运筹学
- 格式:docx
- 大小:1.22 MB
- 文档页数:43
运筹学的基本名词解释汇总运筹学是一门研究如何在有限资源下做出最优决策的学科。
它涵盖了多个子领域,包括线性规划、整数规划、动态规划、网络优化、排队论、决策分析等等。
在本篇文章中,我将深入解释其中一些基本的运筹学名词。
一、线性规划线性规划是运筹学中最常用的方法之一。
它用于解决在给定的约束条件下,如何最大化或最小化一个线性目标函数的问题。
具体来说,线性规划问题可以用如下形式表示:Maximize(或Minimize):C₁X₁ + C₂X₂ + ... + CnXnSubject to:A₁₁X₁ + A₁₂X₂ + ... + A₁nXn ≤ b₁A₂₁X₁ + A₂₂X₂ + ... + A₂nXn ≤ b₂...An₁X₁ + An₂X₂ + ... + AnnXn ≤ bnX₁, X₂, ..., Xn ≥ 0其中,C₁,C₂,...,Cn为目标函数的系数,X₁,X₂,...,Xn为决策变量,Aij为约束条件的系数,bi为约束条件的右手边。
线性规划在供应链管理、资源分配、生产计划等各个领域都有广泛的应用。
二、整数规划整数规划是线性规划的一个扩展。
在整数规划中,决策变量被限制为整数值,而不仅仅是非负实数。
这在某些情况下更符合实际问题的特点。
整数规划可以用于解决许多实际问题,例如旅行商问题、资源分配问题等。
整数规划的形式与线性规划相似,只是添加了一个约束条件:X₁, X₂, ..., Xn为整数整数规划是一个NP难问题,在实际应用中通常通过割平面法、分支定界法等方法来求解。
三、动态规划动态规划是一种解决多阶段决策问题的方法。
在动态规划中,问题被分解为一系列阶段,每个阶段都有一组决策变量。
每个阶段的决策都基于之前阶段的决策结果,从而达到最优解。
动态规划可以用于解决诸如背包问题、最短路径问题等在实际问题中普遍存在的多阶段决策问题。
四、网络优化网络优化是研究在网络结构下如何优化资源分配和信息流动的方法。
第一讲 运筹学概述一、运筹学是什么?----------------------晕愁学其实,这绝对一种误解,事实上运筹学方法及应用早在中小学就比较系统地学过,并且在我们每时每刻的生活过程中都在利用。
北师大版小学语文第六册教材中就有一篇课文《田忌赛马》,在座的各位应该都不陌生。
这是战国时期运筹学思想成功应用的典型实例。
孙膑同志合理地利用当时的现有资源、条件和比赛规则,只建议田忌调换了赛马的出场顺序,就使得原来屡战屡败的战局得到了彻底的扭转,以获胜而告终。
形成了本文主题中“初战失败”、“孙膑献计”、“再赛获胜”的三部分内容。
运筹学思想体现的是,将现有资源的作用得到充分发挥,以获得最优的结果。
运筹让生活得更有条理的艺术。
谈起运筹学,是否会想到很通俗的例子——沏茶水。
沏茶,看起来是一件日常生活中再小不过的事情,却包含着运筹学的道理。
让我们来看一看,沏茶的过程可以分为烧开水、洗茶壶、放茶叶多道“工序”。
其中,烧开水所需的时间最长,洗茶壶、放茶叶的时间则较短。
善于运筹的人,应该是先将水烧上,在烧水的过程中,从从容容地把茶壶洗净,把茶叶放好。
而不善运筹的人,可能会先把茶壶洗净,把茶叶放好,才想起来水还没有烧;或者先把水烧开了,才急急忙忙去洗茶壶、放茶叶,搞得手忙脚乱。
另外还有一个例子我们外地生到上海的路线选择,虽然条条大路都能通到上海,但我们都有一个明确的目标,有些人的目标是准备用最短的时间到达,有些人的目标是用最少费用到达,这样基于不同的目标,就会选择不同的最佳路线。
这两个生活中的运筹学实例说明了运筹学应用的思想并不神秘,而现实的生活中,从沏茶、选择路线这样一件小事,到规模宏大的建设项目,都能运用运筹学的原理。
在人生大事的安排上,也同样需要下功夫好好运筹一番。
