1.6.2单项式乘多项式
- 格式:doc
- 大小:81.43 KB
- 文档页数:3
15.1.4 整式的乘法--------------单项式乘以多项式【学习目标】 1.经历探索单项式与多项式乘法运算法则的过程,理解单项式乘以多项式的运算法则 2.会利用法则进行单项式与多项式的乘法运算,理解单项式与多项式相乘的算理,体会乘法分配律及转化的数学思想3、发展有条理思考的能力和语言表达能力。
【学习重点】单项式与多项式相乘的法则及其运用。
【学习难点】灵活应用单项式与多项式乘法的法则。
【学习过程】【知识回顾】1.单项式与单项式相乘的法则:单项式与单项式相乘,把它们的___、_____分别____,对于只在一个单项式里含有的____,则连同_____作为__的一个___。
2.完成下列各题:2x2·(-2xy)= (-2x2 )·(-3xy)=写出多项式2x2-x-1的项【探究研讨】1.问题三家连锁店以相同的价格m(单位;元/瓶)销售某种商品,它们在一个月内的销售量(单位:瓶)分别是a、b、c。
你能用不同的方法计算它们在这个月内销售这种商品的总收入吗?2. m(a+b+c)=___________,运用了______律。
3. 总结:单项式与多项式相乘的法则:单项式与多项式相乘,用单项式分别去乘多项式的_____,再把所得的积_____。
4.尝试计算,理解新知例:(1) 3a(5a-2b)(2)(-4x2)·(3x+1)(3)(12x2y-2xy+y2)·(-4xy)同学之间相互检查运算的过程和结果,错误的原因是什么?(符号,漏乘,还是其它原因),总结一下单项式乘多项式运算时需要注意的问题和防范措施。
【巩固练习】1.计算:(1)(x-3y)(-6x) (2)5ab(2a-b+0.2)(3)(- 2a) ? (2a2 - 3a + 1) (4) (a2-2bc)(-2ab)2(5)-4x2·(12xy-y2)-3x·(xy2-2x2y)(6)(3a n+2b-2a n b n-1+3b n)·5a n b n+3(n为正整数,n>1)2.化简: a(a-1)+2a(a+1)-3a(2a-5),其中a=2,b=3【反思归纳】(1)单项式与多项式相乘时,根据乘法对加法的,就可以转化为的乘法。
单项式乘多项式【教学目标】1.知道单项式乘多项式法则,能正确运算。
2.让学生感受到通过数的计算,可以解决一些实际问题。
【教学重难点】重点:单项式乘多项式法则。
难点:根据单项式乘多项式法则,解决一些实际问题。
【教学过程】一、复习提问1.单项式乘单项式法则;2.运用时应注意什么?二、新课讲解1.情景创设上节课我们学习了单项式乘单项式,请同学们结合上节课的知识,思考这样一个问题:计算下图的面积,并把你的算法与同学交流。
派代表回答后,教师点评:如果把图中看成一个大长方形,它的长为b+c+d,宽为a,那么它的面积为a(b+c+d)。
如果把上图看成是由3个小长方形组成的,那么它的面积为ab+ac+ad.由此得到:a(b+c+d)=ab+ac+ad.好,我们再一起来看这个等式,等式的左边是一个单项式乘多项式,右边是若干个单项式的和组成的。
同学们是不是觉得它很眼熟呀?其实呀,对于任意的a,b,c,d,由乘法分配律同样可以得到a(b+c+d)= ab+ac+ad.那么,既然我们得到了这个等式,同学们能不能用语言将它叙述出来呢?请学生回答:单项式与多项式相乘,就是根据乘法分配律,用单项式乘多项式的每一项,再把所得的积相加。
书本做一做:请学生完成在书本上。
2.例题讲解例1:计算:(1)23)(43)x x -⋅-( (2)231(3)43ab ab ab -⋅ (3)(-2a)·(2a 2-3a+1)解:(1)原式=22(3)(4)(3)(4)x x x x -⋅+-⋅=32129x x -+(2)原式=2311(3)433ab ab ab ab ⋅+-⋅ =232214a b a b - (3)原式=(-2a)·2a 2+(-2a)·(-3a)+(-2a)·1=-4a 3+6a 2-2a练习计算:(请学生板演)(1)(-4x)·(2x²+3x-1);(2)(ab 2-2ab)·ab(3)-2a 2·(ab+b 2)-5a(a 2b-ab 2)例2:如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积。
单项式与多项式相乘一、知识结构二、重点、难点分析本节教学的重点是掌握单项式与多项式相乘的法则.难点是正确、迅速地进行单项式与多项式相乘的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。
