浅谈正弦、余弦定理在中考中的应用.doc
- 格式:doc
- 大小:102.33 KB
- 文档页数:3
余弦定理和正弦定理的应用余弦定理和正弦定理是初中数学中非常重要的定理,它们在解决三角形相关问题时起到了至关重要的作用。
在本文中,我将为大家详细介绍余弦定理和正弦定理的应用,并通过实例来说明它们的实用性和重要性。
一、余弦定理的应用余弦定理是用来求解三角形的边长或角度的定理。
它的数学表达式为:c² = a²+ b² - 2abcosC,其中a、b、c为三角形的边长,C为夹角。
1. 求解三角形的边长假设我们已知一个三角形的两边和它们之间的夹角,想要求解第三边的长度。
这时,我们可以利用余弦定理来解决这个问题。
例如,已知一个三角形的两边长分别为5cm和8cm,夹角为60°,我们可以利用余弦定理来计算第三边的长度。
根据余弦定理,我们可以得到c² = 5² + 8² - 2×5×8×cos60°,即c² = 25 + 64 -80cos60°。
进一步计算可得c² = 89 - 80cos60°,再开方可得c ≈ 2.92cm。
因此,这个三角形的第三边长约为2.92cm。
2. 求解三角形的角度除了求解边长外,余弦定理还可以用来求解三角形的角度。
例如,已知一个三角形的三边长分别为3cm、4cm和5cm,我们可以利用余弦定理来计算它的夹角。
根据余弦定理,我们可以得到cosC = (3² + 4² - 5²) / (2×3×4),即cosC = (9 + 16 - 25) / 24。
计算可得cosC = 0,因此C的值为90°。
通过以上两个例子,我们可以看到余弦定理在求解三角形边长和角度时的实用性和重要性。
它为我们解决各种三角形相关问题提供了有力的工具。
二、正弦定理的应用正弦定理是用来求解三角形的边长或角度的定理。
正弦余弦定理及应用正弦定理和余弦定理是在解三角形问题中常用的两个定理。
在解决三角形问题时,我们经常需要求解三角形的边长或者角度。
使用正弦定理和余弦定理可以帮助我们更方便地解决这些问题。
首先来看正弦定理。
正弦定理是针对一个三角形中的角和边之间的关系进行描述的。
对于一个三角形ABC,其三个内角分别为∠A、∠B和∠C,三个对边长度分别为a、b和c,则正弦定理可以表示为:a/sin∠A = b/sin∠B = c/sin∠C其中sin∠A表示∠A的正弦值。
正弦定理的推导过程非常简单,可以通过三角形的面积公式进行得出。
由于三角形的面积与其对边的关系为S = (1/2)ab*sin∠C,我们可以得到sin∠C = (2S)/(ab),从而推导出上述的正弦定理。
正弦定理的应用非常广泛。
通过正弦定理,我们可以方便地求解角度或者边长。
举个例子来说,如果我们已知一个三角形的两条边分别为a=5、b=7,以及它们之间的夹角为∠C=30,我们可以利用正弦定理来求解第三条边c的长度。
根据正弦定理,我们可以得到c/sin∠C = b/sin∠B,化简后得到c = b*sin∠C/sin ∠B。
将具体数值代入计算可以得到c=3.5。
而余弦定理则是针对三角形的边和边之间的关系进行描述的。
对于一个三角形ABC,其三个边的长度分别为a、b和c,三个内角分别为∠A、∠B和∠C,则余弦定理可以表示为:c²= a²+ b²- 2ab*cos∠C余弦定理的推导过程较为复杂,这里我们只给出其结果。
余弦定理是由向量的内积推导而来的,通过应用余弦定理,我们可以求解未知角或边长。
同样以一个例子来说明,如果我们已知一个三角形的两条边分别为a=5和b=7,以及它们夹角的余弦值cos∠C=1/2,我们可以利用余弦定理来求解第三条边c 的长度。
根据余弦定理,我们可以得到c²= a²+ b²- 2ab*cos∠C,将具体数值代入计算可以得到c²= 25 + 49 - 35/2 = 59.5。
§4.7正弦定理、余弦定理及其应用1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角恒等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R 是三角形外接圆的半径.(2)正弦定理的其他形式:①a=2R sin A,b=,c=;②sin A=a2R,sin B=,sin C=;③a∶b∶c=______________________.2.余弦定理(1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=,b2=,c2=.若令C=90°,则c2=,即为勾股定理.(2)余弦定理的变形:cos A=,cos B=,cos C=.若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B +C=π.3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用____________定理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b解的个数①②③④(3)已知三边,用____________定理.有解时,只有一解.(4)已知两边及夹角,用____________定理,必有一解.4.三角形中的常用公式或变式(1)三角形面积公式S△===____________=____________=____________.其中R,r分别为三角形外接圆、内切圆半径.(2)A+B+C=π,则A=__________,A2=__________,从而sin A=____________,cos A=____________,tan A=____________;sinA2=__________,cosA2=__________,tanA2=________.tan A+tan B+tan C=__________.(3)若三角形三边a,b,c成等差数列,则2b=____________⇔2sin B=____________⇔2sinB2=cosA-C2⇔2cosA+C2=cosA-C2⇔tanA2tanC2=13.【自查自纠】1.(1)asin A=bsin B=csin C=2R(2)①2R sin B2R sin C②b2Rc2R③sin A ∶sin B ∶sin C2.(1)b 2+c 2-2bc cos A c 2+a 2-2ca cos B a 2+b 2-2ab cos C a 2+b 2(2)b 2+c 2-a 22bc c 2+a 2-b 22ca a 2+b 2-c 22ab > <(3)互化 sin 2C +sin 2A -2sin C sin A cos B sin 2A +sin 2B -2sin A sin B cos C3.(1)正弦 (2)正弦 一解、两解或无解 ①一解 ②二解 ③一解 ④一解(3)余弦 (4)余弦 4.