钙钛矿量子点研究进展资料
- 格式:pptx
- 大小:1.58 MB
- 文档页数:13
化工进展CHEMICAL INDUSTRY AND ENGINEERING PROGRESS2021年第40卷第1期提高钙钛矿量子点稳定性的研究进展吕斌1,2,郭旭1,2,高党鸽1,2,马建中1,2,麻冬3(1陕西科技大学轻工科学与工程学院,陕西西安710021;2轻化工程国家级实验教学示范中心,陕西西安710021;3陕西燃气集团富平能源科技有限公司,陕西渭南711700)摘要:钙钛矿量子点具有发光谱带较窄、发光可调、量子效率高等优异的光学性能,在发光二极管、激光发射器等领域广受关注。
但是钙钛矿量子点由于强离子性、高表面能及表面配体易迁移等特性而对环境高度敏感,使其在实际应用中受到限制。
本文简要介绍了钙钛矿量子点结构和不稳定的原因,综述了近年来提高钙钛矿量子点稳定性的主要方法,重点从离子掺杂、表面钝化、表面包覆及多重保护4个方面展开论述。
最后从绿色环保的角度出发,对高稳定生物质基钙钛矿量子点材料的制备进行了展望,提出使用具有特定结构的生物质材料及其衍生材料取代传统石油基试剂作为配体、溶剂或吸附重金属离子的外壳材料,可加速钙钛矿量子点朝着绿色低毒的方向发展。
关键词:钙钛矿;量子点;稳定性;生物质中图分类号:TN304文献标志码:A文章编号:1000-6613(2021)01-0247-12Research progress on the improvement of the stability of perovskitequantum dotsLYU Bin 1,2,GUO Xu 1,2,GAO Dangge 1,2,MA Jianzhong 1,2,MA Dong 3(1College of Bioresources Chemistry and Materials Engineering,Shaanxi University of Science &Technology,Xi ’an 710021,Shaanxi,China;2National Demonstration Center for Experimental Light Chemistry Engineering Education,Shaanxi University of Science &Technology,Xi ’an 710021,Shaanxi,China;3Shaanxi Gas Group Fuping EnergyTechnology Corporation Limited,Weinan 711700,Shaanxi,China)Abstract:Perovskite quantum dots have attracted much attention in light-emitting diodes,laser emitters,and other fields due to their narrow optical emission bands,adjustable light emission,and high quantum yield,etc .However,perovskite quantum dots are highly sensitive to the environment due to their strong ionicity,high surface energy,and easy migration of surface ligands,therefore,they are limited in practical applications.This article introduces the reasons of the structure and instability of perovskite quantum dots and summarizes the main methods to improve the stability of perovskite quantum dots in recent years from four aspects:ion doping,surface