最新圆锥体积教学案例
- 格式:doc
- 大小:205.50 KB
- 文档页数:7
圆锥的体积教学设计一等奖【精选4篇】一个好的教学设计是一节课成败的关键,要根据不同的课题进行灵活的教学设计。
首先对每一个课题的教学内容要有一个整体的把握。
这次漂亮的我为亲带来了4篇《圆锥的体积教学设计一等奖》,希望朋友们参阅后能够文思泉涌。
《圆锥的体积》教学设计篇一一、教学内容:义务教育课程标准实验教科书(人教版版)六年级下册第33~34页。
二、教学目标:1、知识技能目标:通过实验探究,发现圆锥和圆柱体积之间的关系,理解和掌握圆锥体积的计算方法。
使学生会应用公式计算圆锥的体积并解决一些实际问题。
2、思维能力目标:提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。
3、情感态度目标:使学生在经历中获得成功的体验,体验数学与生活的联系。
三、教学重点、难点:重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题难点:探索圆锥体积的计算方法和推导过程。
四、教具准备:1、多媒体课件。
2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。
五、教学过程:(一)创设情境,导入新课投影出示圆锥形小麦堆。
师:看,小麦堆得像小山一样,小麦丰收了。
张小虎和爷爷笑得合不拢嘴。
这时,爷爷用竹子量了量麦堆的高和底面的直径,出了个难题要考考小虎:你能算出这堆小麦大约有多少立方米吗?这下可难住了小虎,因为他只学了圆柱的体积计算,圆锥的体积怎么计算还没有学,怎么办?今天我们就一起来探究圆锥体积的计算方法。
【设计意图】通过学习感兴趣的情境,巧妙至疑,激发学生的学习欲望。
(二)互动新授1、提出问题。
教师:我们已经会计算圆柱的体积,如何计算圆锥的体积呢?根据学生的各种猜想,教师进一步引导学生思考,我们学过那些图形的体积计算?圆锥的体积与那种图形的体积有关?进一步观察、比较、猜测。
教师举起圆柱、圆锥教具,把圆锥体套在透明的圆柱体里,让学生想想它们的体积之间会有什么关系?学生可能会猜测:圆柱的体积可能是圆锥的2倍,3倍,4倍或其他。
《圆锥的体积》教案设计•相关推荐《圆锥的体积》教案设计(通用13篇)作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,编写教案有利于我们科学、合理地支配课堂时间。
那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的《圆锥的体积》教案设计,希望能够帮助到大家。
《圆锥的体积》教案设计篇1教材分析:圆锥的体积是传统的教学内容,对这部分内容的编排,在内容和要求方面没有大的变化,实验教材的编排体现了新的教学理念,使得教材的面貌发生了较大的变化。
具体来说有这样几个变化:(1)加强了所学知识与现实生活的联系。
教材通过列举大量现实生活中具有圆锥体特征实物直观引入,让学生观察思考这些物体形状的共同的特点,并从实物中抽象出它们的几何图形。
当学生认识它们的主要特征后,又让学生从生活中寻找更多的具体如此特征的实物,从而加强所学知识与现实生活的联系,进一步感受几何知识在生活中的广泛应用。
(2)加强了对图形特征,体积、方法的探索过程。
在以往的教学中,这部分内容的编排更侧重于理解和掌握图形的特征、体积的计算方法,而对于促进学生空间观念的发展在学习素材和实践操作方面都显不够。
实验教材加强了动手实践、自主探索、,让学生经历知识的形成过程,使学生获得较多的有关自主探索和空间观念的训练机会。
(3)加强了学生在操作中对空间与图形问题的思考。
学情分析:加强了学习方法的引导,鼓励学生独立思考,培养学生的学习能力。
教材注意鼓励学生运用已有的知识对新学习的内容进行联想和猜测,再通过实验和推理验证,培养学生良好的学习和思考习惯。
如:联系圆柱体公式鼓励学生猜测圆锥体积的计算方法。
圆锥体积的教学是按照引出问题联想、猜测实验探究导出公式的思路设计的,在猜测的基础上进行试验和推理,使学生受到研究方法和思维方式的训练,发展和提高自主学习的能力。
教学目标:1、理解并掌握圆锥的体积的计算方法,能运用公式解决简单的实际问题。
2、提高学生实际应用的能力。
小学六年级数学《圆锥的体积》教案范例四篇《圆锥的体积》一课是在学生学习过圆柱的体积以及对圆锥体特征有了初步的认识后进行教学的。
下面就是我给大家带来的小学六年级数学《圆锥的体积》教案范例,欢迎大家阅读!小学六年级数学《圆锥的体积》教案范例一教学目标 :1、通过动手操作实验,推导出圆锥体体积的计算公式。
2、理解并掌握体积公式 , 能运用公式求圆锥的体积, 并会解决简单的实际问题。
3、通过学生动脑、动手,培养学生的观察、分析的综合能力。
教具准备:等底等高的圆柱体和圆锥体 5 套,大小不同的圆柱体和圆锥体 5 套、水槽 5 个,以及多媒体辅助教学课件。
教学过程设计:一、复习旧知,做好铺垫。
1、认识圆柱 ( 课件演示 ) ,并说出怎样计算圆柱的体积?( 屏幕出示:圆柱体的体积 =底面积×高 )2、口算下列圆柱的体积。
(1)底面积是 5 平方厘米,高 6 厘米,体积 =?(2)底面半径是 2 分米,高 10 分米,体积 =?(3)底面直径是 6 分米,高 10 分米,体积 =?3、认识圆锥 ( 课件演示 ) ,并说出有什么特征 ?二、沟通知识、探索新知。