从技术是,也就是运筹学解决决策问题的工具方面,在初中的数学教材中有一个重要的内容是《线性规划》,其中比较详细地讲述了线性规划的数学表述形式和求解方法。
运筹学的基本概念与应用运筹学是一门应用数学科学,主要涉及决策问题的建模和求解。
它的核心目标是通过数学方法来优化决策,以便在资源有限的情况下取得最优的结果。
运筹学的应用领域广泛,包括物流管理、供应链优化、生产计划、交通调度等等。
一、运筹学的基本概念1.1 问题建模在运筹学中,问题建模是解决问题的第一步。
它涉及将实际问题抽象化为数学模型,以便使用运筹学方法进行求解。
常用的建模方法包括线性规划、整数规划、图论等。
1.2 数学优化方法数学优化方法是解决运筹学问题的主要手段。
其中最常用的方法是线性规划和整数规划。
线性规划主要用于解决连续变量的优化问题,而整数规划则考虑了变量的整数限制。
除此之外,还有许多其他的数学优化方法,如非线性规划、动态规划等。
1.3 求解技术为了求解运筹学问题,需要使用相应的求解技术。
最常用的求解技术有单纯形法、分支定界法、模拟退火算法等。
这些求解技术可以帮助我们找到问题的最优解或近似最优解。
二、运筹学的应用2.1 物流管理物流管理是运筹学的典型应用领域之一。
通过合理的路径规划、运输调度和仓储管理,可以最大程度地降低物流成本,提高配送效率。
运筹学方法可以帮助企业优化物流网络、车辆调度和库存管理,从而提升物流管理的效果。
2.2 供应链优化供应链是企业和客户之间的交互系统,优化供应链可以带来许多益处。
运筹学可以帮助企业优化供应链的结构和运作方式,从而实现更高效的生产和配送。
通过运筹学方法,可以降低库存成本、提高客户满意度,并且减少供应链中的风险。
2.3 生产计划在生产过程中,需要合理地安排生产计划,以便最大化生产效率、最小化生产成本。
运筹学可以通过合理的订单批量规划、生产调度和生产线优化来提供支持。
通过运筹学方法,可以降低生产时间、提高资源利用率,并最大程度地满足客户需求。
2.4 交通调度交通调度是城市交通管理的重要组成部分,也是一个复杂的优化问题。
运筹学方法可以帮助交通管理部门优化交通信号、路线规划和公交车辆调度,以降低交通拥堵和提高交通效率。
运筹学综述运筹学的简介一:什么是运筹学?运筹学是Operations Research的英文单词缩写。
运筹学界的元老说运筹学是执行部门对所控制的业务做出决策提供数量上的依据的科学或利用所有应用科学执行部门对其所属业务作出决策提供数量上依据的一门科学;世界上最早的运筹学协会说运筹学是运用科学方法来解决工业、商业、政府、国防等部门里有关人力、机器、物资、金钱等大型系统的指挥或管理中所出现的复杂问题的一门学科,其目的是“帮助管理者以科学方法确定其方针和行动”。
二:运筹学的三个来源1、军事二战期间例一:在第二次世界大战期间,鲍德西雷达站的研究——“布莱克特马戏团”的出色工作,Bawdsey雷达站—Blackett杂技班专门就改进空防系统进行研究。
成员组成:心理学家3,数学家2,数学物理学家2,天文物理学家1,普通物理学家1,陆军军官1,测量员1。
研究的问题是设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力协调等获得成功,大大提高了英国本土的防空能力,不久以后在对抗德国对英伦三岛的狂轰滥炸中发挥了极大的作用,堪称运筹学的发祥与典范,展示了运筹学的本色与特色。
二战期间例二:大西洋反潜战——Morse小组的重要工作。
1942年麻省Morse教授应美国大西洋舰队反潜战官员Baker舰长的请求担任反潜战运筹组的计划与监督工作,其最出色的工作之一是协助英国打破了德国对英吉利海峡的海上封锁,研究所提出的两条重要建议是:将反潜攻击由反潜舰艇投掷水雷改为飞机投掷深水炸弹,起爆深度由100米改为25米左右,即当德方潜艇刚下潜时攻击效果最佳;运送物资的船队及护航舰艇的编队由小规模、多批次改为大规模、少批次,从而减少了损失率丘吉尔采纳Morse的建议,从而打破德国封锁;重创德国潜艇部队;Morse同时获得英国及美国战时最高勋章二战期间例三:英国战斗机中队援法决策。
