栈的应用:数制转换
- 格式:doc
- 大小:2.24 KB
- 文档页数:3
栈的应⽤-数制转换(C语⾔数据结构)数制转换在计算机中经常⾯对不同数制的转换问题,如将⼀个⼗进制数N转换为d进制B。
数制转换的解决⽅法很多,其中⼀个简单的转换算法是重复下述两步。
直到N等于零为⽌。
x = N mod dN = N div d其中,N为需要转换的⼗进制数,d为转换后的进制,x值为转换后各个数位上的数,div为整除运算,mod为求余运算。
算法的运⾏过程为:第⼀次求出的x值为d进制数的最低位,最后⼀次求出的x值为d进制数的最⾼位,所以上述算法是从低位到⾼位顺序产⽣d进制的各位,然后逆序输出,因为它按“后进先出”的规律进⾏的,所以⽤栈这种结构处理最合适。
根据这个特点,利⽤栈来实现上述数制转换,即将计算过程种⼀次得到的d进制数码按顺序栈进栈。
计算结束后,再返顺序出栈,并按出栈顺序打印输出。
这样即可得到给定的⼗进制数对应的d进制数,由此可以得到数制转换的算法。
实现代码利⽤顺序栈实现数制转换(以⼗进制转换为⼆进制为例)1 #include <stdlib.h>2 #include <stdio.h>3 #define MAXSIZE 102445 /*定义顺序栈*/6 typedef int elemtype;7 typedef struct SequenStack8 {9 elemtype data[MAXSIZE];10 int top;11 }SequenStack;1213 /*判(顺序栈)栈空*/14 SequenStack * Init_SequenStack()15 {16 SequenStack * S;17 S = (SequenStack *)malloc(sizeof(SequenStack));1819 if (S == NULL)20 {21 return S;22 }23 S->top = -1;24 return S;25 }2627 /* 判空栈(顺序栈)*/28 int SequenStack_Empty(SequenStack * S)29 {30 if (S->top == -1)31 {32 return 1;33 }34 else35 {36 return 0;37 }38 }3940 /* ⼊栈(顺序栈) */41 int Push_SequenStack(SequenStack * S, elemtype x)42 {43 if (S->top >= MAXSIZE-1)44 {45 return 0;46 }47 S->top++;48 S->data[S->top] = x;49 return 1;50 }5152 /* 出栈(顺序栈) */53 int Pop_SequenStack(SequenStack * S, elemtype * x)54 {55 if (S->top == -1)56 {57 return 0;58 }59 else60 {61 S->top--;62 *x = S->data[S->top+1];63 return 1;64 }65 }6667 /* 进制转换算法 */68 void SequenStackConversion(int N)69 {70 int x;71 SequenStack * S = Init_SequenStack();72 while (N > 0)73 {74 Push_SequenStack(S, N % 2);75 N = N / 2;76 }77 while (! SequenStack_Empty(S))78 {79 Pop_SequenStack(S, &x);80 printf("%d", x);81 }82 }8384 int main()85 {86 int N;87 printf("Please enter the decimal number you want want to convert:\n");88 scanf("%d", &N);89 printf("The converted binary number is:\n");90 SequenStackConversion(N);91 }实现结果:利⽤链栈栈实现数制转换(以⼗进制转换为⼆进制为例)1 #include <stdio.h>2 #include <stdlib.h>34 /*定义链栈*/5 typedef int elemtype;6 typedef struct LinkedStackNode7 {8 elemtype data;9 struct LinkedStackNode *next;10 }LinkedStackNode, *LinkedStack;11 LinkedStack top;1213 /*链栈的初始化*/14 LinkedStack Init_LinkedStack()15 {16 LinkedStack top = (LinkedStackNode *)malloc(sizeof(LinkedStackNode));1718 if(top != NULL)19 {20 top->next = NULL;21 }22 return top;23 }2425 /*判栈空*/26 int LinkedStack_Empty(LinkedStack top)27 {28 if (top->next == NULL)29 {30 return 1;31 }32 else33 {34 return 0;35 }3637 }3839 /*⼊栈*/40 int Push_LinkedStack(LinkedStack top, elemtype x)41 {42 LinkedStackNode *node;43 node = (LinkedStackNode *)malloc(sizeof(LinkedStackNode));4445 if (node == NULL)46 {47 return 0;48 }49 else50 {51 node->data = x;52 node->next = top->next;53 top->next = node;54 return 1;55 }5657 }5859 /*出栈*/60 int Pop_LinkedStack(LinkedStack top, elemtype * x)61 {62 LinkedStackNode *node;63 if (top->next == NULL)64 {65 return 0;66 }67 else68 {69 node = top->next;70 *x = node->data;71 top->next = node->next;72 free(node);73 return 1;74 }7576 }7778 /*进制转换*/79 void ListStackConversion(int N)80 {81 int x;82 LinkedStack S = Init_LinkedStack();83 while (N > 0)84 {85 Push_LinkedStack(S, N % 2);86 N = N / 2;87 }88 while (! LinkedStack_Empty(S))89 {90 Pop_LinkedStack(S, &x);91 printf("%d", x);92 }9394 }9596 int main()97 {98 int N;99 printf("Please enter the decimal number you want want to convert:\n"); 100 scanf("%d", &N);101 printf("The converted binary number is:\n");102 ListStackConversion(N);103 }实现结果:把顺序栈和链栈两种功能综合在⼀起实现数制转换(以⼗进制转换为⼗六进制为例)1 /* 进制转换 */2 #include <stdlib.h>3 #include <stdio.h>4 #define MAXSIZE 100 /*定义顺序栈的长度*/56 /*定义顺序栈*/7 typedef int elemtype;8 typedef struct SequenStack9 {10 elemtype data[MAXSIZE];11 int top;12 }SequenStack;1314 /*定义链栈*/15 typedef int elemtype;16 typedef struct LinkedStackNode17 {18 elemtype data;19 struct LinkedStackNode *next;20 }LinkedStackNode, *LinkedStack;21 LinkedStack top;2223 /* 顺序栈初始化 */24 SequenStack * Init_SequenStack()25 {26 SequenStack * S;27 S = (SequenStack *)malloc(sizeof(SequenStack));2829 if (S == NULL)30 {31 return S;32 }33 S->top = -1;34 return S;35 }3637 /*链栈的初始化*/38 LinkedStack Init_LinkedStack()39 {40 LinkedStack top = (LinkedStackNode *)malloc(sizeof(LinkedStackNode));4142 if(top != NULL)43 {44 top->next = NULL;45 }46 return top;47 }4849 /*判栈(顺序栈)空*/50 int SequenStack_Empty(SequenStack * S)51 {52 if (S->top == -1)53 {54 return 1;55 }56 else57 {58 return 0;59 }60 }6162 /* 判栈(链栈)空 */63 int LinkedStack_Empty(LinkedStack top)65 if (top->next == NULL)66 {67 return 1;68 }69 else70 {71 return 0;72 }7374 }7576 /* ⼊栈(顺序栈)*/77 int Push_SequenStack(SequenStack * S, elemtype x)78 {79 if (S->top >= MAXSIZE-1)80 {81 return 0;82 }83 S->top++;84 