1.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即其中,可以表示一个数、一个字母,也可以是一个代数式.2.利用法则进行单项式和多项式运算时要注意:(1)多项式每一项都包括前面的符号,例如中的多项式,共有两项,就是.运用法则计算时,一定要强调积的符号. (2)单项式必须和多项式中的每一项相乘,不能漏乘多项式中的任何一项.因此,单项式与多项式相乘的结果是一个多项式,其项数与因式中多项式的项数相同.(3)对于混合运算,要注意运算顺序,同时要注意:运算结果如有同类项要合并,从而得出最简结果.3﹒根据去括号法则和多项式中每一项包含它前面的符号,来确定乘积每一项的符号; 4﹒非零单项式乘以不含同类项的多项式,乘积仍然是多项式;积的项数与所乘多项式的项数相等;5﹒对于含有乘方、乘法、加减法的混合运算的题目,要注意运算顺序;也要注意合并同类项,得出最简结果.三、教法建议1.单项式与多项式相乘的基本依据是乘法分配律,故在本课开始先讲述乘法分配律,由有理数过渡到字母.2.由乘法分配律过渡到单项乘多项式的法则时,也可以采用以下代换的方法,如计算:(-4x2)·(2x2+3x-1).设m=-4x2,a=2x2,b=3x,c=-1,∴(-4x2)·(2x2+3x-1)=m(a+b+c)=ma+mb+mc=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)=-8x4-12x3+4x2.这样过渡较自然,同时也渗透了一些代换的思想.3.单项式与多项式相乘,积仍是多项式,它的项数与多项式的项数相同.这是单项式与多项式相乘的结果,这个结果也是我们掌握法则的关键.一般说来,对于一个运算法则的掌握应从分析结果开始,分析结果的结构,分析结果与各算式的关系,这样才能较好地掌握法则.教学设计示例一、教学目标1.理解和掌握单项式与多项式乘法法则及推导.2.熟练运用法则进行单项式与多项式的乘法计算.3.培养灵活运用知识的能力,通过用文字概括法则,提高学生数学表达能力.4.通过反馈练习,培养学生计算能力和综合运用知识的能力.5.渗透公式恒等变形的数学美.二、学法引导1.教学方法:讲授法、练习法.2.学生学法:学习单项式与多项式相乘的运算法则是运用了“转化”的数学思想方法,利用分配律把单项式乘以多项式问题转化为前面学过的单项式与单项式相乘;最后再合并同类项,故在学习中应充分利用这种方法去解题.三、重点·难点·疑点及解决办法(一)重点单项式与多项式乘法法则及其应用.(二)难点单项式与多项式相乘时结果的符号的确定.(三)解决办法复习单项式与单项式的乘法法则,并注意在解题过程中将单项式乘多项式转化为单项式乘单项式后符号确定的问题.四、课时安排一课时.五、教具学具准备投影仪、胶片.六、师生互动活动设计1.设计一道可运用乘法分配律进行简便运算的题目,让学生复习乘法分配律,并为引入单项式与多项式的乘法法则打下良好的基础.2.通过面积分割法,形象直观地引入单项式与多项式的乘法法则,并引导学生用文字语言概括出其结论.3.通过举例,教师分析、讲解并示范板书全过程,让学生规范解题过程,再通过反复的练习巩固所学过的法则.七、教学步骤(一)明确目标本节课重点学习单项式与多项式的乘法法则及其应用.(二)整体感知单项式乘以多项式的乘法运算主要是将它转化为单项式与单项式的乘法运算,放首先应适当复习并掌握单项式与单项式的乘法运算方法,再在计算过程中注意单项式与多项式相乘后的符号问题.(三)教学过程1.复习导入复习:(1)叙述单项式乘法法则.(单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.)(2)什么叫多项式?说出多项式的项和各项系数.2.探索新知,讲授新课简便计算:引申:计算,基中m、a、b、c都是单项式,因为式中字母都表示数,故分配律对代数式也适用,则引导学生用学过的长方形面积知识加以验证,把宽为m,长分别是a、b、c的三个小长方形拼成大长方形,研究图形面积的整体与部分关系.由该等式,你能说出单项式与多项式相乘的法则吗?单项式与多项式乘法法则:单项式与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.例1 计算:(1)(2)说明:计算按课本,讲解时,要紧扣法则:①用单项式遍乘多项式的各项,不要漏乘.②要注意符号,多项式的每一项包括它前面的符号.③“把所得积相加”时,不要忘了加上加号.例2 化简:化简按课本,化街时直接写成省略加号的代数和,注意正确表达,做完乘法后,要合并同类项.练习:错例辨析(1)(2)(2)错在单项式与多项式的每一项相乘之后没有添上加号,故正确答案为(四)总结、扩展1.由学生叙述单项式与多项式相乘法则,并回答积仍是多项式,积的项数与多项式因式的项数相同.2.考点剖析:单项式乘以多项式这一知识点在中考试卷中都是以与其他知识综合命题的形式考查的.但它是多项式乘法、因式分解、分式通分、解分式方程等知识的重要基础.故必须掌握好.如。
《单项式乘以多项式》典型例题例1 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例2 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--. 例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .例4 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-.例5 设012=-+m m ,求2000223++m m 的值.例6 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例7 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--。