(名词解释)运筹学
运筹学是一门研究如何在有限资源下做出最佳决策的学科。
它
涉及数学、统计学和计算机科学等多个领域,旨在找到最优解决方
案以最大程度地满足特定目标或约束条件。
运筹学的应用范围非常
广泛,包括生产调度、物流管理、供应链优化、交通规划、金融风
险管理等诸多领域。
在运筹学中,常用的方法包括线性规划、整数规划、动态规划、排队论、模拟等。
线性规划用于解决线性约束条件下的最优化问题,整数规划则是在变量为整数时的最优化问题,动态规划通过分阶段
决策来解决多阶段问题,排队论则研究排队系统的性能指标,模拟
则是通过构建模型来模拟实际系统的运行情况。
运筹学的发展历史可以追溯到二战期间,当时运筹学被用于军
事决策和战争规划,随后逐渐应用于工业生产和商业管理领域。
如今,随着信息技术的发展,运筹学在大数据分析、人工智能和机器
学习等方面也得到了广泛应用。
总的来说,运筹学致力于通过科学的方法和技术手段,帮助人
们做出最佳决策,提高资源利用效率,降低成本,优化系统运行,对于提升生产效率和管理水平具有重要意义。
目录试验一(习题1.1)试验二(例题1.1)试验三(习题1.2)试验四(习题3.1)试验五(习题3.2)试验六(习题3.6)试验七(习题4.1)试验八(习题4.2)试验九(习题4.5)试验十(习题5.1)试验一(习题1.1)一、问题的提出某工厂利用甲、乙、丙三种原料,生产A、B、C、D四种产品。
每月可供应应该厂原料甲600吨、乙500吨、丙300吨。
生产1吨不同产品所消耗的原料数量及可获得的利润如表1-4所示。
问:工厂每月应如何安排生产计划,才能使总利润最大?表1-4 三种原来生产四种产品的有关数据二、线性规划模型解(1)决策变量。
本问题的决策变量是两种产品A、产品B、产品C、产品D、的每月产量,可设:x1表示产品A的产量;x2表示产品B的产量;x3表示产品C的产量;x4表示产品D的产量。
(2)目标函数。
本问题的目标是四种产品的总利润。
由于产品A、产品B、产品C和产品D单位利润分别为200元、250元、300元和400元,所以,每月总利润z可表示为:z=200x1+250x2+300x3+400x4。
(元)(3)约束条件。
本问题的约束条件共有四个。
第一个约束条件是原料甲的供应量限制,生产产品A需要原料甲1吨;生产产品B需要原料甲1吨;生产产品C需要原料甲2吨:生产产品D需要原料甲2吨,所以生产x1吨产品A、x2吨产品B、x3吨产品C和x4吨产品D所需的原料为x1+x2+2x3+2x4。
由题意,原料甲每月原料供应量为600吨。
由此可得第一个约束条件:x1+x2+2x3+2x4<=600第二个约束条件是原料甲的供应量限制,生产产品A需要原料乙0吨;生产产品B需要原料乙1吨;生产产品C需要原料乙1吨:生产产品D需要原料乙3吨,所以生产x1吨产品A、x2吨产品B、x3吨产品C和x4吨产品D所需的原料为 x2+x3+3x4。
由题意,原料甲每月原料供应量为500吨。
由此可得第一个约束条件:x2+x3+3x4<=500第三个约束条件是原料甲的供应量限制,生产产品A需要原料丙0吨;生产产品B需要原料丙2吨;生产产品C需要原料丙1吨:生产产品D需要原料丙0吨,所以生产x1吨产品A、x2吨产品B、x3吨产品C和x4吨产品D所需的原料为x1+2x2+x3。
由题意,原料甲每月原料供应量为500吨。
由此可得第一个约束条件:x1+2x2+x3<=300第四个约束条件是决策变量的非负约束。
非负约束经常会被遗漏。
由于产品不可能为负值。