S->data[S->top] = x;85 return 1;86 }8788 /* 出栈(顺序栈) */89 int Pop_SequenStack(SequenStack * S, elemtype * x)90 {91 if (S->top == -1)92 {93 return 0;94 }95 else96 {97 S->top--;98 *x = S->data[S->top+1];99 return 1;100 }101 }102103 /* ⼊栈(链栈) */104 int Push_LinkedStack(LinkedStack top, elemtype x)105 {106 LinkedStackNode *node;107 node = (LinkedStackNode *)malloc(sizeof(LinkedStackNode)); 108109 if (node == NULL)110 {111 return 0;112 }113 else114 {115 node->data = x;116 node->next = top->next;117 top->next = node;118 return 1;119 }120121 }122123 /* 出栈(链栈) */124 int Pop_LinkedStack(LinkedStack top, elemtype * x)125 {126 LinkedStackNode *node;127 if (top->next == NULL)128 {129 return 0;130 }131 else132 {133 node = top->next;134 *x = node->data;135 top->next = node->next;136 free(node);137 return 1;138 }139140 }141142 /* 使⽤顺序⽅式进⾏进制转换的函数 */143 void SequenStackConversion(int N)144 {145 int x;146 SequenStack * S = Init_SequenStack();147 while (N > 0)149 Push_SequenStack(S, N % 16); 150 N = N / 16;151 }152 while (! SequenStack_Empty(S))153 {154 Pop_SequenStack(S, &x);155 switch (x)156 {157 case 10:158 printf("A");159 break;160 case 11:161 printf("B");162 break;163 case 12:164 printf("C");165 break;166 case 13:167 printf("D");168 break;169 case 14:170 printf("E");171 break;172 case 15:173 printf("F");174 break;175 default:176 printf("%d", x);177 break;178 }179 }180 }181182 /* 使⽤链栈⽅式进⾏进制转换的函数 */ 183 void ListStackConversion(int N)184 {185 int x;186 LinkedStack S = Init_LinkedStack(); 187 while (N > 0)188 {189 Push_LinkedStack(S, N % 16);190 N = N / 16;191 }192 while (! LinkedStack_Empty(S))193 {194 Pop_LinkedStack(S, &x);195 switch (x)196 {197 case 10:198 printf("A");199 break;200 case 11:201 printf("B");202 break;203 case 12:204 printf("C");205 break;206 case 13:207 printf("D");208 break;209 case 14:210 printf("E");211 break;212 case 15:213 printf("F");214 break;215 default:216 printf("%d", x);217 break;218 }219220 }221222 }223224 void function()225 {226 printf("-------------------------------------------\n"); 227 }228229 /* 主函数调⽤进制转换函数 */230 int main()231 {232 int N, x;233 printf("Please enter the decimal number you want want to convert:\n");234 scanf("%d", &N);235 function();236 printf("Choose using sequential stack or list stack\n");237 printf("1:Sequential stack 2:list stack:\n");238 function();239 scanf("%d", &x);240 printf("The converted binary number is:\n");241 switch (x)242 {243 case 1:244 SequenStackConversion(N);245 break;246 case 2:247 ListStackConversion(N);248 break;249 default:250 printf("error");251 break;252 }253254 return 0;255 }值得注意的是,当⼗进制转换为⼗六进制的时候,需要考虑输出现实⼤于9的⼗六进制位数,这⾥我们考虑可以使⽤switch开关实现。
