管众多厂家努力开发阻燃的电解电容,但因为导电电解液属于有机物质,目前并没有取得理想的效果。
.铝电解中常用的计算公式一、电解质分子比KNaF(摩尔数)NaF(质量)1、K=3=2×3AlF(摩尔数)AlF(质量)2、分子比与游离的AlF%(质量)之间的关系:3设f为游离的AlF3%(质量),则,7.5f500K6-2KK=3-100+7.5f或f=100-3K+6=6+3K×100假如电解质里除了NaF和AlF3以外还有Al2O3和CaF2等,他们的质量%总和是∑α,则K=3-7.5f-∑α+1.5f100二、阳极耗费速度hc(cm/d)8.05d阳ηw c-3hc=×10(cm/d)d阳阳极电流密度, A/cm2η电解槽电流效率,%wc阳极耗费量,kg/t-Aldc阳极假密度,g/cm2(一般取1.6g/cm2)三、调停电解质分子比时,AlF3与NaF增添量的计算2P(K1-K2)q(AlF3)=K2(K1+2)kgq(NaF)=P(K2-K1)kgK1+2式中,q为调整时增添物的数目(kg);P为电解质中的冰晶石质量(kg);K1为调整前的分子比;K2为调整后的分子比。
四、母线转接周期(d)L(母线行程,cm)D=V(阳极耗费速度,cm/d)d五、电流效率(η)η=M实×100%M理M实实质铝产量,kg或tM理理论铝产量,kg或t,M理=0.3356ItI为电流强度t为通电时间六、电流效率与阴极电流密度之间的关系;.η=1-.Cq·dq为铝的电化学当量,0.3356g/(A·h)2C为每平方厘米阴极表面上单位时间内铝损失量,g/(cm2·h)七、电流效率与槽寿命之间的关系η=-0.051A+90.8 A 为槽寿命八、加铜稀释法测定槽内在产铝量(kg)=Q1(1-C2),(Cz-C2)Q 1为加入铜的量(kg);C2为槽内铝液的本底铜浓度(%);CZ为加铜后的总铜浓度(%);九、吨铝直流电耗(kWh/t-Al)12980V吨铝直流电耗=电能效率=ηV为电解槽均匀电压,V十、电解槽均匀电压(V)=E极化+△Va+△Vc+△Ve+△Vb+△Vae+△VpE极化为电解槽的极化电压;△Va为阳极电压降;△Vc为阴极电压降;△Ve为电解质电压降;△Vb为导电母线电压降;△Vae为阳极效应分摊电压;△Vp槽间联接母线电压降分摊值。
最近在网上寻找资料,获益非浅。
不能光索取而不奉献,花了一周的时间,牺牲了晚上和周末,得罪了夫人。
当然了,整理过程中,自己也有所提高。
同时也呼吁大家行动起来,多总结经验形成文字。
当然了,年轻人有所保留是可以理解的,毕竟为了减少竞争者;但是有些人说自己是退休者,为啥如此吝啬或障碍重重?网络是一个虚拟世界,现实生活已经有如此众多的虚伪,面子,为啥还要将其带入网络中呢?多么希望技术栏目中能恢复人与人间的真诚与无私奉献,体现出知识分子.学者.工程师的风范。
当然,许多人不错,但是更多的人让我感觉差劲。
我很少上网,也不愿与人争吵,只是提出个人的感受而已。
铝电解电容的寿命电源产品中经常用到铝电解电容,他的寿命往往决定了整个产品的寿命。
因此,了解如何计算铝电解电容的寿命很有必要。
下面将我的一些心得整理出来,供大家参考。
希望有助于提高国人的知识水平。
说白了很简单,只不过很多人找不到相关的资料而已。
同时也希望学校的教材中能够近早讲解相关知识。
我尽量少翻译,因为我的语言能力及相关的专业术语还不行。
仅供参考。
Chapter 1铝电解电容的特性1.1 Circuit model (等效模型)The following c ircuit models the aluminium electrolytic capacitor’s normal operation as well as the over voltage and reverse voltage behavior. (此模型包含正常运行,过压,反压时的特性)C AC cR P ESR LD = Anode capacitance (阳极电容)= Cathode capacitance(阴极电容)= Parallel resistance, due to dielectric (并联电阻)= Series resistance, as a result of connections, paper, electrolyte, ect. 