教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。
这节课我们就来研究“圆锥的体积”。
( 板书课题 )1、探讨圆锥的体积计算公式。
教师:怎样推导圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积计算公式的?学生回答,教师板书:圆柱 ------(转化)------长方体圆柱体积计算公式 --------(推导)长方体体积计算公式教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。
你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。
(1)提问学生:你发现到什么 ?( 圆柱和圆锥的底和高有什么关系 ?)( 学生得出:底面积相等,高也相等。
小学数学《圆锥体积》公开课教案最新5篇《圆锥体积的计算》教学设计篇一教学目标:1、通过让学生小组合作探究,利用不同的方法测量出圆锥的体积。
体验到计算圆锥体积的计算公式v=1/3sh是最简便的方法。
2、锻炼学生的操作能力,估算能力,评价能力,更好的发展他们的创新能力。
3、培养学生的合作意识及主动探索知识的精神。
教学重点:让学生自己亲身体验到计算圆锥体积的不同方法。
从而理解计算公式v=1/3sh,并感受到计算公式的简便。
教学难点:能利用不同方法计算不同物体的体积。
知识的活学活用。
教学准备:1、个学生一组,每组各有量杯;量桶;一升的容器;等底等高的圆柱与圆锥器皿;大米,沙子或水;1立方厘米的小方块若干。
62、教学软件。
教学流程:一、创设情景,激趣引新。
1、首先教师手中拿一圆柱体问:同学们,老师想知道这个圆柱体的体积你们能帮助我吗?(学生踊跃举手说明。
可以先测量出圆柱的半径与高。
再用圆周率乘半径的平方得到底面积,最后乘以高就可以了。
)2、教师表示赞同,并抓住这一契机拿出于刚才圆柱等底等高的圆锥,问:那老师这里还有一个圆锥体,它的体积应该怎样计算呢?你们知道吗?(学生齐答不)那你们想不想研究呢?(学生齐答想)好,下面我们就一起来研究圆锥的体积该怎样计算。
〈设计意图:通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切。
从而产生学习新知的欲望。
〉二、小组合作,探究学习。
1、动手操作,测量圆锥体的体积。
要求:每组同学,利用桌面上的工具(量杯,量桶,与圆锥等底等高圆柱容器,大米,沙子,水,1立方分米小方块)测量出自己组内的圆锥体的体积。
测量物体是容器的厚度不计。
〈全体学生在动手操作,互相商量解决问题的办法。
教师巡回指导。
课堂呈现小组探究学习的热烈场面。
〉3、分组汇报不同的方法。
〈学生在汇报时可边讲解边示范〉方法一:可以利用量杯。
首先把圆锥体容器内装满水,然后把它倒入量杯内,我们看到水面的刻度就是水的。
《圆锥的体积》数学教案(优秀9篇)【教学目标:】1、使学生探索并初步掌握圆锥体积的计算方法和推导过程;2、使学生会应用公式计算圆锥的体积并解决一些实际问题;3、提高学生实践操作、观察比较、抽象概括的能力,发展空间观念;【教学重点:】使学生初步掌握圆锥体积的计算方法并解决一些实际问题。
【教学难点:】探索圆锥体积的计算方法和推导过程。
【教具准备:】1、多媒体课件。
2、等底等高、等底不等高、等高不等底的圆锥和圆柱,沙、米,实验报告单;【教学过程:】一、创设情境,发现问题1、故事引入:爱迪生是一位伟大的发明家,他的一生有1000多项发明,当人们都说他是天才的时候,他却谦虚的说:天才=99%的汗水和1%的灵感。
孩子们,请记住这句话吧,你的未来一定会很出色的哦。
今天这节课我们就从爱迪生的一个小故事开始吧,有一天爱迪生让他的助手测量一个灯泡的体积,由于灯泡的形状很不规则,助手苦苦思考,还是没有答案,爱迪生用了一个非常巧妙的办法他将灯泡里装满水,然后将水倒入量筒中(教师拿出圆柱体量筒作演示),就得出了灯泡的体积。
你能说说爱迪生这样做的理由吗?师:因为圆柱体的体积等于底面积高。
(板书)2、提出问题,明确方向。
爱迪生帮他的助手解决了这个问题,现在请同学们帮打谷场上的农民伯伯们一个忙(用多媒体显示一堆圆锥体的小麦堆)请大家算算这堆小麦的体积。
看看谁是未来的爱迪生生:利用爱迪生的方法,利用一个圆柱体或长方体大桶来装这堆谷子,就能求出这堆谷子的体积了。
师:长方体的体积公式是什么呢?生:长宽高师:非常棒,其实呀不管是爱迪生,还是未来的爱迪生都是运用转化这一重要的数学思想来解决新的问题,今天我们同样能不能用转化的数学思想找到一种简单而又科学合理的方法计算出圆锥的体积的计算公式呢?板书:圆锥体积二、讨论问题,提出方案1、现在请同桌互相讨论一下,可以采取什么办法找到手中圆锥的体积。
比一比,哪个学习小组的方法多,方法好。
各小组汇报:把圆锥投入装了水的长方体、正方体或圆柱体的容器中,求出上升部分水的体积。
《圆锥的体积》教学设计【优秀4篇】篇一:《圆锥的体积》教学设计篇一教学目标:1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。