数据结构实验报告栈进制转换数据结构实验报告栈进制转换一、实验目的栈是一种常见的数据结构,本实验的目的在于通过实现栈的基本操作,设计并实现一个进制转换的程序,并通过实验验证程序的正确性和效率。
二、实验原理1.栈的定义和基本操作栈是一种后进先出(Last In First Out,简称LIFO)的数据结构。
它可以通过一个指针来标识当前栈顶元素,栈顶指针top的起始值为-1,空栈时top=-1.2.栈的进制转换将一个十进制数转换为其他进制(如二进制、八进制、十六进制)的过程中,可以通过栈来实现。
具体步骤如下:- 初始化一个空栈;- 将十进制数依次除以目标进制的基数,将余数依次入栈,直到商为0;- 依次出栈,将出栈的余数组合起来,得到转换后的目标进制数。
三、实验内容1.实现栈的基本操作(1)定义栈结构,包括元素数组和栈顶指针;(2)实现入栈操作push(),将元素插入到栈顶;(3)实现出栈操作pop(),从栈顶删除一个元素并返回其值;(4)实现获取栈顶元素的操作getTop(),返回栈顶元素的值;(5)实现判断栈是否为空的操作isEmpty(),返回布尔值;(6)实现判断栈是否已满的操作isFull(),返回布尔值。
2.设计并实现进制转换的程序(1)初始化一个空栈用于存放转换后的数字;(2)输入十进制数num和目标进制target;(3)通过栈的操作将num转换为target进制数;(4)输出转换后的结果。
四、实验步骤1.实现栈的基本操作(1)定义栈的结构和相关操作;(2)编写相应的测试代码,验证栈的基本操作是否正确。
2.设计并实现进制转换的程序(1)根据原理部分的步骤,设计转换程序的具体逻辑;(2)编写相应的测试代码,验证转换程序的正确性和效率。
五、实验结果与分析1.给定一个十进制数num=12345,目标进制为二进制(target=2),经过进制转换后得到的结果为.111.2.给定一个十进制数num=456,目标进制为八进制(target=8),经过进制转换后得到的结果为.710.本实验的结果表明,转换程序能够正确地将十进制数转换为目标进制数,并且具有较高的效率。
出”。
四、栈的应用举例任何一个表达式都是由操作数、运算符和界限符组成的。
后两项统称为算符,算符集合命名为OP。
引入问题:如何用堆栈实现表达式求值?表达式求值有三种形式。
中缀表示:<操作数><运算符><操作数>前缀表示:<运算符><操作数><操作数>后缀表示:<操作数><操作数><运算符>以中缀表达式为例,进行重点讲解。
例2、用栈求解表达式21+44-3*6的值。
# 21+44-3*6#实现方法:设置一个运算符栈和一个操作数栈。
算符间的优先关系求值规则:1)先乘除,后加减;2)先括号内,后括号外;3)同类运算,从左至右。
约定:q1---栈顶的运算符q2---当前的运算符当q1=#,为开始符当q2=#,为结束符根据上述优先关系表,可见21+44-3*6#中‘-’ <‘*’,‘*’ >‘#’。
2、算法基本思想1)首先置‘#’为运算符栈的栈底元素, 操作数栈为空栈;2) 依次读入表达式中各个字符,如果判断为操作数则OPND栈,如21,44,进操作数栈;若为运算符θ2,则和OPTR的栈顶元素θ1比较优先级,θ1和θ2进行比较。
当θ1 < θ2 ,θ2 进栈;表达式21+44-3*6的算法编程实现。
[动画演示]1.5分钟结合算法演示系统,讲解用栈求解表达式21+44-3*6的算法执行过程。
[小结]2分钟栈的定义,栈的“先进后出”的特性;栈的顺序存储的实现;栈的应用。
当θ1 = θ2 ,θ1 出栈;若θ1 > θ2 ,θ1 出栈,先进行操作数求值;然后运算结果再进栈。
3、算法编程实现OperandType EvaluateExpression ( ){ InitStack(OPTR);push(OPTR,`#`);InitStack(OPND);read(w);Whi le NOT ((w=’#’)AND (GetTop(OPTR)= `#`) )[IF w NOT IN op THEN[ push(OPND,w); read(w);ELSE CASEPrecede(GetTop(OPTR),w)OF`<`:[ push(OPTR,c); read(w);]`=`: [pop(OPTR,x);if x=FUNCTION thenPUSH(OPND,x(POP(OPNE)));read(w);]`>`: [b:= pop(OPND);a:= pop(OPND);theta:= pop(OPTR);push(OPND,Operate(a,theta,b));]ENDC; ]RETURN(POP(OPND))ENDF;4、算法执行过程# 21+44-3*6#1)“#”先压入到运算符栈,即push(OPTR,`#`);OPTR OPND2)push(OPND,`21`)2)‘#’ <‘+’,push(OPTR, `+` );3)push(OPND,`44`)。