例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。
例9 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-。
例10 设012=-+m m ,求2000223++m m 的值。
参考答案例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 94-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.解:(1)原式1)3()94()3(432222⋅-+⋅-+⋅-=x x x x x 24433412x x x -+-= (2)ab ab b a ab m m 3232)1353(11+⋅++-- .322523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=-- 说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式n n n n n y y y y y 129129112+--+=++n y 2=当2,3=-=n y 时,81)3()3(4222=-=-=⨯n y说明:求值问题,应先化简,再代入求值.例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x(2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=323322222222222282)4(22]4[2]334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.解: 2000223++m m2000223+++=m m m20012000120002000)(200022222=+=++=+++=++⋅+⨯=m m m m m m m m m m m说明:整体换元的数学方法,关键是识别转化整体换元的形式.例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。
单项式乘单项式:1、如=⨯=⨯⨯⨯=⨯⨯⨯101010105103725251553)()())((‗‗‗‗‗ 2、==∙∙∙=+abcc c bc acb a 252525)()(.‗‗‗‗‗一般的,单项式与单项式相乘,把它们的‗‗‗‗‗、‗‗‗‗‗‗‗‗‗‗分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗。
运用单项式乘单项式法则时可按以下三个步骤进行:①先把各因式的系数相乘,作为积的系数;②把各因式的同底数幂相乘,底数不变、指数相加;③只在一个单项式里出现的字母连同它的指数作为积的一个因式.单项式与单项式相乘,结果仍是单项式. 3、(1)计算:(-5a ²b )(-3a )=‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗=‗‗‗‗‗‗‗‗. (2)计算(2x )³(-5xy ²)=‗‗‗‗‗‗‗‗‗‗‗‗=‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗=‗‗‗‗‗‗‗‗.(3)())((10810436⨯⨯=‗‗‗‗‗‗‗‗‗‗‗‗ 4、计算(1));21())3222(4(y y xxy ∙∙-- (2)a abc abc 12()31()21-32∙∙-(³b )单项式乘多项式:1、p (a+b+c )=pa+pb+pc(根据乘法的分配律得到这个等式) 2、一般的,单项式与多项式相乘,就是用单项式去乘多项式的‗‗‗‗‗‗‗,再把所得的积‗‗‗‗‗ 3、计算:(1)(-4x ²)(3x+1) (2)ab 32(²-2ab)ab 21∙4、(x ²+ax+1)(-6x ³)的计算结果不含x4的项,则a=‗‗‗‗‗.5、已知单项式-ba y x 832+与单项式b a yx y -∙324的和是单项式,求这两个单项式的积.6、先化简再求值:(1)已知x ²-3=0, (2)已知02)1(2=+--b a ,求x (x ²-x )-x ²(5+x )+9的值. 求3ab ⎥⎦⎤⎢⎣⎡--∙b ab ab a 231(36的值.多项式乘多项式:1、(a+b)(p+q)=a(p+q)+b(p+q)=ap+aq+bp+bq可以先把其中一个多项式如p+q,看成一个整体,运用单项式与多项式相乘的法则计算.总体上看,计算结果可以看作由a+b的每一项乘p+q的每一项,再把所得的积相加而得到的,即(a+b)(p+q) =ap+aq+bp+bq.