(1)12ab sin C 12bc sin A 12ac sin B abc 4R 12(a +b+c )r(2)π-(B +C ) π2-B +C 2sin(B +C ) -cos(B +C )-tan(B +C ) cos B +C 2 sin B +C21tanB +C 2tan A tan B tan C (3)a +c sin A +sin C在△ABC 中,A >B 是sin A >sin B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C .在△ABC 中,已知b =6,c =10,B =30°,则解此三角形的结果有( )A .无解B .一解C .两解D .一解或两解解:由正弦定理知sin C =c ·sin B b =56,又由c >b >c sin B知,C 有两解.也可依已知条件,画出△ABC ,由图知有两解.故选C .(2013·陕西)设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若b cos C +c cos B =a sin A, 则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解:由已知和正弦定理可得sin B cos C +sin C cos B =sin A ·sin A ,即sin(B +C )=sin A sin A ,亦即sin A =sin A sin A .因为0<A <π,所以sin A =1,所以A =π2.所以三角形为直角三角形.故选B .(2012·陕西)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,B =π6,c =23,则b =________.解:由余弦定理知b 2=a 2+c 2-2ac cos B =22+()232-2×2×23×cos π6=4,b =2.故填2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.解:∵sin B +cos B =2,∴2sin ⎝⎛⎭⎫B +π4=2,即sin ⎝⎛⎭⎫B +π4=1. 又∵B ∈(0,π),∴B +π4=π2,B =π4.根据正弦定理a sin A =b sin B ,可得sin A =a sin B b =12.∵a <b ,∴A <B .∴A =π6.故填π6.类型一 正弦定理的应用△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A -C =90°,a +c =2b ,求C .解:由a +c =2b 及正弦定理可得sin A +sin C =2sin B .又由于A -C =90°,B =180°-(A +C ),故cos C +sin C =sin A +sin C =2sin(A +C )=2sin(90°+2C )=2sin2(45°+C ).∴2sin(45°+C )=22sin(45°+C )cos(45°+C ), 即cos(45°+C )=12.又∵0°<C <90°,∴45°+C =60°,C =15°. 【评析】利用正弦定理将边边关系转化为角角关系,这是解此题的关键.(2012·江西)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a . (1)求证:B -C =π2;(2)若a =2,求△ABC 的面积.解:(1)证明:对b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a 应用正弦定理得sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =sin A , 即sin B ⎝⎛⎭⎫22sin C +22cos C -sin C ⎝⎛⎭⎫22sin B +22cos B =22,整理得sin B cos C -sin C cos B =1,即sin ()B -C =1.由于B ,C ∈⎝⎛⎭⎫0,3π4,∴B -C =π2. (2)∵B +C =π-A =3π4,又由(1)知B -C =π2,∴B =5π8,C =π8.∵a =2,A =π4,∴由正弦定理知b =a sin B sin A =2sin5π8,c =a sin C sin A =2sin π8. ∴S △ABC =12bc sin A =12×2sin 5π8×2sin π8×22=2sin 5π8sin π8=2cos π8sin π8=22sin π4=12.类型二 余弦定理的应用在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos B cos C =-b2a +c.(1)求B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. 解:(1)由余弦定理知,cos B =a 2+c 2-b 22ac ,cos C=a 2+b 2-c 22ab ,将上式代入cos B cos C =-b 2a +c得a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c , 整理得a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得13=42-2ac -2ac cos 23π,解得ac =3.∴S △ABC =12ac sin B =334.【评析】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1 D.23解:由余弦定理得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ,代入(a +b )2-c 2=4中得(a +b )2-(a 2+b 2-ab )=4,即3ab =4,∴ab =43.故选A .类型三 正、余弦定理的综合应用(2013·全国新课标Ⅱ)△ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值.解:(1)由已知及正弦定理得sin A =sin B cos C +sin C sin B .①又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①,②和C ∈(0,π)得sin B =cos B . 又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1.【评析】(1)化边为角与和角或差角公式的正向或反向多次联用是常用的技巧;(2)已知边及其对角求三角形面积最值是高考中考过多次的问题,既可用三角函数求最值,也可以用余弦定理化边后用不等式求最值.(2013·山东)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B=79. (1)求a ,c 的值; (2)求sin(A -B )的值.解:(1)由余弦定理b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac (1+cos B ),又a +c =6,b =2, cos B =79,所以ac =9,解得a =3,c =3.