2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。
3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。
教学重点:通过实验的方法,得到计算圆锥的体积。
教学难点:运用圆锥的体积公式进行正确地计算。
教学准备:等底等高的圆柱和圆锥容器模型各一个。
教学过程:一、复习导入师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。
1、圆柱体积的计算公式是什么?(指名学生回答)2、圆锥有什么特征?同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)二、探究新知课件出示等底等高的圆柱和圆锥1、引导学生观察:这个圆柱和圆锥有什么相同的地方?学生回答:它们是等底等高的。
猜想:(1)、你认为圆锥体积的大小与它的什么有关?(2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?2、学生动手操作实验(1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?(2)、通过实验,你发现了什么?小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。
也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一。
3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。
看看圆柱和圆锥有什么相同的地方?(等底等高)请同学们注意观察,用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?问:把圆柱装满一共倒了几次?生:3次。
师:这说明了什么?生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。
(板书:圆锥的体积=1/3×圆柱体积)师:圆柱的体积等于什么?生:等于“底面积×高”。
《圆锥的体积》教案【精选4篇】《圆锥的体积》教案篇一教学内容:教材第11~17页圆锥的认识和体积计算、例1.教学要求:l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养学生初步的空间观念和发展学生的思维能力。
教具准备:长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的的教具。
教学重点:掌握圆锥的特征。
教学难点:理解和掌握圆锥体积的计算公式。
教学过程:一、铺垫孕伏:1.说出圆柱的体积计算公式。
2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。
在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。
这些物体的形状都是圆锥体,简称圆锥。
我们教材中所讲的圆锥,都是直圆锥。
今天这节课,就学习圆锥和圆锥的体积。
(板书课题)二、自主探究:1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的`圆锥体,谁能举出一些例子?2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1) 圆锥的底面是个圆,圆锥的侧面是一个曲面。
(2) 认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。
(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?4.学生练习。
口答练习三第1题。
5.教学圆锥高的测量方法。
(见课本第17页有关内容)6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。
(具体方法可见教材第18页上面的图)(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?(3)实验操作,发现规律。
在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。
《圆锥的体积》教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、事迹材料、心得体会、调查报告、讲话致辞、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work plans, work summaries, historical materials, insights, investigation reports, speeches, documentary evidence, teaching materials, essay summaries, other sample essays, and more. If you want to learn about different sample essay formats and writing methods, please stay tuned!《圆锥的体积》教案6篇教案是教师根据学生的学习反馈,提供个性化的学习指导,编写教案可以帮助我们预测和解决可能出现的教学问题和困难,提高教学的针对性和灵活性,本店铺今天就为您带来了《圆锥的体积》教案6篇,相信一定会对你有所帮助。