passivation,surface coating,and multiple protection.Finally,from the perspective of green environmental protection,the prospect of the preparation of highly stable biomass-based perovskite quantum dots are put forward.It proposed to use biomass materials with specific综述与专论DOI :10.16085/j.issn.1000-6613.2020-0432收稿日期:2020-03-23;修改稿日期:2020-07-25。
钙钛矿量子点的光吸收系数和稀土离子概述说明1. 引言1.1 概述随着纳米科技的不断发展,钙钛矿量子点作为一种新兴的材料在光学应用中引起了广泛关注。
钙钛矿量子点具有优异的光学性质和电子特性,被广泛应用于太阳能电池、发光二极管、激光器等领域。
其独特的量子效应使得它在吸收、发射和转换光能方面具有突出优势。
1.2 文章结构本文将首先介绍钙钛矿量子点的光吸收系数及其相关定义和原理,然后探讨影响钙钛矿量子点光吸收系数的因素,并详细介绍测量方法和技术。
接下来,我们将对稀土离子进行概述,并阐述其在光学中的作用机制。
同时研究了稀土离子与钙钛矿量子点之间的相互作用进展情况。
随后,我们将给出实验结果及讨论,包括对钙钛矿量子点光吸收系数以及稀土离子对其的影响进行详细分析。
最后,我们将总结并展望未来的研究方向和建议。
1.3 目的本文旨在全面了解钙钛矿量子点的光吸收系数及其与稀土离子之间的相互作用。
通过对相关概念、原理、实验结果和讨论的详细阐述,期望能够为进一步研究和应用钙钛矿量子点提供参考和指导。
此外,通过对稀土离子在光学中的作用机制以及其与钙钛矿量子点的相互作用研究进展的深入探讨,可以拓宽我们对这一领域的认识,并为开展更多基于稀土离子-量子点体系的应用研究提供理论依据。
2. 钙钛矿量子点的光吸收系数2.1 定义和原理钙钛矿量子点是一种具有特殊光学性质的纳米材料,其光吸收系数用于描述其对入射光的吸收能力。
光吸收系数可以表示为α,其定义为单位长度内材料吸收的光强占入射光强的比例。
在钙钛矿量子点中,电子在晶格结构中发生转移,并进入导带或价带。
当入射光与量子点相互作用时,电子会从价带跃迁至导带,产生吸收现象。
该过程中电子的能级差被转化为激发态和基态之间的能量差。
2.2 影响因素钙钛矿量子点的光吸收系数受到多个因素的影响。
首先,量子点本身的结构、组分和大小会影响其电子能级结构和波函数重叠程度,从而影响到其光吸收性能。
此外,外界环境条件如温度、压力等也会对光吸收系数产生影响。
钙钛矿量子点研究进展钙钛矿量子点是一类具有广泛应用前景的新型纳米材料,其具有优异的光学、电学和磁学性能,因此在光电子器件、光催化、生物成像、光传感等领域具有广泛的应用潜力。
近年来,针对钙钛矿量子点的研究取得了诸多重要进展。
首先,钙钛矿量子点的合成方法得到了显著改进。
传统的合成方法多采用热分解法或溶剂热法,但由于条件较为复杂,产率低且很难控制尺寸和形状。
近年来,研究人员发展了许多新的合成方法,如离子交换法、表面修饰法、离子液体法等。
这些新的合成方法不仅能够合成高质量的钙钛矿量子点,还能够精确调控其尺寸、形状和表面性质,为其在应用中提供了更多的可能性。
其次,钙钛矿量子点在光电子器件领域的应用突破了传统材料的限制。
光电转换器件是钙钛矿量子点最具应用潜力的领域之一、研究人员通过合理选择钙钛矿量子点的成分和调控其尺寸,成功制备出高效率的钙钛矿太阳能电池。
此外,钙钛矿量子点还可以用于制备发光二极管、光电传感器、激光器等光电子器件,提高了这些器件的性能和稳定性。
第三,钙钛矿量子点在生物医学领域的应用也取得了重要进展。
由于其优异的光学性能和生物兼容性,钙钛矿量子点被广泛应用于生物成像和生物标记物等方面。
研究人员通过调控钙钛矿量子点的组分和表面性质,使其能够在生物体内具有较高的稳定性和荧光性能。
这使得钙钛矿量子点成为了高分辨率生物成像和癌症治疗的有力工具。