(2)在△ABC 中,sin B =1-cos 2B =429, 由正弦定理得sin A =a sin B b =223.因为a =c ,所以A 为锐角, 所以cos A =1-sin 2A =13.因此sin(A -B )=sin A cos B -cos A sin B =10227.类型四 判断三角形的形状在三角形ABC 中,若tan A ∶tan B =a 2∶b 2,试判断三角形ABC 的形状.解法一:由正弦定理,得a 2b 2=sin 2Asin 2B ,所以tan A tan B =sin 2A sin 2B,所以sin A cos B cos A sin B =sin 2A sin 2B ,即sin2A =sin2B .所以2A =2B ,或2A +2B =π,因此A =B 或A +B =π2,从而△ABC 是等腰三角形或直角三角形.解法二:由正弦定理,得a 2b 2=sin 2A sin 2B ,所以tan Atan B =sin 2A sin 2B ,所以cos B cos A =sin Asin B ,再由正、余弦定理,得a 2+c 2-b 22acb 2+c 2-a22bc=a b ,化简得(a 2-b 2)(c 2-a 2-b 2)=0,即a 2=b 2或c 2=a 2+b 2.从而△ABC 是等腰三角形或直角三角形. 【评析】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.(2012·上海)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定解:在△ABC 中,∵sin 2A +sin 2B <sin 2C ,∴由正弦定理知a 2+b 2<c 2.∴cos C =a 2+b 2-c 22ab <0,即∠C 为钝角,△ABC 为钝角三角形.故选C .类型五 解三角形应用举例某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20 n mile 的A 处,并以30 n mile/h 的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30 n mile/h ,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.解法一:(1)设相遇时小艇航行的距离为S n mile ,则S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400=900⎝⎛⎭⎫t -132+300, 故当t =13时,S min =103,此时v =10313=30 3.即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°), 故v 2=900-600t +400t2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30.故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1)若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C 处相遇.在Rt △OAC 中,OC =20cos30°=103,AC =20sin30°=10.又AC =30t ,OC =vt ,此时,轮船航行时间t =1030=13,v =10313=30 3.即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.(2)假设v =30时,小艇能以最短时间与轮船在D 处相遇,此时AD =DO =30t .又∠OAD =60°,所以AD =DO =OA =20,解得t =23. 据此可设计航行方案如下:航行方向为北偏东30°,航行速度的大小为30 n mile/h.这样,小艇能以最短时间与轮船相遇.证明如下:如图,由(1)得OC =103,AC =10,故OC >AC ,且对于线段AC 上任意点P ,有OP ≥OC >AC .而小艇的最高航行速度只能达到30 n mile/h ,故小艇与轮船不可能在A ,C 之间(包含C )的任意位置相遇.设∠COD =θ(0°<θ<90°),则在Rt △COD 中, CD =103tan θ,OD =103cos θ.由于从出发到相遇,轮船与小艇所需要的时间分别为t =10+103tan θ30和t =103v cos θ,所以10+103tan θ30=103v cos θ. 由此可得,v =153sin (θ+30°).又v ≤30,故sin(θ+30°)≥32,从而,30°≤θ<90°. 由于θ=30°时,tan θ取得最小值,且最小值为33. 于是,当θ=30°时,t =10+103tan θ30取得最小值,且最小值为23.【评析】①这是一道有关解三角形的实际应用题,解题的关键是把实际问题抽象成纯数学问题,根据题目提供的信息,找出三角形中的数量关系,然后利用正、余弦定理求解.②解三角形的方法在实际问题中,有广泛的应用.在物理学中,有关向量的计算也要用到解三角形的方法.近年的高考中我们发现以解三角形为背景的应用题开始成为热点问题之一.③不管是什么类型的三角应用问题,解决的关键都是充分理解题意,将问题中的语言叙述弄明白,画出帮助分析问题的草图,再将其归结为属于哪类可解的三角形.④本题用几何方法求解也较简便.(2012·武汉5月模拟)如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度; (2)求sin α的值.解:(1)依题意,∠BAC =120°,AB =12,AC =10×2=20,在△ABC 中,由余弦定理知BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC =122+202-2×12×20×cos120°=784,BC =28.所以渔船甲的速度为v =282=14(海里/小时).(2)在△ABC 中,AB =12,∠BAC =120°,BC =28,∠BCA =α,由正弦定理得AB sin α=BC sin ∠BAC ,即12sin α=28sin120°,从而sin α=12sin120°28=3314.1.已知两边及其中一边的对角解三角形时,要注意解的情况,谨防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角角关系(注意应用A +B +C =π这个结论)或边边关系,再用三角变换或代数式的恒等变形(如因式分解、配方等)求解,注意等式两边的公因式不要约掉,要移项提取公因式,否则有可能漏掉一种形状.3.要熟记一些常见结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与诱导公式结合产生的结论:sin A =sin(B +C ),cos A =-cos(B +C ),sinA2=cosB +C2,sin2A =-sin2(B +C ),cos2A =cos2(B +C )等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中到一个三角形中,建立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求得的解是否符合实际意义,从而得出实际问题的解.5.正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.。
