神经网络和专家系统相结合的综合决策系统结构_施平安
- 格式:pdf
- 大小:219.32 KB
- 文档页数:4
基于神经网络的人工智能专家系统设计随着科技的不断发展,人工智能已经成为了时下的热门话题。
作为人工智能的一个分支,专家系统的出现使得智能化的应用更加广泛。
所谓专家系统,就是为了解决某个领域的问题而搭建的一种系统,系统内部包含了大量的专业领域知识和规则,可以根据特定的问题快速地做出决策和推荐,从而起到了自动化的作用。
面对越来越复杂的现实问题,专家系统的研究和应用已经成为了众多科学研究者的热衷所在。
而在专家系统的应用中,基于神经网络的人工智能专家系统的设计则是一个值得特别关注的领域,因为它充分利用了神经网络的异构性和非线性关系特性,在解决复杂问题时具有良好的可行性和可靠性。
那么,接下来详细介绍一下基于神经网络的人工智能专家系统的设计。
1. 专家系统的设计专家系统的设计大致分为三个阶段:知识获取、知识组织、推理机制。
其中,知识获取是系统设计的第一步,也是最为关键的一步。
因为专家系统的核心就是基于某个专业领域的知识和规则来做出智能化的推荐,所以知识获取直接影响到系统的可行性和实效性。
通常,知识获取的方式主要有以下几种:专家访谈、文本化的知识库、数据挖掘。
知识组织是专家系统设计中的第二步,其目的是将获取到的知识和规则根据一定的层次和关系组织起来。
通常,知识组织可以用知识表示方法来实现,比如基于产生式规则的知识表示方法、基于语义网络的知识表示方法、基于本体论的知识表示方法等等。
推理机制则是专家系统设计中的最后一步,其目的是将经过知识组织处理好的知识和规则实现智能推理和决策。
推理机制通常采用一种特殊的程序来实现,也叫做推理引擎,实现基于前向推理、后向推理和启发式推理等多种不同的推理模式,以达到优化推理效果的目的。
2. 基于神经网络的人工智能专家系统的设计基于神经网络的人工智能专家系统,正如其名字所示,主要利用了神经网络对异构性和非线性关系的处理能力,以实现智能化的推理和决策。
相比于传统的专家系统,基于神经网络的专家系统的优势主要在于它具有更强的数据处理能力和更灵活的特征提取方法,可以更好地适应复杂和不确定的问题。
AHP法专家调查法与神经网络相结合的综合定权方法在决策过程中,我们常常面临多个指标、多个专家意见以及多个因素的选择。
为了能够准确且全面地评估这些指标、意见和因素的重要性,并给予它们适当的权重,我们需要借助定权方法来进行决策的加权处理。
本文将介绍AHP法与专家调查法相结合,并与神经网络进行综合定权的方法。
AHP法(层次分析法)是一种常用的定权方法,它通过层次结构模型进行多因素/多指标决策分析。
其基本思想是将复杂的决策问题层次化,将问题分解为若干个层次,从目标到准则再到方案,通过专家的判断和评分来确定各个层次的权重。
专家调查法是一种通过专家的评估和判断来确定权重的方法。
它通常通过问卷调查的形式,将问题提交给一组具有相关领域经验和专业知识的专家,专家们根据自己的判断和经验对问题进行评分,最后通过对专家评分的统计分析来得到权重。
然而,AHP法和专家调查法都存在一定的局限性。
AHP法需要专家事先给出两两比较各因素/指标的相对权重,但是专家在面对大量比较时容易出现主观倾向和不一致性,导致定权结果的不准确。
而专家调查法虽然利用了专家的经验,但是专家的评估结果也存在主观性和个体差异性。
为了弥补上述方法的缺陷,我们可以引入神经网络作为辅助定权的方法。
神经网络是一种模拟人脑神经元之间相互连接的计算模型,它具有学习、记忆和适应环境的能力。
通过训练神经网络,我们可以将专家的评估结果作为输入数据,通过网络的学习能力得到更准确的权重结果。
具体而言,我们可以将专家的评估结果作为神经网络的输入向量,将权重作为网络的目标输出。
通过训练神经网络,使其能够自动学习并调整权重,从而减小专家评估结果之间的差异和主观性误差。
最终,我们可以得到基于神经网络的定权结果,该结果可以综合考虑专家评估和网络学习的优势,更加准确地反映各个因素/指标的重要性。
综合定权方法的核心思想是通过AHP法和专家调查法得到初步的权重结果,然后利用神经网络进行修正和优化。
