乳液聚合工艺学_4_乳液聚合工业实施
- 格式:ppt
- 大小:5.82 MB
- 文档页数:84
乳液聚合体系及合成工艺(2007-03-12 14:35:13)转载分类:现代水性涂料一、构成乳液聚合体系的组分乳液聚合体系的主要组分有单体、乳化剂、引发剂和介质,另外根据需要加入其他组分,如助乳化剂、分子量调节剂、pH缓冲剂、抗冻剂、螯合剂、增塑剂、保护胶体、消泡剂等。
1.单体(1)在乳液聚合中单体用量一般控制在40%-50%之间。
(2)乳液的最低成膜温度(MFT)主要决定于乳液聚合物的玻璃化温度(Tg),涂料用聚合物乳液的玻璃化温度,一般在15~25度之间,低于室温。
硬单体(玻璃化温度高的单体)有甲基丙烯酸甲酯(Tg 105)、苯乙烯(Tg 105)丙烯腈(Tg 100)氯乙烯(Tg 75)甲基丙烯酸乙酯(Tg 65)偏二氯乙烯(Tg 52)软单体(玻璃化温度低的单体)有丙烯酸-2-乙基己酯(Tg -85)丙烯酸丁酯(Tg -54)丙烯酸异丁酯(Tg -17)丙烯酸乙酯(Tg -22)丁二烯(Tg -20)氯二丁烯(Tg -45)玻璃化温度适中的单体有醋酸乙烯酯(Tg 29)丙烯酸甲酯(Tg 8)甲基丙烯酸丁酯(Tg 20)(3)线性聚合物进行交联,以生成网状结构聚合物。
有自交联和外交联两种。
二、乳化剂1。
阴离子型、阳离子型、两性和非离子型乳化剂。
2。
乳化剂的选择原则:(1)所选择的乳化剂的HLB值应和所要进行反应的乳液聚合体系相匹配。
(2)所选用的离子型乳化剂的三相点应低于反应温度(3)所选用的非离子型乳化剂的浊点应高于反应温度(4)对离子型乳化剂来说,应选用乳化剂分子的覆盖面积尽可能小;对非离子型乳化剂来说,应选用乳化剂分子的覆盖面积尽可能大(5)应选用临界胶束浓度尽量小的乳化剂(6)应选用增溶度大的乳化剂(7)离子型乳化剂和非离子型乳化剂有协同效应,即两者联合使用比各自单独使用效果都要好。
(8)选择与单体化学结构类似的乳化剂可获得较好的乳化效果(9)亲水性较大和亲水性较大的乳化剂联合使用时乳化效果较好。
第二章聚合反应的工业实施方法第一节连锁聚合反应的工业实施方法工业实施方法主要有:本体聚合、悬浮聚合、溶液聚合、乳液聚合等。
一、本体聚合——适用于自由基、离子型聚合反应1.定义:在不加溶剂或分散介质情况下,只有单体本身在引发剂(有时也不加)或光、热、辐射的作用下进行聚合反应的一种方法。
基本组成:单体、引发剂。
有时也加入增塑剂、抗氧剂、紫外线吸收剂和色料等。
2.分类(1)根据单体与聚合物相互混溶的情况可分为:均相、非均相聚合(或沉淀聚合)两种。
均相聚合反应:凡单体与所形成的聚合物能相互混溶,在聚合过程中无分相现象发生的反应。
沉淀聚合反应:单体与所形成的聚合物不能相互混溶,在聚合过程中,聚合物逐渐沉析出来的反应。
(2)根据参加反应的单体的状态,可分为气相、液相、固相本体聚合,其中液相本体聚合应用最广泛。
(3)工业上分,间歇法、连续法。
3.特点:(1)聚合方法简单,生产速度快,产品纯度高,设备少。
(2)易产生局部过热,致使产品变色,发生气泡甚至爆聚。
(3)反应温度不易恒定,所以反应产物的相对分子质量分散性较大。
------------------------------------------------------------------------------------------------------------------------1《高聚物合成工艺学》(4)产品容易老化。
4.主要产品:PS树脂、PMMA树脂、PE树脂、PVC树脂等。
5.主要影响因素:(1)单体的聚合热会放出大量的热量,如何排除是生产中的第一个关键问题。
工业生产中:一般采用两段式聚合第一段在较大的聚合釜中进行,控制10%~40%以下转化率;第二段进行薄层(如板状)聚合或以较慢的速度进行。
(2)聚合产物的出料是本体聚合的第二个问题,控制不好不但会影响产品的质量,还会造成生产事故。
解决办法:根据产品特性,选出料方式浇铸脱模制板材或型材,熔融体挤出造粒,粉状出料。
丙烯酸乳液聚合工艺丙烯酸乳液聚合是一种制备丙烯酸乳液聚合物(通常是聚丙烯酸乳液)的化学过程。
这种聚合过程涉及将丙烯酸单体分散在水中,然后通过引发剂引发聚合反应,最终形成乳液聚合物。
以下是一般的丙烯酸乳液聚合工艺步骤:1. 原材料准备丙烯酸单体:丙烯酸是聚合的基本单体,需要确保其纯度和质量。
分散剂:用于将丙烯酸单体在水中分散。
乳化剂:有助于形成稳定的乳液结构。
引发剂:引发剂引发聚合反应,促使丙烯酸单体形成聚合物。
2. 乳化水相准备:准备含有适当浓度的水溶液。
分散丙烯酸:将丙烯酸单体添加到水相中,并使用分散剂确保丙烯酸均匀分散在水中。
添加乳化剂:添加乳化剂,形成乳液结构。
3. 聚合反应引发剂添加:将引发剂加入乳液中。
聚合反应:引发剂引发丙烯酸单体的聚合反应,生成聚合物颗粒。