关于《圆锥的体积》教学设计范文(精选6篇)《圆锥的体积》教学设计1一、教学目标1、知识与技能理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
2、过程与方法通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。
3、情感态度与价值观渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。
二、教学重、难点重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。
难点:理解圆锥体积公式的推导过程。
三、教具学具不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。
四、教学流程(一)创设情境,提出问题师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。
促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?生:我选择底面最大的;生:我选择高是最高的;生:我选择介于二者之间的。
师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?生:只要求出冰淇淋的体积就可以了。
师:冰淇淋是个什么形状?(圆锥体)生:你会求吗?师:通过这节课的学习,相信这个问题就很容易解答了。
下面我们一起来研究圆锥的体积。
并板书课题:圆锥的体积。
(二)设疑激趣,探求新知师:那么你能想办法求出圆锥的体积吗?(学生猜想求圆锥体积的方法。
)生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。
师:如果这样,你觉得行吗?教师根据学生的回答做出最后的评价;生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?小组中大家商量。
生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。
小学数学圆锥的体积教案(集锦8篇)小学数学圆锥的体积教案第1篇教学内容教科书第39~40页例1,课堂活动及练习九第1题,第2题。
教学目标1、在操作和探究中理解并掌握圆锥的体积计算公式。
2、引导学生探究、发现,培养学生的观察、归纳等能力。
3、在实验中,培养学生的数学兴趣,发展学生的空间观念。
教学重点圆锥体积的计算公式的推导过程。
教学难点圆锥体积计算公式的理解。
教学过程一、情景铺垫,引入课题教师出示画面,画面中两个小孩正在商店里买蛋糕,蛋糕有圆柱形和圆锥形两种。
圆柱形蛋糕的标签上写着底面积16cm2,高20cm,单价:40元/个;圆锥形的蛋糕标签上写着底面积16cm2,高60cm,单价:40元/个。
出示问题:到底选哪种蛋糕划算呢?教师:图上的两个小朋友在做什么?他们遇到什么困难了?他们应该选哪种蛋糕划算呢?谁能帮他们解决这个问题?学生明白首先要求出圆锥形蛋糕的体积。
教师:怎样计算圆锥的体积?这节课我们一起研究圆锥体积的计算方法。
揭示课题。
板书课题:圆锥的体积二、自主探究,感悟新知1、提出猜想,大胆质疑教师:谁来猜猜圆锥的体积怎么算?2、分组合作,动手实验教师:圆锥的体积和圆柱的体积之间究竟有没有关系呢?如果有关系的话,它们之间又是一种什么关系?通过什么办法才能找到它们之间的关系呢?带着这些问题,请同学们分组研究,通过实验寻找答案。
教师布置任务并提出要求。
每个小组的桌上都有准备好的器材:等底等高空心的或实心的圆柱和圆锥、河沙或水、水槽等不同的器材,以及一张可供选用的实验报告单。
四人小组的成员分工合作,利用提供的器材共同想办法解决问题,找出圆锥体积的计算方法。
并可根据小组研究方法填写实验报告单。
学生小组合作探究,教师巡视指导,参与学生的活动。
3、教师用展示实验报告单教师:你们采用了哪些方法研究等底等高的圆柱和圆锥之间的关系?通过实验,你们发现了什么?方案一:用空心的圆锥装满水,再把水倒在与这个圆锥等底等高的空心圆柱形容器中,倒了三次,刚好装满圆柱形容器,因为圆柱的体积=底面积高,所以圆锥的体积=1/3圆柱的体积。
圆锥的体积教学设计篇8教学目的:使学生初步掌握圆锥体积的计算公式。
并能运用公式正确地计算圆锥的体积,发展学生的空间观念。
教学难点:圆锥的体积应用学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件教学时间:一课时教学过程:一、复习1、圆锥有什么特征?(课件出示)使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?指名学生回答,并板书公式:“圆柱的体积=底面积×高”。
同时渗透转化方法在数学学习中的应用。