一般的,多项式与多项式相乘,先用一个多项式的‗‗‗‗‗‗‗‗乘另一个多项式的‗‗‗‗‗‗‗‗,再把所得的积‗‗‗‗‗‗.2、计算:(1)(3x+1)(x+2);(2)(x³-2)(x³+3)-(x³)²+x²·x;3、若a+b=m,ab=-4,则(a-2)(b-2)= ‗‗‗‗‗‗‗;4、若多项式(x²+mx+n)(x²-3x+4)展开后不含x³和x²的项,则m=‗‗‗‗‗,n=‗‗‗‗.5、如图,在长方形ABCD中,横向阴影部分是长方形,另一阴影部分是平行四边形,依照图中标注的数据,计算图中空白的面积,其面积是‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗.6、先化简,再求值:①(a+b)(a-b)+b(a+2b)-b²②已知x²-5x=3,求(x-1)(2x-1)-(x+1)²+1 其中a=1,b=-2; 的值.7、解方程(3x-2)(2x-3)=(6x+5)(x-1)-1.8、有若干张如图所示的正方形和长方形卡片,如果要拼成一个长为(2a+b),宽为(a+b)的矩形,则需要A类卡片‗‗‗‗‗‗张,B类卡片‗‗‗‗‗‗张,C类卡片‗‗‗‗‗‗张,请你在右下角的大矩形中画出一种拼法.同底数幂的除法:∵,)(a aa amnn m n nm ==∙+--(a ≠0,m ,n 都是正整数,并且m >n)∴aa anm nm-=÷.一般地,我们有 ∴aa anm n m-=÷(a ≠0,m ,n 都是正整数,并且m >n).即同底数幂相除,底数‗‗‗‗‗‗,指数‗‗‗‗‗‗.注意:(1)底数可以是单项式,也可以是多项式;(2)底数不能为0;(3)当三个数或三个以上的同底数幂相除时,也具有这一性质. 任何一个不等于0的数的0次幂都等于1,那么a =‗‗‗‗.(a ≠0). 1、 若(x-1)=1,则x取值范围是‗‗‗‗‗‗. 2、 计算(1);28x x ÷(2);)()(25ab ab ÷(3))-()()-25xy xy xy ÷÷-(. (4)(x-2y)³÷(2y-x)² 3、①若,4,3==a ay x则=-ayx ‗‗‗‗‗‗;②若,5,342==y x 则22yx -的值为‗‗‗‗‗‗.③若n m x xnm,(,8,4==是正整数),则xnm -3的值是‗‗‗‗‗‗.④求2416÷÷nm=‗‗‗‗.零指数幂:5、若(x-3)无意义,则(x²)³÷(x²·x)的值是‗‗‗‗‗‗. 5、计算:①)-3(0n (n≠3)=‗‗‗‗‗‗;②若1)2(0=-x ,则x的取值范围是‗‗‗‗‗‗; 6、若(2x+y-3)无意义,且3x+2y=8,则3x²-y=‗‗‗‗.7、计算: ①);3410(y y y÷÷ ②))()(5(32243aa a -÷⎥⎦⎤⎢⎣⎡∙ ③3(3)1()32330-÷++-8、①已知,27,9==a an m求anm 23-的值.②已知,6,433==y x求2792yx yx --+的值.单项式相除:∵4a ²x ³·3ab ²=12a ³b ²x ³, ∴12a ³b ²x ³÷3ab ²=4a ²x ³.一般的,单项式相除,把‗‗‗‗‗与‗‗‗‗‗‗‗‗‗‗分别相除作为商的因式,对于只在被除数里含有的字母,则连同它的指数作为商的‗‗‗‗‗‗‗‗‗‗.1、①计算2x x 46÷的结果是‗‗‗‗‗‗‗‗; ②‗‗‗‗‗‗‗‗‗÷.56)65(32y a ax x y =- 2、已知,72223288b b a b a n m =÷那么m=‗‗‗‗‗‗‗,n=‗‗‗‗‗‗‗.3、计算()3()6(101046⨯÷⨯=‗‗‗‗‗‗‗‗‗‗‗‗‗;4、一个单项式与单项式ba n n 1136---的积为,172c ba n n +则这个单项式是‗‗‗‗‗‗‗‗‗‗‗.5、计算:(1)-8a ²b ³÷6a ²b ÷b ²; (2)(-0.3a ²b ³c ²)÷(-3ab )²·(10a ³b ²c ); (3);)2()2()2-(22123y x x y y x n n --++÷∙ (4));)103(10638⨯⨯÷6、已知,2,3==x xn m求x nm 23-的值.。
整 式 的 乘 除知识点归纳:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。
如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、多项式按字母的升(降)幂排列:如:1223223--+-y xy y x x按x 的升幂排列:3223221x y x xy y +-+--按x 的降幂排列:1223223--+-y xy y x x5、同底数幂的乘法法则:n m n m a a a +=∙(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
如:532)()()(b a b a b a +=+∙+6、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=-幂的乘方法则可以逆用:即m n n m m n a a a )()(==如:23326)4()4(4== 已知:23a =,326b =,求3102a b +的值;7、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。