等效串联电阻= Winding inductance and connections 等效串联电感= Over and reverse voltage 等效稳压管The capacitance Ca and Cc are the capacitance of the capacitor and is frequency and temperature depended. (Ca and Cc,它的容量是频率及温度的函数)The resistance ESR is the equivalent series resistance which is frequency and temperature depended. It also increases with the rated voltage. (ESR是频率及温度的函数,随着额定电压的增加而增加)The inductanc e L is the equivalent series inductance, and it’s independent for both frequency and temperature. It increases with terminal spacing. (L是频率及温度的函数)The resistance Rp is the equivalent parallel resistance and accounts for leakage current in the capacitor. It decreases with increasing the capacitance, temperature and voltage and it increases with time. (Rp的大小决定了漏电流的大小,随着容量温度电压的增加而降低,随着使用时间的延长而增加)The zener diode D models the over voltage and reverse voltage behavior. Application of over voltage on the order of 50 V beyond the capacitor’s surge voltage rating causes high。
铝电解电容寿命计算铝电解电容寿命很大程度上取决于环境因子与电性因子。
环境因子包括温度,湿度,大气压力和振动。
电性因子包括工作电压,纹波电流和充放电系数。
温度因子(环境温度与由于纹波电流导致的内在加热)最能判断铝电解电容寿命。
评估铝电解电容寿命的通用公式:非固态电解电容的寿命通常用环境温度系数、应用电压和纹波电流三个原理来体现。
按以下公式来计算:Lx=Lo*Ktemp*Kvoltage*KrippleLx:电解电容的评估寿命Lo:电解电容的寿命基数Ktemp:环境温度加速系数Kvoltage:电压加速系数Kripple:纹波电流加速系数Ktemp(环境温度系数)由于铝电解电容本质上是一种电气化学的组件,温度增加会促进化学反应并产生气体扩散在电解电容内部,从而导致电容容量逐步减小及(损失角)和等效内阻逐步增大。
以下公式是通过实验得出,体现了温度加速度因子和电容老化的关系:Lx=Lo*Ktemp=Lo*B(T o-T x)/10Ktemp= B(T o-T x0)/1Lx:电解电容的评估寿命Lo:电解电容的寿命基数T o:电解电容最大额定温度(℃)Tx:电解电容实际的环境温度B:温度加速度因子(约等于2)这个公式与阿列纽斯定律相似,阿列纽斯定律用来表述化学反应速率和温度之间的关系,并叫做铝电解电容的阿列纽斯定律。
当环境温度在40℃到最大额定温度之间时,温度加速度因子约等于2。
也就是说随着环境温度每增加10℃电容寿命将减半。