中考考点正弦定理余弦定理正切定理的计算与应用正弦定理、余弦定理和正切定理是三角函数中常用的计算公式,也是中考数学考试中的重要考点。
它们能够帮助我们计算和解决与三角形相关的各种问题。
本文将介绍正弦定理、余弦定理和正切定理的基本公式及其应用。
一、正弦定理在任意三角形ABC中,设三条边的长度分别为a、b、c,且对应的角为A、B、C,则正弦定理可以表示为:a/sinA = b/sinB = c/sinC根据正弦定理,我们可以计算未知边长或角度的值。
例如,已知两条边和夹角的情况下,可以通过正弦定理来计算第三条边的长度或第三个角的大小。
例题1:已知三角形ABC,AB=8cm,AC=6cm,∠B=60°,求∠A和BC的长度。
解:根据正弦定理可得:8/sinA = 6/sin60°sinA = 8*sin60°/6A = arcsin(8*sin60°/6) ≈ 54.6°又根据三角形内角和为180°的性质可得∠C = 180° - ∠A - ∠B = 180° - 54.6° - 60° = 65.4°再利用正弦定理求得BC的长度:BC/sin65.4° = 6/sin60°BC = 6*sin65.4°/sin60° ≈ 6.87cm所以,∠A ≈ 54.6°,BC ≈ 6.87cm。
二、余弦定理在任意三角形ABC中,设三条边的长度分别为a、b、c,且对应的角为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2ab*cosC根据余弦定理,我们可以计算任意一个角的余弦值或者未知边长的长度,进而解决与三角形相关的各种问题。
例题2:已知三角形ABC,AB=7cm,AC=5cm,∠B=60°,求∠A和BC的长度。
余弦定理与正弦定理的应用余弦定理和正弦定理是数学中的两个重要的三角函数定理,它们在解决各种几何和数学问题时具有广泛的应用。
本文将介绍余弦定理和正弦定理的公式及其应用,帮助读者更好地理解和运用这两个定理。
一、余弦定理的应用余弦定理是解决三角形中边和角之间关系的重要定理。
设三角形的三边分别为a、b、c,对应的角分别为A、B、C,那么根据余弦定理可以得出以下公式:a² = b² + c² - 2bc·cosAb² = a² + c² - 2ac·cosBc² = a² + b² - 2ab·cosC余弦定理可以用来求解未知边长或角度的问题。
下面通过几个实际问题来展示余弦定理的应用。
【例1】已知一个三角形的两边长度分别为5cm和6cm,夹角为60°,求第三边的长度。
解:根据余弦定理,可得c² = 5² + 6² - 2×5×6·cos60°c² = 25 + 36 - 60c² = 61c = √61因此,第三边的长度约为7.81cm。
【例2】已知一个三角形的两边长度分别为7cm和9cm,夹角为30°,求夹角的余弦值。
解:根据余弦定理,可得cosA = (7² + 9² - 2×7×9·cos30°) / (2×7×9)cosA = (49 + 81 - 63) / 126cosA = 67 / 126所以,夹角A的余弦值约为0.532。
二、正弦定理的应用正弦定理是另一个求解三角形边与角关系的重要定理。
与余弦定理类似,设三角形的三边分别为a、b、c,对应的角分别为A、B、C,那么根据正弦定理可以得出以下公式:a / sinA =b / sinB =c / sinC通过正弦定理可以求解未知边长或角度的问题。
余弦定理及正弦定理的应用余弦定理和正弦定理是解决三角形相关问题的重要工具。
它们被广泛应用于测量、导航、工程等领域。
下面将分别介绍余弦定理和正弦定理,并说明它们在实际应用中的具体运用。
一、余弦定理余弦定理描述了一个三角形的边与夹角之间的关系。
对于任意一个三角形 ABC,其边长分别为 a、b、c,对应的夹角分别为 A、B、C。
根据余弦定理,可以得到以下等式:a² = b² + c² - 2bc * cosAb² = a² + c² - 2ac * cosBc² = a² + b² - 2ab * cosC余弦定理可以用于解决以下问题:1. 测量三角形边长:如果已知三角形的两个边长和它们之间的夹角,可以利用余弦定理计算出第三条边的长度。
2. 计算三角形的夹角:如果已知三角形的三条边长,可以利用余弦定理的逆运算求解三个夹角的大小。
3. 解决航海导航问题:根据已知的方位角和航程,可以利用余弦定理计算船只的坐标位置。
二、正弦定理正弦定理描述了三角形边与其对应角的正弦值之间的关系。
对于任意一个三角形 ABC,其边长分别为 a、b、c,对应的夹角分别为 A、B、C。
根据正弦定理,可以得到以下等式:a/sinA = b/sinB = c/sinC正弦定理可以用于解决以下问题:1. 求解三角形的面积:如果已知三角形的两边和它们之间的夹角,可以利用正弦定理求解三角形的面积。
2. 判定三角形类型:根据三边的长度和正弦定理,可以判断三角形是锐角三角形、直角三角形还是钝角三角形。
3. 解决建筑工程问题:在建筑测量中,需利用正弦定理计算高度、距离等未知量。
综上所述,余弦定理和正弦定理是解决三角形相关问题的重要工具。
通过运用这些定理,我们可以计算三角形的边长、夹角,求解三角形的面积,判断三角形的类型等。
在测量、导航、工程等领域,都离不开这两个定理的应用。
正弦定理与余弦定理的应用正弦定理和余弦定理是中学数学中重要的几何定理,它们在解决三角形相关问题时起着关键作用。
本文将以实际例子为基础,详细介绍正弦定理和余弦定理的应用。
一、正弦定理的应用正弦定理是解决三角形边长和角度之间关系的重要工具。
它的表达式为:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$,其中$a$、$b$、$c$分别为三角形的边长,$A$、$B$、$C$为对应的角度。
例子一:已知三角形$ABC$中,$AB=5$,$BC=8$,$\angle B=45^\circ$,求$\angle A$和$\angle C$的大小。
解析:根据正弦定理可得:$\frac{5}{\sin A}=\frac{8}{\sin 45^\circ}$。
通过求解可得$\sin A=\frac{5\sin 45^\circ}{8}$,进而得到$\angle A=\sin^{-1}\left(\frac{5\sin 45^\circ}{8}\right)$。
同理,可以求得$\angle C=180^\circ-\angle A-\angle B$。
通过计算可得$\angle A\approx 28.07^\circ$,$\angle C\approx106.93^\circ$。