最后,钙钛矿量子点的表面修饰和功能化也取得了重要进展。
表面修饰和功能化可以提高钙钛矿量子点的光学和电学性能,扩展其应用领域。
研究人员通过改变钙钛矿量子点的表面配体,实现了对其吸收光谱和发射光谱的调控。
此外,还将钙钛矿量子点与其他材料进行修饰,制备出具有特殊功能的杂化材料,如电催化剂、光催化剂等。
综上所述,近年来对钙钛矿量子点的研究取得了诸多重要进展。
随着不断发展的合成方法和功能化技术,钙钛矿量子点在光电子器件、生物医学和其他领域的应用前景将进一步拓宽。
然而,钙钛矿量子点的制备成本和毒性问题仍然存在挑战,需要进一步研究和改进。
钙钛矿和量子点发光是当前研究领域中备受关注的两大技术,它们在光电子学、生物医学等领域具有广泛的应用前景。
本文将分别对钙钛矿和量子点发光进行介绍,并比较它们在发光性能、制备工艺、应用领域等方面的差异,旨在全面展现这两种发光材料的特点和优势。
1. 钙钛矿发光技术钙钛矿是一种具有优异光电性能的发光材料,其光电子学性能优异,被广泛应用在LED器件、光伏电池、光传感器等领域。
钙钛矿发光具有以下特点:(1)发光效率高:钙钛矿发光材料具有较高的发光效率,能够将输入的能量转化为可见光,使得光源亮度较高,色彩更加鲜艳。
(2)发光波长可调:钙钛矿发光波长范围较宽,可以通过调控材料的成分和结构来实现发光波长的调节,满足不同领域的应用需求。
(3)制备工艺成熟:目前钙钛矿的制备工艺已经相当成熟,可以通过溶液法、气相沉积等多种方法进行大规模制备,降低了制备成本,提高了材料的商业化应用价值。
2. 量子点发光技术量子点是一种具有特殊结构和发光特性的半导体纳米材料,其发光性能优异,被广泛应用在显示器件、生物成像、光催化等领域。
量子点发光具有以下特点:(1)发光色彩纯净:量子点发光具有色彩纯净、饱和度高的特点,能够实现更加真实、细腻的显示效果,广泛应用于LED显示屏、电视机等领域。
(2)宽发光谱范围:量子点发光谱范围较宽,可以通过调控量子点的尺寸和成分来实现发光波长的调节,满足不同领域的应用需求。
(3)生物兼容性强:量子点具有良好的生物兼容性,被广泛应用于生物成像、药物递送等领域,在医学和生物医学领域具有广阔的应用前景。
3. 钙钛矿和量子点发光的比较(1)发光性能比较:钙钛矿发光效率较高,而量子点发光色彩纯净度更高,两者在发光性能上各有优势。
(2)制备工艺比较:钙钛矿发光材料的制备工艺较为成熟,而量子点需要精密的合成工艺,制备工艺相对较为复杂。
(3)应用领域比较:钙钛矿在LED光源、光伏电池等领域具有较为广泛的应用前景,而量子点在显示器件、生物成像等领域具有独特优势。
一钙钛矿材料概述1.1钙钛矿材料研究背景纳米材料是指在三维空间中至少有一维处于纳米尺寸(0.1-100 nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
而钙钛矿量子点则属于三个维度均处于纳米级别的材料。
量子点是在空间的三个维度上的尺寸都小于100 nm的晶体,由于其尺寸较小其内部电子在各方向上的运动都受到限制,即明显的量子限域效应。
由于钙钛矿量子点材料具有较宽的吸收光谱,高的空穴电子迁移率,使得钙钛矿量子点材料成为研究的热点。
最先应用的是太阳能电池领域,并取得了快速的发展,从最开始的效率2.2%到现在已经超过20%;与此同时,由于其不断可修改的可调控的晶体尺寸,钙钛矿量子点材料在光源照明领域也正在探究和应用[1]。
1.2钙钛矿简介钙钛矿是一种钙钛氧化物矿物组成的钛酸钙(CaTiO3),1839年,德国矿物学家古斯塔夫·罗斯(Gustav Rose)在俄罗斯乌拉尔山脉发现了这种矿物,俄罗斯矿物学家列夫·佩罗夫斯基(Lev Perovski, 1792-1856)首次对它的结构进行了表征,所以后来便以Perovski的名字来命名钙钛矿[2]。
到后来,钙钛矿并不单单特指这种钙钛复合氧化物,而用来泛指一系列具有ABX3化学式的化合物[3]。
钙钛矿引人注目的晶体结构最早是由维克多·戈德施密特在1926年关于容差因子的著作中描述的。
1945年,海伦·迪克·梅加维根据钛酸钡的X射线衍射数据发表了该晶体结构[4]。