所以第四个约束条件为:x1>=0, x2>=0, x3>=0, x4>=0由上述分析,可建立习题1.1的线性规划(数学)模型:x1+x2+2x3+2x4<=600x2+x3+3x4<=500S.t x1+2x2+x3<=300x1>=0, x2>=0, x3>=0, x4>=0三、电子表格模型四、结果分析由电子表格模型可知,当每月生产产品A260吨、产品B20吨、产品C0吨和产品D160吨使得最大利润为121000元。
试验二(例题1.1)一、问题的提出生产计划问题。
某工厂要生产两种新产品:门和窗。
经测算,每生产一扇门需要在车间1加工1小时、在车间3加工3小时;每生产一扇窗需要在车间2和车间3各加工2小时。
而车间1、车间2、车间3每周可用于生产这两种新产品的时间分别是4小时、12小时、18小时。
已知每扇门的利润为300元,每扇窗的利润为500元。
而且根据经市场调查得到的这两种新产品的市场需求状况可以确定,按当前的定价可确保所以新产品均能销售出去。
问该工厂应如何安排这两种新产品的生产计划,才能使总利润最大(以获得最大的市场利润)?二、线性规划模型决策变量。
本问题的决策变量是两种新产品(门和窗)的每周产量。
可设:X1表示门的每周产量(扇);X2表示窗的每周产量(扇)。
目标函数才本问题的目标函数是两种新产品的总利润最大。
由于门和窗的单位利润分别为300元和500元,而其每周产量分别为x1和x2,所以每周总利润z可表示为:z=300x1+500x2(元)约束条件本问题的约束条件共有四个。
第一个约束条件是车间1每周可用工时限制。
由于只有门需要在车间1加工,而且生产一扇们需要在车间1加工一小时,所以生产x1扇门所用的工时为x1.由题意,车间1每周可用工时为4。
由此可得第一个约束条件:X1<=4第二个约束条件是车间2每周可用工时限制,由于只有窗需要在车间2加工,而且生产一扇窗需要在车间2加工2小时,所以生产X2扇窗所用的工时为2x2。
由题意,车间2每周可用工时为12.由此得第二个约束条件:2x2<12第三个约束条件是车间3每周可用工时限制。
生产一扇门需要在车间3加工3小时,而生产一扇窗则需要在车间2加工2小时,所以生产X1扇门X2扇窗所用工时为3X1+2X2.。
由题意,车间3每周可用工时为18.由此可得第三个约束条件:3X1+2X2<=18第四个约束条件是决策变量的非负约束。
非负约束经常会被遗漏。
由于产量不可能为负值。
所以第四个约束条件为;X1>=0 X2>=0由上述分析,可建立线性规划模型;MAX=300X1+500X2X1<=42x2<12s.t3X1+2X2<=18X1>=0 X2>=0三、电子表格模型四、结果分析综上所述,可知当每周生产2扇门6扇窗是,总利润最大为3600元.试验三(习题1.2)一、问题的提出某公司受客户委托,准备用130万元投资A和B两种基金。
基金A每份50元、基金B每份100元。
据估计,基金A的预期收益率为10%、预期亏损率为8%;基金B的预期收益率为4%、预期亏损率为3%。
客户有两个要求:(a)投资收益不少于6万元;(b)基金B的投资额不少于30万元。
问:(1)为了使投资亏损最小,该公司应该分别投资多少份基金A 和基金B?这时的投资收益是多少?(2)为了使投资收益最大,应该如何投资?这时的投资亏损是多少?二、线性规划模型(1)决策变量本问题的决策变量为基金A的投资份数为X1,基金B的投资份数为X2。
(2)目标函数本问题的目标函数为总投资亏损最小MinZ=4X1+3X2。
(3)约束条件实用投资总额小于等于可用资金50X1+100X2≤120基金B实际投资总额不少于基金B最少投资额100X2≤30三、电子表格模型四、 结果分析当投资基金A 的份数为0.4,投资基金B 的份数为1,这是投资亏损最小为4.6.试验三(习题2.1)一、 问题的提出某厂利用A 、B 两种原料生产甲、乙、丙三种产品,已知生产单位产品所需的原料、利润及有关数据如下表请分别回答下列问题:(1)求使该厂获利最大的生产计划。