二、导人新课出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。
板书课题:圆锥的体积三、新课1、教学圆锥体积的计算公式。
师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。
师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”学生分组实验。
汇报实验结果。
先在圆锥里装满水,然后倒入圆柱。
正好3次可以倒满。
多指名说接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。
请大家注意观察,看看能够倒几次正好把圆柱装满?问:把圆柱装满一共倒了几次?生:3次。
师:这说明了什么?生:这说明圆锥的体积是和它等底等高的圆柱的体积的。
多找几名同学说。
板书:圆锥的体积=1/3×圆柱体积师:圆柱的体积等于什么?生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢?引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。
板书:圆锥的体积=1/3×底面积×高师:用字母应该怎样表示?然后板书字母公式:V=1/3SH师:在这个公式里你觉得哪里最应该注意?教学例1课件出示)一个圆锥的零件,底面积是19平方厘米,高是12厘米。
圆锥的体积教学设计[优秀范文五篇]第一篇:圆锥的体积教学设计圆锥的体积教学设计【教学内容】圆锥的体积(北师大版小学六年级数学课本第十一页至第十二页)【教材分析】圆锥体积公式的推导及圆锥体积公式的应用,按创设情境--实验探究--导出公式三个层次编排。
学生分组操作时,肯定能借助倒沙子的实验,亲身感受等底等高的圆柱与圆锥体积的3倍关系,但要注意对“等底等高”这一条件的强调。
【教学目标】1、结合具体情境和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。
2、经历“类比猜想----验证说明”的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并解决一些简单的实际问题。
3、培养学生自主探究的能力和小组合作学习的能力。
【教学重难点】重点:掌握圆锥体积的计算公式。
难点:正确探索出圆锥体积与圆柱体积之间的关系。
【教具学具】教具:等底等高的圆柱与圆锥、水,课件。
学具:学生自制的等底等高的圆柱与圆锥、细沙或大米【教学过程】一、创设情境,导入新课看,老师手里拿的是什么?(圆锥)回忆一下,圆锥有什么特征?这节课,我们就来研究一下圆锥的体积,齐读课题。
二、操作实验,自主探索1、提出问题:回忆一下我们学过圆柱的体积公式是什么?出示圆柱体,想一想圆柱体积的计算公式是怎样推导出来的?(指名回答,课件简单演示圆柱转化成长方体过程,帮助学生回忆。
)我们是把圆柱转化成已经学过的长方体推导出来的。
圆锥的体积该怎样求呢?能不能也通过学过的图形来推导呢?那应该转化为哪一个立体图形最合适呢?说说你的想法,它们的底面都与圆有关,正如这个同学所说,它们的形状具有一定的相似性,那么它们的体积也应该有着密切的联系。
2、大胆猜想:老师这儿现在就有一个圆柱和一个圆锥,大家观察一下它们有什么特点,对,它们等底等高。
很明显,圆柱的体积要大于圆锥的体积,那么你能不能进行一下大胆的猜测,圆柱和圆锥的体积可能存在着什么关系呢?圆柱体积等于3倍的圆锥体积,刚才大家对圆柱和圆锥的体积进行了大胆的猜测,那么这个猜测是否正确,我们应该怎么办呢?我们分小组验证一下,课前老师让大家准备了圆柱和圆锥,还有沙子。
《圆锥的体积》教学案例(通用16篇)《圆锥的体积》篇1教学内容:本课是九年义务教育人教版小学数学第十二册的内容,是在学习了圆柱的体积计算和圆锥的特征的基础上进行教学的。
教学目标:1、引导学生通过实验推导出圆锥体积计算公式,并能运用公式计算圆锥的体积,解决有关的实际问题。
2、培养学生的观察,猜测、操作能力。
3、培养学生良好的合作探究意识,引导学生掌握正确的学习方法。
教学重点、难点、关键:重点:圆锥的体积计算公式难点:圆锥体积计算公式的推导过程关键:学生通过实验操作,理解“圆锥的体积等于与它等底等高圆柱体积的三分之一。
”教学过程:一、联系生活,激趣导入师:同学们,老师有一个问题,看谁能帮助我解决。
有两种冰淇淋,一种是圆柱形的,2元一支,一种是圆锥形的,0.5元一支,你们说老师买哪种冰淇淋合算呢?生有的说买圆柱形的合算,有的说买圆锥形的合算。
(大家争论不休)(这时,我把这两种不同意见的学生分成两组,各派代表说说自己的理由)。
生甲:圆柱形上下一样粗,冰淇淋装得多些,所以买圆柱形合算。
生乙:那也不一定。
如果圆锥形冰淇淋的底比圆柱形的底大些,那么圆锥形的冰淇淋就不一定比圆柱形的少。
生甲:虽然圆锥形的底大,但它的上面是越来越小,这样冰淇淋装得还是少些,所以买圆锥形的不合算,还是买圆柱形的好。
生乙:不错,圆锥形的上面是越来越小,但如果圆锥形比圆柱形高些呢?……(通过辩论,学生逐渐明白了,合不合算,应该与它们的体积有关。
)师:为了解决这个问题,我们先来学习“圆锥的体积。
”(板书课题)二、探究新知1、猜测:你们认为圆锥的体积和什么图形的体积联系密切?(讨论后,大家一致认为应该与圆柱的体积有联系。