通常来说,钙钛矿的化学式组成中,A和B为阳离子,X为阴离子。
一般情况下,X离子被氧或卤化物占据,从而形成无机氧化物钙钛矿或卤素钙钛矿。
卤化物钙钛矿可进一步根据A的不同而进一步分为碱金属卤化物钙钛矿和有机-无机钙钛矿。
碱金属卤化物在A位上为一价的碱金属离子(Li+、Na+、K+、Rb+、Cs+)和B位上一个二价阳离子,X位为卤素离子(Cl-,Br-,I-或者它们的任意组合)。
钙钛矿量子点在光伏电池中的应用研究1. 介绍在目前全球能源需求不断增长的背景下,寻找替代传统能源的绿色、可再生能源成为迫切的任务。
光伏电池作为一种直接将太阳能转化为电能的装置,已经成为了可再生能源中最受关注的技术之一。
然而,传统的硅基光伏电池存在制造成本高、能源转化效率低、制造材料有限等问题。
钙钛矿量子点作为新型的光伏材料,在光伏电池领域具有巨大的潜力。
2. 钙钛矿量子点的优势2.1 高光吸收和较窄的带隙钙钛矿量子点由于其特殊的晶体结构,具有较高的光吸收能力和较窄的带隙,这意味着它们能够有效地吸收和利用太阳能光谱中更多的能量。
相比之下,传统的硅基光伏电池只能吸收一部分可见光谱,导致能源转化效率较低。
2.2 易于合成和表面调控钙钛矿量子点的合成方法多样且简单,可以通过溶剂热法、离子交换等方法来制备。
同时,钙钛矿量子点的表面性质可以通过合成过程中的参数调控,例如溶剂的选择、表面配体的修饰等,使得其在光伏电池中的应用更加灵活和可控。
3. 钙钛矿量子点在光伏电池中的应用3.1 钙钛矿量子点敏化太阳能电池钙钛矿量子点敏化太阳能电池(quantum dot sensitized solar cells, QDSSCs)是一种以钙钛矿量子点作为光敏剂的光伏电池。
与传统的染料敏化太阳能电池(dye-sensitized solar cells, DSSCs)相比,QDSSCs具有更高的光吸收率和更高的电荷分离效率。
此外,钙钛矿量子点敏化太阳能电池还具有较长的电子传输距离和更好的稳定性,这使得其在实际应用中更为可靠和持久。
3.2 钙钛矿量子点薄膜太阳能电池除了敏化太阳能电池,钙钛矿量子点还可以制备成薄膜形式,用于直接构建光伏电池的工作层。
钙钛矿量子点薄膜太阳能电池不仅具有高效率的光吸收能力,还能够快速电荷分离和电子传输。
通过优化薄膜的厚度和结构,可以进一步提高光伏电池的效率和稳定性。
3.3 钙钛矿量子点增强光伏器件除了直接作为光敏材料使用外,钙钛矿量子点还可以用于增强传统光伏器件的性能。
钙钛矿量子点的组国内外【摘要】钙钛矿量子点是一种具有独特结构特点的纳米材料,正在国内外得到广泛研究。
国内钙钛矿量子点的制备方法多样化,国外应用领域包括生物医药、光电子器件等。
未来,国外钙钛矿量子点有望在太阳能电池、LED灯等领域取得重大进展。
国内外的比较研究也显示了各自的优势和发展方向。
不论是国内还是国外,对钙钛矿量子点的研究都具有重要意义,其应用前景广阔。
钙钛矿量子点的发展前景十分可观,国内外都对其研究予以重视。
钙钛矿量子点有望在未来的光电子领域发挥重要作用。
【关键词】钙钛矿量子点, 组成, 研究现状, 独特结构特点, 制备方法, 应用领域, 发展趋势, 比较研究, 发展前景, 研究重视, 应用前景.1. 引言1.1 钙钛矿量子点的组成钙钛矿量子点是一种具有非常特殊结构的纳米材料,其主要由钙钛矿晶体构成。
钙钛矿晶体的一般化学式为ABX3,其中A和B是两种金属离子,X是一种阴离子。
钙钛矿晶体具有一种立方结构,其中正方体的各个角上分别占有阴离子X、金属离子A和金属离子B。
这种结构使得钙钛矿晶体具有很强的光电性能,特别是光吸收和发射方面。
钙钛矿量子点可以看做是钙钛矿纳米颗粒的一种特殊形式,其直径通常在1到10纳米之间。
由于其纳米尺度的特殊性质,钙钛矿量子点在光学、电子、催化等领域具有很大的应用潜力。
由于其结构的特殊性质和尺寸效应,钙钛矿量子点在国际上被广泛研究,并被认为是一种具有重要应用前景的新型功能材料。
1.2 钙钛矿量子点在国内外的研究现状而在国外,由于对新材料的研究更加深入和成熟,钙钛矿量子点的研究更为广泛和深入。
在国外,钙钛矿量子点已经被应用在光伏材料、LED显示屏、生物标记等领域,并取得了一些重要的应用成果。