2001年3月系统工程理论与实践第3期 文章编号:100026788(2001)0320059205A H P法专家调查法与神经网络相结合的综合定权方法梁 杰,侯志伟(沈阳工业大学经管学院,辽宁沈阳110023)摘要: 针对多目标决策中评价指标权系数的确定问题,在分析现有两大类方法(主观赋权法、客观赋权法)优缺点的基础上,提出一种以层次分析法、专家调查法与误差逆传播神经网络技术(B P网)相结合的综合分析方法,同时运用M ath W o rk s公司开发的M A TLAB5.1作为系统工具进行程序编制,得出最终结果Λ关键词: 赋权法;人工神经网络;矩阵实验室中图分类号: F4232 文献标识码: A αA Syn thetic W eigh ting M ethod of Connecting A H Pand D elph i w ith A rtificial N eu ral N etw o rk sL I AN G J ie,HOU Zh i2w ei(Shenyang Po lytechn ic U n iversity,Shenyang110023,Ch ina)Abstract In th is paper,ai m ing at the p rob lem of w eigh ting in m u lti2ob ject decisi on,asyn thetic w eigh ting m ethod of connecting A H P and D elph i w ith artificial neu ralnetw o rk s based on analysing tw o k inds of w eigh ting m ethods is p resen ted,at the sam eti m e the softw are M atlab5.1is u sed to draw a final conclu si on.Keywords w eigh ting m ethod;artificial neu ral netw o rk s;M A TLAB1 引言随着我国社会主义市场经济体制改革的不断深入,世界经济一体化的趋势越发强烈,在各个领域开展客观公正的评价工作成为社会发展的必然趋势Λ大到国家的综合国力评价、省市的经济实力评价,小到企业的综合业绩评价、竞争力评价、人力资源评价等工作,目前都已在不同程度上开展起来Λ在开展各项评价工作时影响评价结果客观准确性的最重要的两个问题是:1)评价分指标的选择;2)评价分指标权系数的确定Λ本文仅针对第二个问题进行探讨Λ目前关于权系数的确定方法有数十种之多,根据计算权系数时原始数据的来源不同,这些方法大致可分为两大类:一类为主观赋权法,其原始数据主要由专家根据经验主观判断得到,如古林法、A H P法、专家调查法等;另一类为客观赋权法,其原始数据由各指标在被评价单位中的实际数据形成,如均方差法、主成份分析法、离差最大化法、熵值法、代表计数法、组合赋权法等Λ这两类方法各有优缺点:主观赋权法客观性较差,但解释性强Λ客观赋权法确定的权数在大多数情况下精度较高,但有时会与实际情况相悖,而且解释性比较差,对所得结果难以给出明确地解释Λ基于上述原因,人们提出了综合主、客观赋权法的第三类方法,即组合赋权法Λ本人提出的以A H P法、专家调查法与误差逆传播神经网络技术(BP网)相结合的综合分析方法正是组合赋权法中的一种Λα2 主、客观赋权法的优缺点2.1 主观赋权法的优缺点目前对于主观赋权法的研究比较成熟,这些方法的共同特点是各评价指标的权重是由专家根据自己的经验和对实际的判断给出Λ选取的专家不同,得出的权系数也不同;这类方法的主要缺点是主观随意性大,这一点并未因采取诸如增加专家数量、仔细选专家等措施而得到根本改善Λ因而,在某些个别情况下应用单一一种主观赋权法得到的权重结果可能会与实际情况存在较大差异Λ该类方法的优点是专家可以根据实际问题,较为合理地确定各指标之间的排序,也就是说尽管主观赋权法不能准确地确定各指标的权系数,但在通常情况下,主观赋权法可以在一定程度上有效地确定各指标按重要程度给定的权系数的先后顺序Λ2.2 客观赋权法的优缺点客观赋权法的原始数据来源于评价矩阵的实际数据,使系数具有绝对的客观性Λ视评价指标对所有的评价方案差异大小来决定其权系数的大小Λ这类方法的突出优点是权系数客观性强,但有时会与实际不符Λ在实际情况中,依据上述原理确定的权系数,最重要的指标不一定具有最大的权系数,最不重要的指标可能具有最大的权系数Λ3 AHP法、专家调查法与误差逆传播神经网络技术(BP网)相结合的综合分析方法3.1 原始数据的归一化原始数据的归一化工作利用S型传递函数(Y ij=1-e -M ij1+e-M ij)来完成Ζ此函数是非线性递增函数,当M ij →0时,Y ij的导数d ij=f′(M ij)逐渐变大,Y ij=f(M ij)→0,函数曲线越来越陡;当M ij→∞时,Y ij的导数d ij =f′(M ij)→0,Y ij=f(M ij)→±1,函数曲线越来越平缓Ζ如此归一化处理,一方面可以防止某一指标过大时左右整个综合指标,另一方面当原始值小于平均值时,其效用函数为负,体现“奖优罚劣”Ζ3.2 AHP法与专家调查法的基本原理由于A H