如:(523)2z y x -=5101555253532)()()2(z y x z y x -=∙∙∙-8、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。
八年级数学上册“第十四章整式的乘法与因式分解”必背知识点一、整式的乘法1. 单项式乘单项式:法则:把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2. 单项式乘多项式:法则:用单项式去乘多项式的每一项,再把所得的积相加。
3. 多项式乘多项式:法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
二、乘法公式1. 平方差公式:公式:$(a+b)(a-b) = a^2 b^2$应用:两个数的和与这两个数的差的积,等于这两个数的平方差。
2. 完全平方公式:公式:$(a+b)^2 = a^2 + 2ab + b^2$$(a-b)^2 = a^2 2ab + b^2$应用:两个数的和 (或差)的平方,等于这两个数的平方和,加上(或减去)这两个数积的2倍。
三、因式分解1. 因式分解的定义:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫作分解因式。
2. 提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
3. 公式法:利用平方差公式和完全平方公式进行因式分解。
注意:分解因式必须分解到每一个因式都不能再分解为止。
四、十字相乘法十字相乘法主要用于二次项系数为1的二次多项式的因式分解。
方法:通过观察和尝试,将常数项分解为两个因数的乘积,并使得这两个因数与一次项系数的组合满足整式的乘法规则。
五、注意事项在进行整式乘法时,要注意系数的计算、字母的指数运算以及符号的处理。
在进行因式分解时,要注意分解的彻底性,即每一个因式都不能再进一步分解。
熟练掌握乘法公式和因式分解的方法,对于提高解题效率和准确率至关重要。
掌握这些知识点,将有助于学生更好地理解和应用整式的乘法与因式分解,提高代数运算能力和解题能力。
12.2整式的乘法2.单项式与多项式相乘教学目标:1.使学生探索了解单项式与多项式相乘的法则;会运用法则进行简单计算。
2. 使学生进一步理解数学中“转化”、“换元”的思想方法,即把单项式与多项式相乘转化为单项式与单项式相乘。
3. 逐步形成独立思考、主动探索的习惯,培养思维的批评性、严密性和初步解决问题的愿望和能力。
4.初步学会从数学角度提出问题,运用所学知识解决问题,发展应用意识。
通过反思,获得解决问题的经验.发展有条理的思考及语言表达能力。
教学重点:单项式与多项式相乘的法则及其运。
教学难点:单项式与多项式相乘去括号法则的应用。
教学过程:一、复习回顾1、单项式与单项式怎样相乘。
单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
2、单项式与单项式怎样相乘运用了哪些乘法运算律?除此之外,还有什么乘法运算律?单项式与单项式相乘运用了乘法交换律、结合律。
二、创设情景问题:设长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)这个长方形可分割为宽为m,长分别为a、b、c的三个小长方形,ma+mb+mc 即m(a+b+c)= ma+mb+mc三、探究新知观察这个式子有什么特征?m(a+b+c)= ma+mb+mc思考:你能说出单项式与多项式相乘的法则吗?1.单项式与多项式相乘时,分两个阶段:①按分配律把单项式与多项式的乘积写成单项式与单项式乘积的代数和形式;②单项式的乘法运算。
2.法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
3.符号语言:a(b+c)=ab+ac 或 m(a+b+c)=ma+mb+mc4.思想方法:剖析法则m(a+b+c)=ma+mb+mc,得出:转化单项式×多项式——→单项式×单项式乘法分配律四、例题讲解例:计算(1)(-2a2).(3ab2-5ab3)解:(-2a2).(3ab2-5ab3)=(-2a2).3ab2+(-2a2).(-5ab3)=-6a3b2+10a3b3概括:单项式与多项式相乘,只要将单项式分别乘以多项式的每一项,再将所得积相加。
1.6.2 整式的乘法--单项式乘多项式
教学目标:
1.在具体情境中了解单项式与多项式乘法的意义。
2.经历探索单项式与多项式乘法运算法则的过程,理解单项式乘以多项式的运算法则。
3.会利用法则进行单项式与多项式的乘法运算,理解单项式与多项式相乘的算理,体会乘法分配律及转化的数学思想。
4.发展学生有条理思考的能力和语言表达能力。
5.在探索单项式与多项式乘法运算法则的过程中,获得成就感,激发学习数学的兴趣。
教学重点:单项式与多项式相乘的运算法则及应用。
教学难点:灵活应用单项式与多项式乘法的法则。
教学过程:
一.复习引入
1. 我们本单元学习整式的乘法,整式包括什么?