当环境温度在20℃到40℃之间时,温度加速度因子接近2,其寿命将延长。
但是工作条件与环境的变化,特别是工作条件与环境温度的互相变化。
环境温度在这个范围内将发生很大的变化,因此寿命评估要在40℃以下,应该用40℃作为Tx。
Kvoltage(应用电压系数)微小及大型号的铝电解电容应用较普遍,像贴片型、插件型、方块型在其寿命中有较小的电压效应。
只要电容用于电压和温度的规格之内,其它因子像温度和纹波电流决定电容寿命与电压类似。
铝电解电容器的寿命计算方法寿命估算(Life Expectancy):电解电容在最高工作温度下,可持续动作的时间。
Lx=Lo*2(To-Ta)/10Lx=实际工作寿命Lo=保证寿命To=最高工作温度(85℃or105℃)Ta= 电容器实际工作周围温度Example:规范值105℃/1000Hrs65℃寿命推估:Lx=1000*2(105-65)/10实际工作寿命:16000Hrs高温负荷寿命(Load Life)将电解电容器在最高工作温度下,印加额定工作电压,经一持续规定完成时间后,须符合下列变化:Δcap:试验前之值的20%以内tanδ:初期特性规格值的200%以下LC :初期特性规格值以下高温放置寿命(Shelf Life):将电解电容器在最高工作温度下,经一持续规定完成时间后,须符合下列变化:Δcap: 试验前之值的20%以内tanδ:初期特性规格值的200%以下LC:初期特性规格值以下高温充放电试验(Charge/Discharge Test)将电解电容器在最高工作温度下,印加额定工作电压,经充电30秒后再放电330秒为一cycle,如此经1,000 cycles后,须符合下列变化:Δcap : 试验前之值的10%以内tanδ : 初期特性规格值的175%以下LC : 初期特性规格值以下涟波负荷试验(Ripple Life)将电解电容器在最高工作温度下,印加直流电压及最大涟波电流(直流电压+最大涟波电压峰值=额定工作电压),经一持续规定完成时间后,须符合下列变化:Δcap : 试验前之值的20%以内tanδ : 初期特性规格值的200%以下LC : 初期特性规格值以下常用电解电容公式容抗: XC="1/"(2πfC) 【Ω】感抗: XL="2"πfL 【Ω】阻抗: Z=√ESR2+(XL-XC)2 【Ω】涟波电流: IR=√(βA△T/ESR) 【mArms】功率: P="I2ESR" 【W】谐振频率: fo="1/"(2π√LC) 【Hz】P=(I²*R)+(IL*V)=Irms²*ESR= I rms²*DF/2╥fc (IL*V为漏电流与跨接电压的乘积---忽略不计)损耗因素DF=ESR/XC具体的计算公式好像这个论坛里有,一般都是按照经验取,好像是1uF/W吧。
铝电解电容的寿命可以使用以下公式来估算:
寿命(小时)= A * exp(B / 温度) * C
其中,
A 是一个与电容器设计和制造相关的常数。
B 是与电容器操作温度相关的常数。
C 是与电容器工作电压相关的常数。
这个公式是根据Arrhenius 方程和电容器的实际应用经验得出的。
需要注意的是,这个公式只是对铝电解电容寿命进行粗略估算的一种方法,实际寿命可能受到多种因素的影响,如使用环境、工作电流、电容器质量等。
具体的常数值取决于电容器的品牌、型号和制造商。
对于具体的铝电解电容器,请参考其制造商提供的技术规格表或咨询相关专业人士以获取更准确的寿命计算公式和参数。
1.电解电容寿命计算基本公式L X=L0 ×K TEMPL X :电解电容器实际寿命L0 :目录标示寿命寿命K TEMP :温度关系影响系数2.