反应控制:控制温度、搅拌速度等条件以确保反应进行良好。
4. 终点控制和停止反应终点控制:监测聚合反应的进程,确定聚合物颗粒的大小和分布。
停止反应:在适当的时机停止引发剂的添加,结束聚合反应。
5. 产品调整和稳定化调整pH值:可能需要调整乳液的pH值以获得所需的产品性能。
添加稳定剂:添加稳定剂以提高乳液的稳定性。
6. 过滤和包装过滤:过滤掉未反应的物质和固体颗粒。
包装:将成品乳液聚合物进行包装,以便存储和运输。
7. 质量控制和检验检测颗粒大小和分布:使用仪器或显微镜等工具检测聚合物颗粒的大小和分布。
检验产品性能:对产品进行物理性能和化学性能的检验,确保符合要求。
丙烯酸乳液聚合工艺的具体步骤和条件可能会因制备目的、产品用途和生产规模而有所不同。
在实际生产中,需要根据具体情况进行优化和调整。
乳液聚合班级:高分0942 姓名:冯会科学号:200910211239乳液聚合(emulsion polymerization)是在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由引发剂引发而进行的聚合反应。
乳液聚合是高分子合成过程中常用的一种合成方法。
乳液聚合体系至少由单体、引发剂、乳化剂和水四个组分构成,一般水与单体的配比(质量)为70/30~40/60,乳化剂为单体的0.2%~0.5%,引发剂为单体的0.1%~0.3%;工业配方中常另加缓冲剂、分子量调节剂和表面张力调节剂等。
所得产物为胶乳,可直接用以处理织物或作涂料和胶粘剂,也可把胶乳破坏,经洗涤、干燥得粉状或针状聚合物。
乳液聚合的发展自由基聚合反应是聚合物生产中应用最为广泛的方法之一,乳液聚合则是由单体和水在乳化剂作用下配制成的乳状液中进行的聚合,体系主要有单体、水、乳化剂和引发剂四种基本组分构成。
乳液聚合技术萌生于上世纪早期,一般公认最早见于文献的是德国Bayer公司的H.Hofmann的一篇关于异戊二烯单体水乳液的聚合专利。
30年代见于工业生产,40年代Harkins定性地阐明了在水中溶解度很低的单体乳液聚合机理。
后来,Smith和Ewart,建立了定量的理论,提出了乳液聚合的三种情况及乳液聚合过程的三个阶段,即乳胶粒生成阶段(阶段I)、乳胶粒长大阶段(阶段II)及乳液聚合完成阶段(阶段III),这一理论被视为乳液聚合的经典理论。
此后乳液聚合成为研究热点。
随着乳液聚合理论的发展,乳液聚合技术也在不断的发展和创新。
关于常规乳液聚合目前研究主要集中在:多组分乳液聚合体系的研究、合成高固含量的乳胶、反应型乳化剂的使用等方面。
另外,在传统乳液聚合工艺的基础上,目前国内外已开发出无皂乳液聚合、细乳液聚合、反相乳液聚合、分散聚合和微乳液聚合等新的聚合工艺。
从本质上来说,这些新的聚合技术与乳液聚合有着共同的特征,即都是分隔体系的聚合反应,有着共同的一些优点。
乳液聚合生产工艺乳液是一种常用的液态乳剂,由于其具有良好的稳定性和易于应用的特点,被广泛用于各个领域,如化妆品、医药、食品等。
乳液是由两种或多种不相溶的物质组成,其中一种是胶体颗粒悬浮在另一种物质中。
乳液聚合是一种制备乳液的方法,本文将介绍乳液聚合的工艺过程。
乳液聚合的工艺主要包括:物料准备、乳化、稳定剂加入、调整pH 值、除杂、灭菌、包装等环节。
首先,物料准备是乳液聚合的第一步。
物料的选择对乳液的成品性能具有重要影响。
通常乳液聚合的主要物料包括水相、油相、乳化剂和稳定剂。
水相通常选择纯净水或蒸馏水,油相可以选择植物油或矿物油,乳化剂可以选择非离子型或离子型乳化剂,稳定剂可以选择高分子聚合物。
在物料准备过程中,需要对各种物料进行加热、搅拌和混合,确保物料充分溶解和均匀混合。
其次,乳化是乳液聚合的关键步骤。
乳化是指将两种或多种不相溶的液体混合均匀,形成乳液的过程。
乳化可以通过机械方法或化学方法来实现。
常用的机械方法包括高速搅拌、高剪切力、乳化器等,常用的化学方法包括使用乳化剂和表面活性剂。
在乳化过程中,乳化剂和乳化条件的选择对乳液的稳定性和均匀性有着重要影响。
第三,稳定剂的加入是乳液聚合的重要环节。
稳定剂的作用是使乳液保持稳定的状态,防止乳液分层、凝结等现象的发生。
常用的稳定剂有增稠剂、抗凝剂、增溶剂等。
稳定剂的加入一般通过搅拌或分散的方式进行,确保稳定剂均匀分布在乳液中。
然后,需要调整乳液的pH值。
pH值的调整对乳液的稳定性和成品的质量有着重要影响。
一般来说,乳液的pH值应处于中性或略酸性范围内。
pH值的调整可以通过酸碱中和的方式进行,需要根据具体的产品要求进行调整。
接下来,对乳液进行除杂处理。
除杂的目的是去除乳液中的杂质和残留物,确保乳液的纯度和质量。
除杂的方法有过滤、离心等。
除杂过程中需要注意避免对乳液的物理性能产生影响。
最后,对乳液进行灭菌处理。
灭菌是为了防止乳液中的微生物污染,确保乳液的质量和安全性。