)2、实验:下面我们来分组做实验,看看它们之间有什样的联系?(1)请各组拿出实验材料(课前准备好的)每组等底等高,等底不等高,等高不等底的圆柱和圆锥各一对,黄沙一袋。
另外,每组发一份实验报告单。
(见下表)实验报告一、实验目的:研究圆锥的体积公式。
圆锥的体积教学设计一等奖(优秀5篇)《圆锥的体积》教学设计篇一一、教案背景1、面向学生:小学2、学科:数学人教六年级下学期3、课时:1二、教学课题本课是人教版数学六年级下学期《圆柱与圆锥》单元的内容。
本节课安排了两个例题:一是圆锥体积公式的推导,二是圆锥体积公式的应用。
圆锥体积公式的推导按引出问题---联想、猜测---实验探究---导出公式,四个层次编排。
圆锥体积的计算,题目给出了圆锥形沙堆的底面直径和高,求沙堆的体积。
通过这个例子的教学,使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。
学习本课需要达成以下的目标:1、理解和掌握圆锥体积的计算方法,并能运用公式解决简单实际问题。
2、经历“类比猜想---验证推理”探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并能解决一些简单的实际问题。
3、培养学生动手操作、观察分析的能力,在探究中体验学习的乐趣。
三、教材分析本节内容圆锥的体积是在学生学习了圆柱的体积及圆锥的认识之后,学习的又一个求立体图形体积的内容,是学校阶段学习的最后一个解决“空间与图形”问题的内容,也是前阶段所学知识发展与升华。
教材安排了例2、例3两个例题,例2引导学生推导出圆锥的体积,例3让学生用圆锥的体积公式解决问题。
本课重点在于圆锥体积公式的推导。
鉴于圆柱与圆锥体积的关联,学生在圆柱体积公式推导学习中也领悟到新旧知识转化的特点,因此对于圆锥体积公式的推导仍可以采用转化的方式将圆锥体积与圆柱体积联系起来,通过实验操作来得出计算公式,再辅以及时的运用训练,以使学生理解圆锥体积的计算方法。
从教材的编排可以看出,教材加强了与现实生活的联系,加强了在操作中对空间与图形的思考,使学生在经历观察、猜测、实验、推理等过程中理解和掌握圆锥体积的计算方法,进一步发展空间观念。
四、学情分析:学生是九山小学,属农村的学生。
美国心理学家奥苏泊尔说:“如果我不得不把教育心理学还原为一条原理的话,影响学习的最主要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。
圆锥体积教学设计圆锥体积教学设计(精选3篇)作为一名辛苦耕耘的教育工作者,编写教学设计是必不可少的,编写教学设计有利于我们科学、合理地支配课堂时间。
那么你有了解过教学设计吗?下面是小编为大家收集的圆锥体积教学设计(精选3篇),仅供参考,希望能够帮助到大家。
圆锥体积教学设计1教材分析本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。
本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。
这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。
设计理念数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
教学目标1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
教学重点:圆锥体积公式的理解,并能运用公式求圆锥的体积。
教学难点:圆锥体积公式的推导学情分析学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。
所以对于新的知识教学,他们一定能表现出极大的热情。
小学数学《圆锥体积》公开课教案【优秀7篇】作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
教案应该怎么写呢?下面是整理的小学数学《圆锥体积》公开课教案【优秀7篇】,希望能够给予您一些参考与帮助。
小学六年级数学《圆锥的体积》教案篇一【教学内容】圆锥的体积(1)(教材第33页例2)。
【教学目标】1、参与实验,从而推导出圆锥体积的计算公式,会运用圆锥的体积公式计算圆锥的体积。
2、培养学生初步的空间观念,让学生经历圆锥体积公式的推导过程,体验观察、比较、分析、总结、归纳的学习方法。
【重点难点】圆锥体积公式的推导过程。
【教学准备】同样的圆柱形容器若干,与圆柱等底等高的圆锥形容器,与圆柱不等底等高的圆锥形容器若干,沙子和水。
【情景导入】1、复习旧知,作出铺垫。
(1)教师用电脑出示一个透明的圆锥。
教师:同学们仔细观察,圆锥有哪些主要特征呢?(2)复习高的概念。
A、什么叫做圆锥的高?B、请一名同学上来指出用橡皮泥制作的圆锥模型的高。
(提供刀片、橡皮泥模型等,帮助学生进行操作)2、创设情境,引发猜想。
(1)电脑呈现出动画情境(伴图配音)。
夏天,森林里闷热极了,小动物们都热得透不过气来。
一只小白兔去“动物超市”购物,它在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。
这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。