电解电容使用不同温度时寿命计算公式L X =L0 ×K TEMP =L0 ×B10)0 (TX TL X :电解电容器实际寿命L0 :目录标示寿命寿命T0 :目录标示之电解电容最高使用温度℃T X :电解电容实际使用温度℃(B:温度系数)22-1例1、使用KLE 5000HR时,使用温度超过目录标示温度时目录105℃ 1000HR寿命使用在115℃时00XL X =L0 ×B10)0 (TX T-=5000×210115 105-=5000×21010-=5000×2-1=2,500 HR2-2例2、使用KLE 5000HR时,使用温度低于目录标示温度时目录105℃ 5000HR寿命使用在75℃时0 0XL X =L 0 × B10)0(TX T - =5000 × 21075105-=5000 × 21030=5000 × 23=40,000 HR3.电解电容Ripplee 关系寿命计算公式L X = L 0 × K TEMP × K voltage × K ripple= L 0 × B 10)0(TX T -× 250TT ∆-∆※L X:电解电容器实际寿命□L0 :电解电容器目录标示寿命寿命□B:系数)2(≈□T0 :目录标示之电解电容最高使用温度℃□T X :电解电容实际使用温度℃□K ripple:Ripplee系数)2(≈□T0 :最大标示Ripple印加时温升□T:电容器使用之Ripple电流在电容器中心增加温度3-1例1、使用KLE 5000HR时,Ripple关系(环境温度75℃,电容中心因Ripple温升10℃时)L x = L 0 × B 10)0(TX T - × 250T T ∆-∆ =5000 × 21057105℃℃-× 25105℃℃-=5000 × 21030℃× 255-℃=5000 × 23× 2-1=5000 × 8× 1/2=20,000 HR3-2例2、使用KLE 5000HR 时,Ripple 关系(环境温度85℃,电容中心因Ripple 温升0℃时)L x = L 0 × B 10)0(TX T - × 250T T ∆-∆ =5000 × 21058105℃℃-× 2505℃℃-=5000 × 21020℃× 255℃=5000 × 22 × 21=5000 × 4 × 2=40,000 HR4.电容器中心点上升温度△T□电容器经过涟波电流后中心温度上升 □ 可算出寿命□△T = K C × (Ts – Tx)□K C:下列表中系□T S :电容器表面之温度□T X :周围温度¢径(m/m)5¢~8¢10¢12.5¢16¢18¢22¢25¢KC 1.10 1.15 1.20 1.25 1.30 1.35 1.40 ¢径(m/m)30¢35¢40¢50¢63.5¢76¢89¢100¢KC 1.50 1.65 1.75 1.90 2.20 2.50 2.80 3.10。
寿命计算公式:1.不考虑纹波时:L=L 0×2(T0-T)/10L:温度T时电容寿命;L 0:温度T 0时电容寿命。
T 0:最高工作温度;T:实际工作温度。
2.考虑纹波时L=L D ×2(T0-T)/10×K [1-(I/I0)*(I/I0)]×ΔT/10L:温度T时的考虑纹波电流的电容寿命;L D:最高工作温度T 0时额定纹波内的电容寿命;T:实际工作温度;T 0:最高工作温度;ΔT:电容中心温升;I:电路实际施加纹波电流;I 0:最高工作温度下允许施加的最大纹波电流;K:施加纹波电流寿命常数(施加纹波在额定纹波电流内K取2,超过额定纹波电流K取4)。
其中:ΔT=I 2×ESR/(A×H)ESR:电容等效串联阻抗;A:电容表面积(侧面积+底面积,不考虑胶盖所在面);A=2πrL+πr 2;H:散热系数。
φd(mm)4~5 6.3810131618H×10-3W/cm 2φd(mm)222530354050~100H×10-3W/cm 2 2.18 2.16 2.13 2.1 2.052铝电解电容器寿命计算公式1.961.88 1.84 1.75 1.66 1.58 1.49绿宝石电子有限公司以RC10/505*11(105℃2000小时产品,105℃100KHz最大允许纹波为0.124A,20℃100KHz测试ESR标准值1.3Ω)为例:假设实际工作温度为85℃,电路中实际纹波电流值为0.162A1.不考虑纹波时:(T0-T)/10=(105-85)/10=2L=2000×22=8000(h)2.考虑纹波时:H取2.18/1000=0.00218电容表面积A=2×3.14×0.25×1.1+3.14×0.25×0.25=1.727+0.19625=1.92325(c㎡)电容中心温升ΔT=(0.162×0.162×1.3)/(0.00218×1.92325)=8.14(℃)I取0.162,I0取0.124,因为I>I0,故K取4;)2]×ΔT/10=-0.57535[1-(I/I温度T时的考虑纹波电流的电容寿命:L=2000×22×4-0.57535=3604(h)绿宝石电子有限公司。