2. 什么是多项式?怎么理解多项式的项数和次数?
3. 整式乘法除了我们上节课学习的单项式乘以单项式外,还应包含哪些内容? 由此引入今天将学习单项式与多项式相乘。
二、新课探究
1.如图所示,公园中有一块长mx 米、宽y 米的空地,根据需
要在两边各留下宽为a 米、b 米的两条小路,其余部分种植花草,
求种植花草部分的面积.
(1)你是怎样列式表示种植花草部分的面积的?是否有不同的
表示方法?其中包含了什么运算?与同伴交流
(2)由上面的探索,我们得到了)(b a mx y --=b y a y mx y ⋅-⋅-⋅,你能用所学过的知识来说明上面的等式成立的原因吗?
(3)你能用上面的方法计算)32(222+-ab b a ab 吗?请说明每一步的依据。
(4)通过以上过程,你发现如何进行单项式与多项式相乘的运算?请你试着用语言来
描述。
法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把 a b
y m
所得的积相加。
三、例题讲解
例1 计算:(1))35(222ab b a ab + (2)ab ab ab 21)232(2⋅- (3))132)(2(2+--a a a (4))6)(211012(3322xy y y x xy -+--
例2 计算:)(5)()2(2222ab b a a b ab a --+⋅-
单项式与多项式相乘的步骤:
①按乘法分配律把乘积写成单项式与单项式乘积的代数和的形式;
②转化为单项式的乘法运算;
③把所得的积相加.
解题时需要注意的问题:
①单项式乘多项式的积仍是多项式,其项数与原多项式的项数相同。
②单项式分别与多项式的每一项相乘时,要注意积的各项符号的确定,多项式中的每一项前面的符号是性质符号,同号相乘得正,异号相乘得负,最后写成省略加号的代数和的形式。
③单项式要乘以多项式的每一项,不要出现漏乘现象。
④混合运算中,要注意运算顺序,结果有同类项的要合并同类项。
四、随堂练习:
1.判断正误:(1)m(a+b+c+d)=ma+b+c+d( )
(2)12121
)2(21
232++
=++a a a a a ( ) (3)(-2x)•(ax+b-3)=-2ax 2-2bx-6x( )
2.计算:);3(6)1(y x x -- )2
1(2)2(22b ab a +- (3) (4) (5) (6) 3.先化简,再求值:
2a(a-b)-b(2a-b)+2ab,其中a=2,b=-3 .
五、拓展
1. 分别计算右图中阴影部分的面积。
2..,,62)3(232532的值求若n m y x y x xy y x y x n
m -=+--
3. 求证对于任意自然数n ,代数式 n(n+7)-n(n-5)+6的值都能被6整除。
)12(2222++-⋅y x xy )123
53
(22
374+-⋅-ac bc a c b a []x y x xy xy +--)2(23)
3(111-+--++n n n n a a
a a
六、课堂小结:
1.单项式乘以多项式的乘法法则及注意事项;
2.转化的数学思想。
布置作业:习题1.9知识技能1,2题
(重点班补充)求证对于任意自然数n,代数式 n(n+7)-n(n-5)+6的值都能被6整除。
课后反思:。