小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。
(动画中圆柱形和圆锥形的雪糕是等底等高的)(2)引导学生围绕问题展开讨论。
问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个怎么样?”(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。
(小白兔这时和狐狸换雪糕,你觉得公平吗?)问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法跟小组交流一下,再向全班同学汇报)过渡:小白兔究竟跟狐狸怎样交换才合理呢?学习了“圆锥的体积”后,大家就会弄明白这个问题。
圆锥体积教学案例
《圆锥体积》教学案例
密云县果园小学谢红英
一、教材分析
本课《圆锥体积》是在学习了圆锥的认识基础上,通过教师设计情境让学生提出有价值的数学问题,引导学生猜想,通过实验让学生自己总结规律,并运用规律解决实际问题。
从生活中引入新知识,在合作中探究新知识,在生活实际运用新知、使学生热爱数学。
圆锥是小学几何初步知识的最后一个教学单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。
由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。
内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。
学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识和方法解决一些简单实际问题的能力。
二、学生分析
学习《圆锥体积》之前,学生已认识了圆锥的特征,并会测量圆锥的高、底面积。
而且学生已多次接触“转化”这一数学思想,能够把新问题进行转化,运用已有的知识解决问题。
本节课重要的教学内容是推导出圆锥体积公式,并能运用公式进行实际生活运用。
学生对生活化的教学知识感兴趣,凡事想探究明白,学生有积极探究的心向,让学生在探究中经历知识的产生,发展过程,喜爱数学。
三、我的困惑
已经多次教《圆锥体积》一课,在教学中我不断尝试,不断产生疑惑,不断改进方法。
第一种教学设计:
教学时,首先出示长方体、正方体、圆柱、圆锥,提问:你觉得圆锥和谁联系更紧密?学生顺着老师说:“圆柱”。
接着实验操作得出“圆锥的体积是等底等高的圆柱体积的1/3”。
最后运用公式,解决实际问题。
困惑:推导圆锥的体积为什么要和圆柱联系起来,恐怕有明知故问之嫌。
第二种教学设计:
首先制作长方形纸板和直角三角形纸板各一个,通过比较、观察,使学生发现:长方形纸板和直角三角形纸板“等底等高”的,直角三角形的面积是长方形面积的1/2;再让学生以长方形硬纸板的长所在的直线为轴旋转一周,得到一个圆柱,再以三角形硬纸板的一条较长直角边为轴旋转一周,得到一个圆锥,将长方形旋转后得到的圆柱和三角形旋转后得到的圆锥进行比较,引发学生进一步猜想圆锥的体积是圆柱体积的1/2;然后学生动手操作、试验发现猜想是错误的,圆锥的体积是等底等高的圆柱体积的1/3;最后运用公式,解决实际问题。
困惑:面对试验结果学生出现两种现象:一对试验结果“圆锥的体积是等底等高的圆柱体积的1/3”不能发自内心接受,对此结果持怀疑态度。
二有了进一步的疑惑:“为什么圆锥的体积是等底等高的圆柱体积的1/3而不是1/2?”参看多种数学资料这恐怕是向小学生无法解释清楚的。
四、教学或活动的过程
学习目标
1、通过实验,使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积。
2、培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。
3、渗透转化的数学思想,使学生体验到事物间是相互联系的辩证唯物主义观点的启蒙教育。
教学重、难点
重点:理解和掌握圆锥体积的计算公式。
难点:理解圆柱和圆锥等底等高时体积间的倍数关系。
学具准备:课件、圆锥形实物等
(一)复习旧知,引出问题
1、计算下面立体图形的体积
①同学们,你们还记得怎样计算这些立体图形的体积吗?谁来说一说?
②长方体、正方体、圆柱体,计算体积的共同方法是什么?(板书:
v=sh)
2、(教师从容器往外倒小米,小米堆成锥形)如果要求这堆小米有多少立方厘米?就是求什么?
3、圆锥和长方体、正方体、圆柱一样都是立体图形,是不是也这样计算
v=sh?
学生点头同意。
4.今天我们就一起探究圆锥的体积。
板书:圆锥的体积(二)探究交流
1、同学们准备了不同的圆锥实物,你们能运用已有的知识求出圆锥实物的体积吗?
生1:把圆锥形的橡皮泥捏成长方体,量出长、宽、高,计算体积。
生2:把圆锥形的容器装满水,倒入圆柱形容器中。
测量水的体积。
……
2、请同学们读读试验探究的要求。
附录:实验探究要求
实验探究
(1)课前,测量圆锥的底面积和高,并做好记录。
(2)计算圆锥的底面积乘高的积,并做好记录。
(保留两位小数)
(3)测量圆锥的体积:仔细测量,减小误差,计算体积,填好记录。
(保留两位小数)
(4)填好记录,观察圆锥的体积等于底面积乘高吗?