例子二:已知三角形$ABC$中,$AB=6$,$BC=9$,$\angle A=30^\circ$,求$AC$的长度。
解析:根据正弦定理可得:$\frac{6}{\sin 30^\circ}=\frac{AC}{\sin C}$。
通过求解可得$\sin C=\frac{AC\sin 30^\circ}{6}$,进而得到$AC=\frac{6\sin C}{\sin30^\circ}$。
由于$\sin C=\sin (180^\circ-\angle A-\angle B)$,可以通过计算得到$AC\approx 10.39$。
余弦定理与正弦定理的应用在数学中,余弦定理和正弦定理是解决三角形的边长和角度关系的重要工具。
它们的应用范围广泛,不仅限于几何学,还可以在物理学、工程学以及实际生活中的各种测量和计算问题中使用。
本文将介绍余弦定理和正弦定理的基本原理,并通过一些实际应用例子来展示它们的实用性。
一、余弦定理余弦定理是指在任意三角形中,三条边和它们所对的角之间存在着一个关系,即:c^2 = a^2 + b^2 - 2abcosC其中,a、b、c为三角形的三条边,C为夹角。
该定理可以用于计算三角形的边长或夹角大小,特别适用于已知两边和夹角,求解第三边或第三个角的情况。
例如,我们有一个三角形,已知两条边分别为a=5cm,b=7cm,夹角C为60度。
我们可以利用余弦定理来计算第三条边c的长度:c^2 = 5^2 + 7^2 - 2×5×7×cos60°c^2 = 25 + 49 - 70×0.5c^2 = 24c = √24c ≈ 4.9cm通过余弦定理,我们可以得到这个三角形的第三边c约为4.9cm。
除了计算边长,余弦定理还可以用于计算三角形的角度。
例如,我们有一个三角形,已知三边分别为a=6cm,b=8cm,c=10cm。
我们可以利用余弦定理来计算各个角的大小:cosA = (b^2 + c^2 - a^2) / (2bc)cosB = (a^2 + c^2 - b^2) / (2ac)cosC = (a^2 + b^2 - c^2) / (2ab)通过上述公式,我们可以求得角A,角B和角C的余弦值,再利用反余弦函数求得它们的度数。
二、正弦定理正弦定理是指在任意三角形中,三条边和对应的角的正弦之间存在着一个关系,即:a / sinA =b / sinB =c / sinC正弦定理可以用于解决已知一个角和与之对应的两个边,求解其他角和边长的问题。
例如,我们有一个三角形,已知角A为30度,边a为5cm,边b 为7cm。
浅谈正弦、余弦定理在中考中的应用(1)余弦定理:c2=a2+b2-2ab*cosC文字表述:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
C (2)正弦定理:a/sinA=b/sinB=c/sinC=2r(r为△ABC外接圆的半径)文字表述:在一个三角形中,各边和它所对角的正弦的比值相等。
下面我们来证明:证明:(1)作BC上的高AD=h,设CD=x,则BD=a-x则b2=h2+x2=c2-(a-x)2+x2=c2-a2+2ax-x2+ x2又x=b*cosC所以c2=a2+b2-2ab*cosC(2)因为sinB=h/c,sinC=h/b所以h=b*sinC=c*sinB所以b/sinB=c/sinC同理可得:a/sinA=b/sinB=c/sinC下面我们来看如何运用正弦、余弦定理解题:例1:(2)证明:令∠ACD=∠1,∠BCE=∠2,则∠1+∠2=∠ACB-∠DCE=450因为AD/sin∠1=CD/sin∠A,BE/ sin∠2=CE/sin∠B,sin∠A= sin∠B= sin450所以AD2+ BE2 =(CD* sin∠1/sin∠A)2+(CE* sin∠2/sin∠B)2=( CD2* sin2∠1+ CE2* sin2∠2)/ sin2450又CD/sin(450+∠2)= CE/sin(450+∠1)=DE/sin450所以AD2+ BE2 ={[ DE* sin(450+∠2) *sin∠1/sin450]2 +[ DE* sin(450+∠1) *sin∠2 /sin450]2}/ sin2450因为sin(450+∠2) *sin∠1= sin(450+∠2) *sin(∠450-∠2)=cos2∠2/2,sin(450+∠1) *sin∠2= sin(450+∠1) *sin(∠450-∠1)=cos2∠1/2,2(∠1+∠2)=900所以AD2+ BE2 =DE2 cos22∠2+ DE2 cos22∠1= DE2(cos22∠2+sin22∠2)= DE2即DE2= AD2+ BE2例2:如图,在Rt △ABC 中,∠B=900,c=1,sinA=b/4,求∠A ,∠C 。
第七节正弦定理、余弦定理的应用举例【最新考纲】能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.1.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角.(如图①).2.方位角和方向角(1)方位角:从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②).(2)方向角:相对于某正方向的水平角,如南偏东30°等.3.坡度与坡比坡度:坡面与水平面所成的二面角的度数.坡比:坡面的铅直高度与水平长度之比.1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)仰角与俯角都是目标视线与水平线的夹角,因此二者没有区别.()(2)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.()(3)若点P在Q的北偏东44°,则Q在P的东偏北46°.()(4)方位角与方向角的实质均是确定观察点与目标点之间的位置关系.()答案:(1)×(2)×(3)×(4)√2.有一长为1的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则斜坡长为()A.1B.2sin 10°C.2cos 10°D.cos 20°解析:如下图,∠ABC=20°,AB=1,∠ADC=10°,∴∠ABD=160°.在△ABD中,由正弦定理,得AD sin 160°=ABsin 10°.∴AD =AB·sin 160°sin 10°=sin 20°sin 10°=2cos 10°.答案:C3.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10° 解析: 如下图所示,∠ACB =90°,又AC =BC , ∴∠CBA =45°,而β=30°,∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°. 答案:B4.如下图,已知A ,B 两点分别在河的两岸,某测量者在点A 所在的河岸边另选定一点C ,测得AC =50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( )A.503mB.253mC.252mD.502m解析:因为∠ACB=45°,∠CAB=105°,所以∠B=30°.