国外学者也在不断探索钙钛矿量子点的未来发展趋势,尝试将其应用于更多领域,为科学研究和技术创新提供新的可能性。
钙钛矿量子点在国内外的研究现状呈现出国内研究重在基础探索和应用实践,而国外研究则更为前沿和深入。
钙钛矿量子点的光致发光与非线性光学特性研究钙钛矿量子点(PeroVSkitequantumdots,PQDS)是一种新型半导体纳米材料,具有高荧光量子产率、宽发光光谱范围、可调控发光颜色等特点,是下一代发光材料的重要研究方向之-O本文针对钙钛矿量子点的光致发光与非线性光学特性展开研究,通过相关实验验证其在红外光谱区间内的非线性光学行为。
首先,通过荧光光谱探测钙钛矿量子点的荧光发射特性,发现它们具有高荧光量子产率和窄的发射带宽,适合作为发光材料的应用。
其次,利用激光拉曼光谱技术对钙钛矿量子点的表面结构进行了表征,发现钙钛矿量子点的表面结构在热稳定性、阳离子扰动等方面的表现良好,能够在实际应用中保持良好的稳定性和效率。
接着,本文对钙钛矿量子点在光致发光方面进行了实验研究。
实验表明,钙钛矿量子点的荧光发射处于可见光区间,荧光发射峰在多种激发波长下均有显著强度。
同时,荧光寿命随着激发波长的改变而变化,这为理解的量子点级别的能量跃迁提供了直接的证据,并且表明这些量子点中的电子和空穴寿命和分辨率都很高。
在此基础上,本文还对钙钛矿量子点的非线性响应进行了研究。
发现,随着激发光强度的增加,钙钛矿量子点荧光发射强度也同步增加,且增长趋势随着激发波长的不同而不同,这表明了钙钛矿量子点具有良好的非线性光学行为。
关键词:钙钛矿量子点,光致发光,非线性光学总之,本文成功地探究了钙钛矿量子点的光致发光与非线性光学特性,为该材料的应用提供了实验依据。
最后指出,钙钛矿量子点的光学性质和非线性响应仍有许多值得探究的地方,还需在结构设计、组装和制备等领域展开更广泛的研究钙钛矿量子点因其独特的光学性质和稳定性,近年来引起了广泛的关注和研究。
除了在发光材料方面应用外,钙钛矿量子点还可应用于太阳能电池、生物探针、传感器等领域。
钙钛矿量子点在太阳能电池中的应用研究表明,该材料对可见光的吸收强度较高,同时具有高荧光量子产率,可以用于增强太阳能电池的吸收效率。
一钙钛矿材料概述1.1钙钛矿材料研究背景纳米材料是指在三维空间中至少有一维处于纳米尺寸(0.1-100 nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
而钙钛矿量子点则属于三个维度均处于纳米级别的材料。
量子点是在空间的三个维度上的尺寸都小于100 nm的晶体,由于其尺寸较小其内部电子在各方向上的运动都受到限制,即明显的量子限域效应。
由于钙钛矿量子点材料具有较宽的吸收光谱,高的空穴电子迁移率,使得钙钛矿量子点材料成为研究的热点。
最先应用的是太阳能电池领域,并取得了快速的发展,从最开始的效率2.2%到现在已经超过20%;与此同时,由于其不断可修改的可调控的晶体尺寸,钙钛矿量子点材料在光源照明领域也正在探究和应用[1]。
1.2钙钛矿简介钙钛矿是一种钙钛氧化物矿物组成的钛酸钙(CaTiO3),1839年,德国矿物学家古斯塔夫·罗斯(Gustav Rose)在俄罗斯乌拉尔山脉发现了这种矿物,俄罗斯矿物学家列夫·佩罗夫斯基(Lev Perovski, 1792-1856)首次对它的结构进行了表征,所以后来便以Perovski的名字来命名钙钛矿[2]。
到后来,钙钛矿并不单单特指这种钙钛复合氧化物,而用来泛指一系列具有ABX3化学式的化合物[3]。
钙钛矿引人注目的晶体结构最早是由维克多·戈德施密特在1926年关于容差因子的著作中描述的。
1945年,海伦·迪克·梅加维根据钛酸钡的X射线衍射数据发表了该晶体结构[4]。
通常来说,钙钛矿的化学式组成中,A和B为阳离子,X为阴离子。
一般情况下,X离子被氧或卤化物占据,从而形成无机氧化物钙钛矿或卤素钙钛矿。
卤化物钙钛矿可进一步根据A的不同而进一步分为碱金属卤化物钙钛矿和有机-无机钙钛矿。
碱金属卤化物在A位上为一价的碱金属离子(Li+、Na+、K+、Rb+、Cs+)和B位上一个二价阳离子,X位为卤素离子(Cl-,Br-,I-或者它们的任意组合)。