(2)若产品乙、丙的单位利润不变,当产品甲的单位利润在什么范围内变化时,最优解不变?(3)若原料A市场紧缺,除拥有量外一时无法购进,而原料B 如数量不足可去市场购买,单价为0.5,问该厂是否购买,且以购进多少为宜?二、线性规划模型(1)决策变量。
本问题的决策变量是产品甲、产品乙和产品丙的产量,可设:X1表示产品甲的产量;X2表示产品乙的产量;X3表示产品丙的产量。
(2)目标函数本问题的目标是3种产量利润最大。
由于产品甲、产品乙和产品丙的单位利润分别为4、1和5,而产量分别为X1、X2和X3,所以总利润为:Z=4X1+X2+5X3(3)约束条件本问题有3个约束条件第一个约束条件原料A的拥有量。
由于产品甲需要原料A6吨,产品乙需要原料A3吨,产品丙A5吨,所以生产产品甲、产品乙、产品丙产量为X1、X2和X3,。
由题意,原料A的拥有量为45。
由此可得第一个约束条件:6X1+ 3X2+5X3<=45第二个约束条件原料B的拥有量。
由于产品甲需要原料B3吨,产品乙需要原料B4吨,产品丙B5吨,所以生产产品甲、产品乙、产品丙产量为X1、X2和X3,。
由题意,原料B的拥有量为30。
由此可得第二个约束条件:3X1+ 4X2+5X3<=30第三个约束条件决策变量的非负约束。
非负约束经常会被遗漏。
由于产量不可能为负值。
所以第三个约束条件为:X1>=0 X2>=0 X3>=0由上述分析可建立线性规划模型:maxZ=4X1+ X2+5 X36X1+ 3X2+5 X3<=45s.t3X+ 4X2+5 X3<=301X1>=0 X2>=0 X3>=0三、电子表格模型四、结果分析当产品甲、产品乙、产品丙5、0、3时,利润最大35.试验四(习题3.1)一、问题的提出小王由于在校成绩优秀,学校决定奖励给他10000元。
除了将4000元用于交税和请客之外,他决定将剩余的6000元用于投资。
现有两个朋友分别邀请他成为两家不同公司的合伙人。
无论选择两家中的那一家都会花去他明年暑假的一些时间并且要花费一些资金。
在第一个朋友的公司成为一个独自人要求投资5000元并花费400小时,估计利润(不考虑时间价值)是4500元。
第二个朋友的公司相应的数据为4000元和500小时,估计利润也是4500元。
然而,每一个朋友都允许他选择投资一定的比例,上面所有给出的独资人的数据(资金投资,时间投资和利润)都将乘以这个比例。
因为小王正在寻找一个有意义的暑假工作(最多600小时),于是他决定以能够带来最大估计打利润组合参与到一个或者两个朋友的公司中,请你帮助他解决这个问题,找出最佳组合。
二、线性规划模型(1)决策变量。
本问题的决策变量是在两个公司中各投资多少比例。
设:X1为公司1投资的比例;X2为公司2投资的比例;(2)目标函数。
本问题的目标是小王获得总收益最大,即:maxZ=4500(X1+X2)(3)约束条件。
①投入的资金不可以超过6000元;5000X1+4000X2≤6000②所花费的时间不超过600小时;400X1+500X2≤600③非负投资比例不能为负;X1,X2≥0由上述分析可建立线性规划模型:maxZ=4500(X1+X2)5000X1+4000X2≤6000S.t 400X1+500X2≤600X1,X2≥0三、电子表格四、结果分析综上所述可知当向公司1投资为0;向公司2投资15%时,得到最大收益为657.试验五(习题3.2)一、问题的提出某大学计算机中心的主任要为中心的人员进行排班,中心从08:00开到22:00.主任观测出中心在一天的不同时段的计算机使用量,并确定了如表所示的各时段咨询员的最少需求人数。
需要聘用两类计算机咨询员:全职和兼职。
全职咨询员将在以下的三种轮班方式中连续工作8小时或6小时:上午上班(08:00—16:00)、中午上班(12:00—20:00)以及下午上班(16:00—22:00)全职咨询员的工资为每小时14元。