利用栈来实现算术表达式求值的算法利用栈来实现算术表达式求值的算法算术表达式是指按照一定规则组成的运算式,包含数字、运算符和括号。
在计算机中,求解算术表达式是一项基本的数学运算任务。
根据算术表达式的性质,我们可以考虑利用栈这一数据结构来实现求值算法。
一、算法思路首先,我们需要明确一个重要概念——逆波兰表达式(ReversePolish notation)。
逆波兰表达式是一种没有括号的算术表达式,其运算规则是先计算后面的数字和运算符,再计算前面的数字和运算符。
例如,对于算术表达式“3+4*5-6”,其对应的逆波兰表达式为“3 45 * +6 -”。
那么,我们可以利用栈来实现将中缀表达式转化为逆波兰表达式的过程,具体步骤如下:1. 创建两个栈——操作数栈和操作符栈。
2. 从左到右扫描中缀表达式的每一个数字和运算符,遇到数字则压入操作数栈中,遇到运算符则进行如下操作:(1)如果操作符栈为空或当前运算符的优先级大于栈顶运算符的优先级,则将当前运算符压入操作符栈中。
(2)如果当前运算符的优先级小于或等于栈顶运算符的优先级,则将栈顶运算符弹出并加入操作数栈中,重复此过程直到遇到优先级较低的运算符或操作符栈为空为止,然后将当前运算符压入操作符栈中。
3. 扫描完中缀表达式后,若操作符栈不为空,则将其中所有运算符弹出并加入操作数栈中。
4. 最终,操作数栈中存放的就是逆波兰表达式,我们可以按照逆波兰表达式的计算规则来计算其结果。
二、算法优点利用栈来实现算术表达式求值的算法具有以下优点:1. 代码简洁易懂,易于实现和维护。
2. 由于将中缀表达式转化为逆波兰表达式后,可以减少运算符的优先级关系而消除括号,从而减少求值的复杂度,提高程序的执行效率。
三、代码实现下面是利用栈来实现算术表达式求值的算法的Python代码实现:```pythonclass Stack:def __init__(self):self.items = []def push(self, item):self.items.append(item)def pop(self):return self.items.pop()def peek(self):return self.items[-1]def is_empty(self):return len(self.items) == 0def size(self):return len(self.items)def calculate(op_num1, op_num2, operator):if operator == "+":return op_num1 + op_num2elif operator == "-":return op_num1 - op_num2elif operator == "*":return op_num1 * op_num2elif operator == "/":return op_num1 / op_num2def infix_to_postfix(infix_expr):opstack = Stack()postfix_expr = []prec = {"+": 1, "-": 1, "*": 2, "/": 2, "(": 0} token_list = infix_expr.split()for token in token_list:if token.isdigit():postfix_expr.append(token)elif token == '(':opstack.push(token)elif token == ')':top_token = opstack.pop()while top_token != '(':postfix_expr.append(top_token)top_token = opstack.pop()else:while (not opstack.is_empty()) and(prec[opstack.peek()] >= prec[token]):postfix_expr.append(opstack.pop())opstack.push(token)while not opstack.is_empty():postfix_expr.append(opstack.pop())return " ".join(postfix_expr)def postfix_eval(postfix_expr):opstack = Stack()token_list = postfix_expr.split()for token in token_list:if token.isdigit():opstack.push(int(token))else:op_num2 = opstack.pop()op_num1 = opstack.pop()result = calculate(op_num1, op_num2, token) opstack.push(result)return opstack.pop()infix_expr = "3 + 4 * 5 - 6"postfix_expr = infix_to_postfix(infix_expr)print(postfix_expr)print(postfix_eval(postfix_expr))```四、总结算术表达式求值是一项常见的数学运算任务,利用栈这一数据结构来实现求值算法是一种简单有效的方法,它将中缀表达式转化为逆波兰表达式后,可以消除括号并减少运算符的优先级关系,从而提高程序的执行效率。