由正弦定理可知ACsin B=ABsin C,即50sin 30°=ABsin 45°,解得AB=50 2 m.答案:D5.一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是()A.50 m B.100 mC.120 m D.150 m解析:设水柱高度是h m,水柱底端为C,则在△ABC中,A =60°,AC=h,AB=100,BC=3h.根据余弦定理得,(3h)2=h2+1002-2·h·100·cos 60°,即h2+50h -5 000=0,解得h =50,故水柱的高度是50 m.答案:A一个程序解三角形应用题的一般步骤1.审题:阅读理解题意,明确已知与未知,理清量与量之间的关系;2.建模:根据题意画出示意图,将实际问题抽象成解三角形问题的模型;3.求解:根据题意选择正弦定理或余弦定理求解;4.检验:将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.一个区别“方位角”与“方向角”的区别:方位角大小的范围是[0,2π),方向角大小的范围一般是[0,π2).两种情形解三角形应用题的两种情形1.已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.2.已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.两点注意1.画出示意图后要注意寻找一些特殊三角形,如等边三角形、直角三角形、等腰三角形等,这样可以优化解题过程.2.解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.A级基础巩固一、选择题1.若点A在点B的北偏西30°,则点B在点A的()A.北偏西30°B.北偏西60°C.南偏东30°D.东偏西30°解析:如下图,点B在点A的南偏东30°.答案:C2.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于ɑkm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C 的南偏东40°,则灯塔A与灯塔B的距离为()A.ɑkm B.3ɑ kmC.2ɑ km D.2ɑkm解析:在△ABC中,AC=BC=ɑ,∠ACB=120°,∴AB2=ɑ2+ɑ2-2a2cos 120°=3ɑ2,AB=3ɑ.答案:B3.如右图,两座相距60 m的建筑物AB,CD的高度分别为20 m、50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为()A.30°B.45°C.60°D.75°解析:依题意可得AD=2010(m),AC=305(m),又CD =50(m),所以在△ACD 中,由余弦定理得 cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010= 6 0006 0002=22, 又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.答案:B4.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°且距灯塔68海里的M 处,下午2时到达这座灯塔东南方向的N 处,则这只船的航行速度为( )A.1762海里/小时 B .346海里/小时C.1722海里/小时 D .342海里/小时解析:如下图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =6832=346,∴v =MN 4=1726(海里/小时).答案:A5.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .102海里B .103海里C .203海里D .202海里解析:如右图所示,易知,在△ABC 中,AB =20,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=AB sin 45°,解得BC =102(海里). 答案:A 二、填空题6.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距____________m.解析:如右图,OM =AOtan 45°=30(m),ON =AOtan 30°=33×30=10 3(m),在△MON 中,由余弦定理得, MN =900+300-2×30×103×32=300=103(m). 答案:10 37.如下图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.解析:在△BCD 中,CD =10,∠BDC =45°, ∠BCD =15°+90°=105°,∠DBC =30°。
正弦定理和余弦定理在三角学及相关领域中具有广泛的应用,通过这两个定理,我们可以解决许多与三角形相关的问题。
以下是关于正弦定理和余弦定理的应用的详细探讨。
一、正弦定理的应用正弦定理是三角学中的一个基本定理,它表达了三角形中任意一边与其对应的角的正弦值之间的关系。
正弦定理在实际应用中具有广泛的用途,以下是几个具体的应用示例:1. 航海与测量:在航海和大地测量中,正弦定理被用来计算地球上两点之间的距离。
由于地球表面可以近似为一个球体,因此可以通过测量两点的纬度和经度,利用正弦定理计算出两点之间的实际距离。
2. 电气工程:在电气工程中,正弦定理被用来分析交流电路中的电压、电流和电阻之间的关系。
通过正弦定理,我们可以推导出各种电气元件(如电阻、电容和电感)的等效电路模型,从而简化电路分析。
3. 通信与信号处理:在通信和信号处理领域,正弦定理被用来分析信号的频谱特性和传输特性。
通过正弦定理,我们可以将复杂的信号分解为一系列正弦波的组合,从而更容易地理解和处理信号。
二、余弦定理的应用余弦定理是另一个重要的三角定理,它表达了三角形中任意一边的平方等于其他两边平方之和减去这两边夹角的余弦值乘以这两边乘积的2倍。
余弦定理同样具有广泛的应用,以下是几个具体的应用示例:1. 几何学:在几何学中,余弦定理被用来解决与三角形边长和角度相关的问题。
例如,在已知三角形的两边及其夹角时,我们可以利用余弦定理求出第三边的长度。
此外,余弦定理还可以用于判断三角形的形状(如锐角三角形、直角三角形或钝角三角形)以及求解三角形的内角。
2. 物理学:在力学中,余弦定理被用来求解连接杆件的长度和角度问题。
例如,在机器人学和机械设计中,我们需要确定各个杆件之间的相对位置和角度,以便实现预期的运动轨迹。
余弦定理可以帮助我们解决这个问题。
此外,余弦定理还在许多其他领域中得到应用,如航空航天、土木工程、计算机图形学等。
在这些领域中,余弦定理通常被用来求解与空间几何和三维变换相关的问题。