关于铝电解电容,看这一篇就够了!1、前言铝电解电容是目前除了陶瓷电容之外用得最广泛的电容品种了,因此,作为硬件工程师,必须熟练的掌握其特性。
笔者结合自身经验,通过查阅各种资料,针对硬件设计需要掌握的重点及难点,总结了此文档。
通过写文档,目的是能够使自己的知识更具有系统性,温故而知新,同时也希望对读者有所帮助,大家一起学习和进步。
2、铝电解电容器概述2.1、基本模型电容器是无源器件,在各种电容器中,铝电解电容器与其他电容器相比,相同尺寸时,CV值更大,价格更便宜。
电容器的基本模型如图所示。
静电容量计算式如下:其中,为介电常数,S为两极板正对表面积,d为两极板件距离(电介质厚度)。
从式中可以看出:静电容量与介电常数,极板表面积成正比、与两极板间距离成反比。
作为铝电解电容器的电介质氧化膜(Al2O3)的介电常数通常为8~10,这个值一般不比其他类型的电容器大,但是,通过对铝箔进行蚀刻扩大表面积,并使用电化学的处理得到更薄更耐电压的氧化电介质层,使铝电解电容器可以取得比其他电容器更大的单位面积CV值。
铝电解电容器主要构成如下:阳极-----铝箔电介质---阳极铝箔表面形成的氧化膜(Al2O3)阴极-----真正的阴极是电解液其他的组成成分包括浸有电解液的电解纸,和电解液相连的阴极箔。
综上所述,铝电解电容器是有极性的非对称构造的元件。
两个电极都使用阳极铝箔的是两极性(无极性)电容。
2.2、基本构造铝电解电容器素子的构造如图所示,由阳极箔,电解纸,阴极箔和端子(内外部端子)卷绕在一起含浸电解液后装入铝壳,再用橡胶密封而成。
2.3、材料的特性铝箔是铝电解电容器主要材料,将铝箔设置为阳极,在电解液中通电后,铝箔的表面会形成氧化膜(Al2O3),此氧化膜的功能为电介质。
形成氧化膜后的铝箔在电解液中是具有整流特性的金属,就像是一个二极管,被称之为阀金属。
①阳极铝箔首先,为了扩大表面积,将铝箔材料置于氯化物水溶液中进行电化学蚀刻。
1.不考虑纹波时:L=L 0×2(T 0-T)/10L:温度T时电容寿命;L 0:温度T 0时电容寿命。
T 0:最高工作温度;T:实际工作温度。
2.考虑纹波时L=L D ×2(T 0-T)/10 ×K [1-(I/I 0)*(I/I 0) ]×ΔT/10L:温度T时的考虑纹波电流的电容寿命;L D:最高工作温度T 0时额定纹波内的电容寿命;T:实际工作温度;T 0:最高工作温度;ΔT:电容中心温升;I:电路实际施加纹波电流;I 0:最高工作温度下允许施加的最大纹波电流;K:施加纹波电流寿命常数(施加纹波在额定纹波电流内K取2,超过 额定纹波电流K取4)。
其中:ΔT=I 2×ESR/(A×H) ESR:电容等效串联阻抗;A:电容表面积(侧面积+底面积,不考虑胶盖所在面);A=2πrL+πr 2 ; H:散热系数。
φd(mm)4~5 6.3810131618H×10-3W/cm 2φd(mm)222530354050~100H×10-3W/cm2 以 100uF25V RG 6.3*11 (105℃5000小时产品)假设实际工作温度为75℃,电路中实际纹波电流值为0.05A(T 0-T)/10=(105-85)/10=2L=5000×23×1 =40000(h)/365天/24H=4.5年研发部2011-10-102.16 2.13 2.1肇庆绿宝石电子有限公司2.052铝电解电容器寿命计算公式1.962.18 1.58 1.491.88 1.84 1.75 1.66。