实验三栈的基本操作实验三栈的基本运算学号:0700710319 姓名:梁浩然实验日期:2021年5月6日一、实验目的:(1)掌握栈的各种存储结构及基本运算的实现。
(2)掌握堆栈后进先出的运算原则在解决实际问题中的应用。
(3)复习c语言中相关语句及函数的用法。
(4)进一步熟悉c语言的相关知识,能够把某些c语言知识应用得自如一点。
(5)一定要自己先完成实验的课后习题,认真的思考,能够达到独立思考。
二、实验要求:(1)熟练掌握栈的存储结构及其基本操作。
(2)理解所给出的算法,掌握栈在实际中的应用。
(3)将上机程序调试通过,并能独立完成一至两个拓展题目。
(4)一定要读书老师所给出来的程序。
三、实验内容:认真阅读数据结构的课本,熟悉所学的知识,认真复习c语言的相关的知识,然后对括号配对检查。
试设计一个程序对任意输入的语句或数学表达式,判断其括号是否匹配。
若匹配,则返回1,否则返回0。
调试程序并对相应的输出作出分析;修改输入数据,预期输出并验证输出的结果,加深对算法的理解。
四、实验步骤:首先建立一个栈结构,且初始化栈为空。
然后由键盘上随即输入一个带括号的语句或带括号的数学表达式,同时将它们保存在一个字符型数组exps[]中。
扫描表达式exps,当遇到“(”、“[”、“{”时,将其入栈。
遇到“)”、“]”、“}”时,判断栈顶是否有相匹配的括号。
若没有,则退出扫描过程,返回0,否则直到exps扫描完毕为止。
若top为0,则返回1。
(程序略)五、实验预期的效果:(1)认真的研究实验所给的程序;(2)能读懂实验所给的程序,并且自己可以在计算机上调试成功;(3)根据实验所学的知识能做好老师布置给我们的作业,编写程序并且调试出来运行成功。
(4)在试验后自己要认真的总结该次实验所收获的东西。
六、实验方法实验所给程序修改如下:#include \#define MAXSIZE 100 #define TRUE 1 #define FALSE 0 #define NULLtypedef int datatype;typedef struct /*顺序栈的结构体类型定义*/ {datatype stack[MAXSIZE];int top; }seqstack;void setnull(seqstack *s) //置空栈-由于c语言的数组下标是从0开始的,所以置 {s->top=-1;} //空栈操作时将栈顶指针放在下标为0之前,即-1处。
利用栈实现数制转换(10进制转换8进制)//利用栈实现数制转换(10进制转换8进制)#include#include#define ERROR 0#define OK 1#define STACK_INIT_SIZE 100 //存储空间初始分配量#define STACKINCREMENT 10 //存储空间分配增量typedef int SElemType;typedef struct stack{SElemType *top;SElemType *bottom;int stacksize;}SqStack;int InitStack(SqStack *S){//构造一个空栈S->bottom=(SElemType*)malloc(STACK_INIT_SIZE*sizeof(SEl emType));if(!S->bottom) return ERROR; //存储分配失败S->top=S->bottom;S->stacksize=STACK_INIT_SIZE;return OK;} //InitStackint Push(SqStack *S,SElemType e){//插入元素e为新的栈顶元素if(S->top-S->bottom>=S->stacksize-1){S->bottom=(SElemType*)realloc(S->bottom,(S->stacksize+STACKINCREMENT)*sizeof(SElemType));if(!S->bottom)return ERROR; //S->top=S->bottom+S->stacksize;}*S->top++=e;return OK;} //Pushint Pop(SqStack *S,SElemType *e){//若栈不空,则删除S的栈顶元素,用e返回其值,并返回OK;否则返回ERROR;if(S->top==S->bottom)return ERROR;*e=*--S->top;return OK;} //Popint StackEmpty(SqStack S){if(S.top==S.bottom)return 1;else return 0;}void main(){SqStack myStack;int N,e;InitStack(&myStack);printf("请输入N:");scanf("%d",&N);while(N){Push(&myStack,N%8);N=N/8;}while(!StackEmpty(myStack)) {Pop(&myStack,&e);printf("%d",e);}printf("\n");}上一页下一页。