中考数学考点解析正弦定理与余弦定理的运用中考数学考点解析:正弦定理与余弦定理的运用正弦定理和余弦定理是中学数学中重要的几何定理,广泛应用于解决与三角形相关的各类问题。
本文将针对中考数学中关于正弦定理和余弦定理的考点进行解析,并讨论其运用方法。
一、正弦定理的概念与应用正弦定理是指在任意三角形ABC中,设a、b、c分别为三边AB、BC、AC的边长,A、B、C分别为对应的内角,则有下述关系式成立:sinA/a = sinB/b = sinC/c正弦定理常用于解决三角形边长或角度未知的问题。
根据正弦定理,我们可以通过已知角度和边长的比例关系,求解未知边长或角度的值。
例如,已知在三角形ABC中,角A的度数为30°,边AC的长度为10cm,边BC的长度为8cm,求边AB的长度。
解析:根据正弦定理,我们有sin30°/10 = sinB/8,通过计算可以得到sinB的值为1/2。
根据反三角函数的定义,我们可以求得角B的度数为30°。
然后再利用三角函数的性质,我们可以得到sinC的值为sqrt(3)/2,进而求解出边AB的长度为12cm。
二、余弦定理的概念与应用余弦定理是指在任意三角形ABC中,设a、b、c分别为三边AB、BC、AC的边长,A、B、C分别为对应的内角,则有下述关系式成立:c^2 = a^2 + b^2 - 2ab * cosC余弦定理常用于解决三角形边长或角度未知的问题。
相比正弦定理,余弦定理在求解角度时更为常用,尤其适用于已知三边长度求解对应角度的情况。
例如,已知三角形ABC,边AB的长度为5cm,边AC的长度为8cm,角A的度数为45°,求对边BC的长度。
解析:根据余弦定理,我们有BC^2 = 5^2 + 8^2 - 2 * 5 * 8 * cos45°。
通过计算可以得到BC^2的值为25,再开方可以得到BC的长度为5cm。
三、正弦定理与余弦定理的综合应用正弦定理和余弦定理在解决实际问题中常常需要综合运用。
正弦定理与余弦定理的使用三角函数是数学中的重要概念,其中正弦定理与余弦定理是常用的三角函数定理。
本文将对正弦定理与余弦定理的使用进行探讨。
1. 正弦定理的使用正弦定理是指在任意三角形ABC中,三条边a、b、c与其对应的角A、B、C之间的关系。
其数学表达式为:a/sinA = b/sinB = c/sinC正弦定理可以用于求解三角形内部元素的相关问题。
例如,已知三角形两边长度和夹角时,可以利用正弦定理求解第三边的长度。
又或者已知两边长度和夹角时,可以通过正弦定理求解夹角的大小。
2. 余弦定理的使用余弦定理是指在任意三角形ABC中,三条边a、b、c与其对应的角A、B、C之间的关系。
其数学表达式为:c² = a² + b² - 2abcosC余弦定理也常用于求解三角形内部元素的相关问题。
例如,已知三边长度时,可以通过余弦定理求解夹角的大小。
又或者已知两边长度和夹角时,可以利用余弦定理求解第三边的长度。
3. 使用示例现假设有一个三角形ABC,已知边长a=5,边长b=7,夹角C=60度。
我们可以通过正弦定理和余弦定理来求解其他未知量。
首先应用正弦定理,根据a/sinA = b/sinB = c/sinC,我们可以得到c/sinC = a/sinA,带入已知条件可得:c/sin60 = 5/sinA进一步化简可得:c = 5*sin60 / sinA对于未知角A,我们可以通过求反正弦函数来得到其大小。
接下来,我们可以应用余弦定理来求解角C的大小。
根据c² = a² +b² - 2abcosC,带入已知条件可得:5² = 7² + c² - 2*7*c*cos60进一步化简可得:c² - 7c + 21 = 0通过解一元二次方程,我们可以求解得到c的值。
通过以上的例子,我们可以看到正弦定理与余弦定理在解决三角形相关问题时的重要性。
数学解题技巧之余弦定理与正弦定理的应用在数学解题中,余弦定理与正弦定理是两个非常重要且经常被使用的定理。
它们能够帮助我们求解各种三角形相关的问题。
本文将探讨余弦定理与正弦定理的定义、应用以及解题技巧。
一、余弦定理余弦定理是描述三角形边与角之间关系的定理。
它可以用来解决一些已知三边或两边一角的三角形问题。
假设有一个三角形ABC,边长分别为a、b、c,角A对应于边a,角B对应于边b,角C对应于边c。
则余弦定理可以表示为:c^2 = a^2 + b^2 - 2abcosC其中,^2表示乘方,cosC表示角C的余弦值。
余弦定理可以应用于以下几种情况:1. 已知三边求角度:如果已知三角形的三个边长a、b、c,我们可以利用余弦定理计算角A、角B、角C的大小。
2. 已知两边一角求边长:如果已知三角形的两个边长a、b和它们夹角C,我们可以利用余弦定理计算第三个边c的长度。
3. 已知两边和夹角求第三边:如果已知三角形的两个边长a、b和它们夹角C,我们可以利用余弦定理计算第三个边c的可能范围。
二、正弦定理正弦定理也是解决三角形相关问题的重要工具。
它可以描述三角形的边和角之间的关系。
对于一个三角形ABC,边长分别为a、b、c,角A对应于边a,角B对应于边b,角C对应于边c。
正弦定理可以表示为:a/sinA = b/sinB = c/sinC正弦定理的应用有以下几种情况:1. 已知两角一边求另外一边:如果已知三角形的两个角A、B和一边c的长度,我们可以利用正弦定理计算另外两个边a、b的长度。
2. 已知两边一角求角度:如果已知三角形的两个边长a、b和夹角C 的大小,我们可以利用正弦定理计算另外两个角A、B的大小。
3. 已知三边求角度:如果已知三角形的三个边长a、b、c,我们可以利用正弦定理计算三个角A、B、C的大小。
三、解题技巧1. 判断何时使用余弦定理或正弦定理:根据已知条件的不同,确定使用何种定理。
如果已知两边一角,则通常使用余弦定理;如果已知两角一边,则通常使用正弦定理。
高中数学学习中的正弦定理与余弦定理运用正弦定理与余弦定理是高中数学学习中重要的几何定理,它们在解决三角形相关问题时起到了关键作用。
正弦定理和余弦定理广泛运用于测量和计算角度、边长和面积等方面。
在高中数学学习中,学生们需要熟练掌握并灵活运用这两个定理,以解决各种数学问题。
首先,正弦定理是描述三角形边与其对应的角之间的关系的定理。
对于任意三角形ABC,边a、b和c分别与角A、B和C对应。
正弦定理的表达式是:a/sinA = b/sinB = c/sinC。
该定理可以用于计算未知边长或角度的数值。
例如,当我们知道三角形的两个角和一个边长时,可以使用正弦定理来计算未知边长。
同样地,当我们知道三角形的两个边长和一个角度时,也可以使用正弦定理来计算未知角度。
正弦定理在解决不规则三角形的测量问题时非常有用。
与正弦定理相似,余弦定理也是用于描述三角形边与其对应的角之间的关系的定理。
对于任意三角形ABC,边a、b和c分别与角A、B和C对应。
余弦定理的表达式为:c² = a² + b² - 2abcosC。
该定理可以用于计算三角形任意边长的平方值,当我们知道边长和夹角时,可以使用余弦定理计算另一边的长度。
正弦定理和余弦定理的应用非常广泛。
在实际生活中,我们经常需要使用这两个定理来解决与三角形相关的问题。