3、学生分组实验,教师参与其中一组。
4、集体交流实验结果。
5、引导发现:同学们开动脑筋,运用已有的知识测量出圆锥的体积。
圆锥的体积等不等于底面积乘高,观察圆锥的体积和底面积乘高的积,你发现了什么?
6、推导出圆锥体积公式,学生自己推导,反馈:
圆锥体积=底面积×高÷3
V=1/3Sh
(三)拓展练习,巩固新知
1、基
本练习
1、填
表(分层测试卡基本练习)
2、试一试
一个圆锥体的零件,底面积是19平方厘米,高是12厘米。
这个零件的体积是多少立方厘米?
小结:计算圆锥的体积,一定要找准圆锥的高,圆锥的高是圆锥顶点到底面圆心的距离。
二、拓展提高
1、做一做
①一个圆锥的底面积是是6平方分米,高是2分米,它的体积是多少?
②一个圆柱的底面积6平方分米,高2分米,它的体积是多少?
2、想一想:大家看一看,圆柱和圆锥等底等高,它们的体积呢?你发现了什么?
3、只要圆柱和圆锥等底等高,圆锥的体积就是圆柱体积的1/3吗?
4、试验证明
5、通过我们试验证明:圆锥的体积等于和它等底等高的圆柱体积的三分之一.
③一个圆柱体与一个圆锥体等底等高,它们的体积一共是48立方厘米,那么圆锥的体积是()立方厘米。
已知圆锥的底面积是6平方厘米,它的高是()厘米。
(分层测试卡)
考考你:
1、一个直角三角形较长的直角边为6厘米,较短的直角边为4厘。
求以较长直角边为轴旋转后形成的立体图形的体积。
(分层测试卡)
2、计算米堆的体积,需要知道哪些数据,怎样测量?(分层测试卡)
圆锥
半径直径高体积
6厘米
3.6
2.7分米
(四)总结评价
教师引导学生总结本节学习收获?还有什么遗憾吗?
(五)、布置作业
分层测试卡9页
板书设计
圆锥的体积
圆锥体积=底面积×高÷3
V=1/3sh
课后反思:
通过教学,学生掌握了圆锥的体积计算公式,并学会了运用这一公式解决实际问题。
回忆一节课有成功也有不足之处。
首先,充分利用学生已有的知识经验进行教学。
课程标准指出“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。
”本节课的教学紧紧抓住学生认识了圆锥的特征,会测量圆锥的高、底面积,并会计算圆柱、长方体、正方体的体积这些已有知识和学生已具备了的“转化”这一数学思想进行教学。
从而使学生能够通过数学活动自主探索出圆锥的体积计算公式。
第二,数学思想的渗透。
课程标准指出“数学教师应通过数学活动让学生掌握基本的数学思想。
”本节课除了让学生运用转化这一数学思想解决了计算圆锥的体积这一问题;还成功地让学生体验了猜测、验证这一数学思想。
新课开始教师提出:“圆锥和长方体、正方体、圆柱一样都是立体图形,是不是也这样计算v=sh?”学生猜测圆锥的体积等于底面积乘高。
接着学生通过动手操作验证发现圆锥的体积不等于底面积乘高,并发现圆锥的体积等于底面积乘高除以三。
这一猜测和验证的冲突,使学生印象深刻,在求圆锥体积的练习中已往学生常犯地忘记除以三的错误没有出现。
第三、利用分层测试卡设计分层练习,促进了学生的发展。
课程标准指出“不同的人在数学上得到不同的发展”。
教学中要承认差异,尊重差异,因材施
教。
课上充分利用分层测试卡设计了基本练习、综合练习和拓展提高三个层次的练习,满足了不同学生的需要,使每个学生都得到了发展。
当然也有不足之处。
有几个小组的实验没有成功。
通过课后调查了解,没有成功的原因有二:
一是圆锥底面积的测量数据误差较大。
造成原因有计算步骤过多:先要测量底面周长或直径,接着计算半径,最后计算底面面积。
还有数据复杂,学生测量数据后计算出的半径、底面积是多位小数。
改进意见:指导学生测量圆锥的底面积方法。
最好的方法首先是在纸上描摹底面,对折再对折量出半径,再计算圆锥的底面积。
二是缺乏严谨的学习态度。
首先学生计算完底面积乘高的积,接着通过转化计算出圆锥的体积后,发现圆锥的体积和底面积乘高的积不相等,与开始的猜测不符,学生把圆锥的体积改成与底面积乘高的积相等。
改进意见:课后,我们进行了讨论,使学生认识到出发目的是正确的,但这种方法是不正确的。
在以后的教学中,教师要进行这方面的思想教育。