数制转换的作用数制转换是指将一个数字表示从一种数制转换成另一种数制的过程。
数制转换在计算机科学、数学、电子工程等领域中被广泛应用,其作用十分重要。
本文将从不同的角度探讨数制转换的作用。
一、数制转换在计算机科学中的作用在计算机科学领域中,数制转换是十分常见的操作。
计算机以二进制形式来处理和存储数据,而人们通常使用十进制来表达数字。
因此,需要进行二进制到十进制的数制转换。
数制转换在计算机科学中的作用主要体现在以下几个方面:1. 数据存储和传输:计算机内部的数据存储和传输都是以二进制形式进行的。
然而,当人们需要将数据从计算机中读取或者将数据传输到计算机中时,通常需要将数据转换成十进制形式,以便人们理解和使用。
2. 程序设计:在程序设计中,经常需要进行位操作或者使用二进制运算符。
因此,掌握二进制数制转换对于理解和编写程序是至关重要的。
3. 地址转换:计算机内存中的地址通常是以二进制形式表示的。
当需要将二进制地址转换成十进制地址时,数制转换就发挥了重要作用。
二、数制转换在数学中的作用在数学领域中,数制转换也有其重要的作用。
数制转换主要涉及到不同进制的数之间的转换,如二进制、八进制、十进制和十六进制等。
数制转换在数学中的作用主要体现在以下几个方面:1. 进一制和进位制:数制转换是进一制和进位制的具体应用。
在进位制中,当某一位的数超过进制数时,需要向高位进位。
而在进一制中,当某一位的数达到最大值时,需要向高位进一。
因此,掌握数制转换可以帮助我们理解和应用进位制和进一制。
2. 数字表达的灵活性:不同的数制有不同的特点和应用场景。
例如,八进制和十六进制在计算机科学中被广泛使用,因为它们可以更紧凑地表示二进制数据。
而十进制在日常生活中更为常见,因为它更符合人们的思维习惯。
因此,数制转换可以帮助我们在不同场景下选择合适的数制来表示数字。
3. 数字逻辑和编码:数制转换在数字逻辑和编码中也有重要应用。
例如,将二进制数转换成格雷码可以简化数字电路的设计。
利用栈的基本操作实现将任意一个十进制整数转化为R进制整数。
算法为:1、定义栈的顺序存取结构2、分别定义栈的基本操作(初始化栈、判栈为空、出栈、入栈等)3、定义一个函数用来实现上面问题:(1)十进制整数X和R作为形参(2)初始化栈(3)只要X不为0重复做下列动作将X % R入栈, X=X/R(4)只要栈不为空重复做下列动作栈顶出栈 , 输出栈顶元素#include <stdio.h>#include <stdlib.h>#include <malloc.h>#define stack_init_size 100#define stackincrement 10typedef struct sqstack{int *base;int *top;int stacksize;} sqstack;int StackInit(sqstack *s){s->base=(int *)malloc(stack_init_size *sizeof(int));if(!s->base)return 0;s->top=s->base;s->stacksize=stack_init_size;return 1;}int Push(sqstack *s,int e){if(s->top-s->base>=s->stacksize){s->base=(int *)realloc(s->base,(s->stacksize+stackincrement)*sizeof(int));if(!s->base)return 0;s->top=s->base+s->stacksize;s->stacksize+=stackincrement;}*(s->top++)=e;return e;}int Pop(sqstack *s,int e){if(s->top==s->base)return 0;e=*--s->top;return e;}int stackempty(sqstack *s){if(s->top==s->base){return 1;}else{return 0;}}int conversion(sqstack *s){int n,e=0,flag=0;printf("输入要转化的十进制数:\n");scanf("%d",&n);printf("要转化为多少进制:2 进制、8 进制、16 进制填数字!\n");scanf("%d",&flag);printf("将十进制数%d 转化为%d 进制是:\n",n,flag);while(n){Push(s,n%flag);n=n/flag;}while(!stackempty(s)){e=Pop(s,e);switch(e){case 10: printf("A");break;case 11: printf("B");break;case 12: printf("C");break;case 13: printf("D");break;case 14: printf("E");break;case 15: printf("F");break;default: printf("%d",e);}}printf("\n");return 0;}int main(){sqstack s;StackInit(&s);conversion(&s);return 0;}。