例如,在测量高楼大厦的高度时,我们可以利用正弦定理计算出无法直接测量的高度。
同样地,在测量河流宽度时,我们可以利用余弦定理计算出河的宽度。
这些应用展示了这两个定理的实际价值。
在数学考试中,正弦定理与余弦定理也经常被考查。
题目通常要求学生根据已知条件,使用这两个定理计算未知量。
因此,学生们需要熟练掌握这两个定理的公式和用法。
为了更好地掌握,学生们可以多做相关的练习题,加深对这两个定理的理解和运用能力。
另外,正弦定理和余弦定理还有一些衍生应用。
比如,通过这两个定理,我们可以推导出海伦公式。
海伦公式用于计算任意三角形的面积,根据三边长a、b和c,海伦公式的表达式为:面积 = sqrt(s(s-a)(s-b)(s-c)),其中s是半周长(s=(a+b+c)/2)。
1、一艘轮船按照北偏西30度,的方向以每小时45海里的速度航行,一个灯塔M原来在轮船的北偏东10度的方向,经过20分钟后,灯塔在轮船的北偏东70度方向上,求灯塔和轮船原来的距离.现在这样可以用余弦定理了cos60°=(AB^2+BC^2-AC^2)/2AB*BCBC=2a,AC=15,这样肯定能用含有a的式子表示AB然后在左边那个三角形里就能根据勾股定理求出a。
但是我这种算法特别不好算,你再等等,我想一想还有什么办法。
【同步教育信息】一. 本周教学内容:1. 正弦定理和余弦定理应用举例2. 解三角形全章总结教学目的:1. 能够正确运用正弦定理、余弦定理等知识、方法解决一些与测量以及几何计算有关的实际问题。
2. 通过对全章知识的总结提高,帮助学生系统深入地掌握本章知识及典型问题的解决方法。
二. 重点、难点:重点:解斜三角形问题的实际应用;全章知识点的总结归纳。
难点:如何在理解题意的基础上将实际问题数学化。
知识分析:一. 正弦定理和余弦定理应用举例 1. 解三角形应用题的基本思路 (1)建模思想解三角形应用问题时,通常都要根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出三角形的边角的大小,从而得出实际问题的解。
这种数学建模思想,从实际问题出发,经过抽象概括,把它转化为具体问题中的数学模型,然后通过推理演算,得出数学模型的解,再还原成实际问题的解,用流程图可表示为:(2)解三角形应用题的基本思路:−−−→−−−−→−−−−→画图解三角形检验、结论实际问题数学问题(解三角形)数学问题的解实际问题的解2. 解三角形应用题常见的几种情况:(1)实际问题经抽象概括,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解。
(2)实际问题经抽象概括后,已知量与未知量涉及到两个(或两个以上)三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求出其他三角形中的解,有时需设出未知量,从几个三角形中列出方程,解方程得出所要求的解。
浅谈正弦、余弦定理在中考中的
应用
(1)余弦定理:c2=a2+b2-2ab*cosC
文字表述:三角形任何一边的平方等于其他两边平方的和减去这两边
与它们夹角的余弦的积的两倍。
(2)正弦定理:a/sinA=b/sinB=c/sinC=2r(r 为Z\ABC 外接圆的
半径)
文字表述:在一个三角形中,各边和它所对角的正弦的比值相等。
F面我们来证明:
证明:(1)作BC上的高AD=h,设CD二x,则BD=a-x
贝ij b2=h2+x2=c2- (a~x) 2+x2=c2-a2+2ax-x2+ x2
又x二b*cosC
所以c2=a2+b2-2ab*cosC
(2)因为sinB=h/c, sinC=h/b
所以h二b*sinC二c*sinB
所以b/sinB=c/sinC
同理可得:a/si nA二b/s i nB二c/sinC
下面我们来看如何运用正弦、余弦定理解题:
例1:
25-右「/XABC 中,AC-BC. ZACB^90: , D、E 是用线AB 上两点.ZDCE^45c
(1)当CE丄AB时,点D与点A晅合•能然DE‘=AD ‘十BE’(不必证明)
(2)如图,当点D不与点A直合时,求证:DE2=AD-4-BE2
(3 )当点D衽BA的延L3上时.(2 )中的结论是否成立?训山图形.说明理由・
(2)证明:令ZACD二Zl, ZBCE=Z2,则Z1 + Z2=ZACB~ZDCE=45°
因为AD/sinZl=CD/sinZA, BE/sinZ2=CE/sinZB, sinZA= sinZB= sin45° C 所以AD2+ BE2 = (CD:f:sinZl/sinZA) 2+ (CE* sinZ2/sinZB) 2
=(CD2* sin2Z 1+ CE2* sin2Z2)/ sin245°又
CD/sin(45°+Z2)= CE/sin(45°+ Z1 )=DE/sin45°所以AD2+
BE2={[ DE* sin(45°+ Z2) *sinZl/sin450]2 + A [DE*
sin(45°+Zl) *sinZ2 /sin450]2}/ sin245°因为sin(45°+Z2) *sinZl = sin(45°+Z2) *sin
(Z45°-Z2) =cos2Z2/2, sin(45°+Zl) *sinZ2= sin(45°+Zl) *sin (Z45°-Z1) =cos2Zl/2, 2
(Z1+Z2) =90°
所以AD2+ BE2 =DE2 cos22Z2+ DE2COS22Z1= DE2(cos22Z2+sin22Z2)= DE2 即DE2=
AD2+ BE2
例2:
A
如图,在RtAABC 中,ZB二90°, c=l, sinA=b/4,
求ZA, ZCc
解:在BC±取点D,使AD=CD
则AD2=CD2+b2-2CD*b*cosC
则b二2 CD*cosC=2 CD* sinA=2 CD* b/4 所以CD=2=AD
因为c=l, AD=2, ZB=90°
所以ZBDA=30°=2ZC
所以ZC=15°
所以ZA=75°
例3:
求sin75()的值。
方法一:
解:作图部分如例2
其中ZB=90°, CD二AD, ZBDA=30°=2ZC
令c=l,贝】J AD=2, BD=V3 , b= V2 + V6
所以sT当=◎
A/6+ A/2 4
解: sin75°= sin(450+300)=sin450cos300+cos45°sin300
方法二
例2是我由例3变化來的,例3学生都会做,而例2只有少部分学生做出来了。
事后我总结了一下,就在这说几句:学生不能为做题而做题。
哦,一道题目解出来就完事了?显然不是,我是坚决反对这种风气的!要知道,做题是了解学牛对知识点掌握情况的一种检验手段,那学牛在做题时要得出哪几点信息呢?
一、明确出题者的用意。
只有明确题意后才能正确有效的解题。
(我问学生: 这题怎么都做错了?经常听到回答说:看错题目了。
无语屮……)
二、不断的强化自己的基础知识。
三、在做题过程中要不断总结完善自己的不足,从而提高解题的效率。
四、要能举一反三,提高自己的领悟能力。
前三点缺一不可,只有这样才能在考试中得到优良的成绩,而第四点可以看出一个学生的悟性,这个不做强求。