用栈对数字倒叙的作用栈是一种数据结构,它的特点是先进后出,后进先出。
因此,栈可以用来实现数字的倒序。
在计算机中,数字都是以二进制形式存储的,而二进制数的每一位都代表2的n次方,n为该位所在的位数,从右往左数。
例如,二进制数1010中,右边第一位代表2的0次方,即1,右边第二位代表2的1次方,即2,右边第三位代表2的2次方,即4,右边第四位代表2的3次方,即8。
因此,如果要将一个十进制数倒序,就需要先将它转为二进制,然后将二进制的每一位依次压入栈中,最后依次弹出栈中的元素,即可得到倒序的结果。
下面以数字1234为例,介绍用栈对数字倒序的作用。
1. 将数字1234转为二进制数首先将数字1234转为二进制数。
可以使用短除法的方法,即每次将数字除以2,将余数保存下来,并将商作为新的被除数,直到商为0为止。
例如:1234 ÷ 2 = 617 0617 ÷ 2 = 308 (1)308 ÷ 2 = 154 0154 ÷ 2 = 77 077 ÷ 2 = 38 (1)38 ÷ 2 = 19 019 ÷ 2 = 9 (1)9 ÷ 2 = 4 (1)4 ÷ 2 = 2 02 ÷ 2 = 1 01 ÷ 2 = 0 (1)将上述的余数倒序排列,得到二进制数10011010010。
2. 将二进制数的每一位压入栈中下一步,将二进制数的每一位依次压入栈中。
从右往左数,依次将0、1、0、0、1、1、0、1、1、0压入栈中。
3. 依次弹出栈中的元素,得到倒序的结果最后,依次从栈中弹出元素,得到倒序的结果为0110100110,即将数字1234倒序后得到的二进制数。
总之,使用栈可以方便地实现数字倒序的功能。
它可以将待处理的数字按位分解,并将分解出来的每一位保存下来,最后按照倒序的顺序输出,从而得到倒序的结果。
这在计算机网络和数据存储领域有广泛应用。
数制转换:
十进制数N和其它d进制数的转换是计算机实现计算的基本问题,其解决方法很多,其中一种简单方法基于以下原理.
N=(N div d)*d+N mod d (其中:div为整除运算,mod 为求余运算.)
例如:10进制数1348转换为8进制为:2504.其运算过程如下:
N N div d N mod d
1348 168 4
168 21 0
21 2 5
2 0 2
假设现要编制一个满足下列要求的程序:对于输入的任意一个非负十进制整数,打印输出与其相等的八进制数,由于上述计算过程是从低位到高位顺序产生八进制数的各个位数,而打印输出,一般来说应从高位到低位进行,恰好和计算过程相反.因此,若将计算过程中得到的八进制数的各位顺序进栈,则按出栈序列打印输出的即为与输入对应的八进制数.
算法描述如下:
void conversion()
{
InitStack(s);
scanf(" %d",N);
while(N)
{
push(s,n%8)
N=N/8;
}
while(!StackEmpty(s))
{
Pop(S,e);
printf("%d",e);
}
}
这个是利用栈的先进后出特性的最简单的例子.在这个例子中,栈操作的序列是直线式的,即先一味地进栈,然后一味的出栈.也许有人会提出疑问:用数组直接实现不也很简单吗?仔细分析上述算法不难看出,栈的引入简化了程序设计的问题,划分了不同的关注层次,使思考的范围缩小了.而用数组不仅掩盖了问题的本质,还要分散精力去考虑数组下标增减等细节.
完整代码实现:
#include<iostream>
#include<stack>
using namespace std;
void change(int n,int d)
stack<int>s;
int temp;
int i=0;
if(n<d)
{
cout<<n<<endl;
}
else
{
while(n)
{
temp=n%d;
s.push(temp);
n=n/d;
}
while(!s.empty())
{
temp=s.top();
cout<<temp;
s.pop();
}
cout<<endl;
}
}
void main()
{
int x,y;
cout<<"请输入你要转换的数字&qu(参考:)ot;<<endl;
cin>>x;
cout<<"请输入你要转换的进制"<<endl;
cin>>y;
change(x,y);
}
递归实现十进制转换为八进制:/*
Name: conversion.cpp
Copyright:
Author: HeHe.wang
Date: 16-06-12 13:03
Description:
*/
#include <iostream>
using namespace std;
void conversion(int N,int d)
{
int temp=N%d;
N=N/d;
if(N==0)
cout<<temp;
else
{
conversion(N,d);
cout<<N%d;
}
}
int main()
{
conversion(7,2);
system("pause");
}文章出自:我爱程序员
/archives/1039.html 版权所有.本站文章除注明出处外,皆为作者原创文章,可自由引用,但请注明来源.。