P法与专家调查法的使用已有数十年的历史,应用范围又较为广泛,其基本原理也早已为广大学者熟知,故于本文中,本人不在累述Ζ为防止使用单一主观赋权法所得权重重要程度排序与实际情况不符,本人在所提出的综合赋权法中分别采用A H P法和专家调查法得出两套权重重要程度排序结果Λ比较两套结果是否一致,若一致则可利用得到的一致权重重要程度排序结果作为检验神经网络所得权重结果重要程度排序的标准Λ若不一致,则需重新调整上述两种方法直到一致为止Λ这样便可在很大程度上提高主观赋权法重要度排序的准确性Λ3.3 误差逆传播神经网络技术(BP网)的基本原理神经网络技术是近年来才兴起的一门新兴技术,由许多并行运算的功能简单的单元组成,这些单元类似于生物神经系统的单元Ζ这些神经元函数模型为:S j=6n i=0W3ij X i+b j,Y j=f(S j)其中Y j为输出,X i为输入,b j为偏差,W j i称为连接权系数,f(・)为变换函数Ζ神经网络是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理Λ虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的Λ和数字计算机相比,神经网络系统具有集体运算的能力和自适应的学习能力ΛBP网络的产生归功于BP算法的获得ΛBP算法是最著名的多层神经网络的训练方法,依照A daline网络所采用的最小误差学习方法及修改后D elta学习规则,以适应多层网络ΛBP算法的主要思想为:对于q个学习样本:p1,p2,…,p q,已知与其对应的输出样本为:T1,T2,…,T qΖ学习的目的是用网络的实际输出A1,A2,…,A q与目标矢量T1,T2,…,T q之间的误差来修改其权值,A l(l= 1,2,…,q)l与期望的T l尽可能的接近;即:使网络输出层的误差平方和达到最小Ζ它是通过连续不断地在相对于误差函数斜率下降的方向上计算网络权值和偏差的变化而逐渐逼近目标的Ζ每一次权值和偏差的06系统工程理论与实践2001年3月变化都与网络误差的变化成正比,并以反向传播的方式传递到每一层ΖBP 算法是由两部分组成:信息的正向传递与误差的反向传播Ζ在正向传播过程中,输入信息从输入经隐含层逐层计算传向输出层,每一层神经元的状态只影响下一层神经元的状态Ζ如果在输出层没有得到期望的输出,则计算输出层的误差变化值,然后转向反向传播,通过网络将误差信号沿原来的连接通路反传回来修改各层神经元的权值直至达到期望目标Ζ设输入为p ,输入神经元有r 个,隐含层有s 1个神经元,激活函数为F1,输出层内有s 2个神经元,对应的激活函数为F 2,输出为A ,目标矢量为T Ζ信息的正向传递1)隐含层中第i 个神经元的输出为:a 1i =f 16rj =1w 1ij p j +b 1i , i =1,2,…,s 12)输出层中第k 个神经元的输出为:a 2i =f 26rj =1w 2k i a 1i +b 2k ,k =1,2,…,s 23)定义误差函数为:E (W ,B )=126s 2k =1(t k -a 2k )2利用梯度下降法求权值变化及误差的反向传播1)输出层的权值变化对从第i 个输入到第k 个输出的权值有:∃w 2k i =-Γ5E 5w 2k i =-Γ5E5a 2k 5a 2k 5w 2k i=Γ(t k -a 2k )f 2′a 1i =Γ∆k i a 1i其中:∆k i =(t k -a 2k )=e k f 2′,e k =t k -a 2k同理可得:∃b 2k i =-Γ5E 5b 2k i =-Γ5E5a 2k 5a 2k 5b 2k i=Γ(t k -a 2k )f 2′=Γ∆k i a 1i 2)隐含层的权值变化对从第j 个输入到第i 个输出的权值有:∃w 1ij =-Γ5E 5w 1ij =-Γ5E5a 2k 5a 2k 5a 1i 5a 1i 5w 1ij =Γ6s 2k =1(t k -a 2k )f 2′ w 2k i f 1′p j =Γ∆k i p j其中:∆ij =e i f 1′,e i =6s 2k =1∆k i w 2k i同理可得:∃b 1i =Γ∆ij .但是由于BP 网涉及复杂的多维输入和输出空间,因而其误差面可能有一些局部的最低点(L ocal m in i m um )Λ在网络训练时,往往权重矢量被调节在局部的最低点,而不能达到实际的最小误差Λ同时神经网络是“黑箱推理”,全部知识都存在于网络内部,难以对最终的结果提供可信的解释Λ因而在确定评价企业经营业绩指标体系的权重时,结合上述两种方法,扬其所长、避其所短,形成一种综合分析方法.3.4 M AT LAB 5.1(矩阵实验室)神经网络工具箱简介M A TLAB 是M ath W o rk s 公司于1982年起开始推出的一套高性能的数值计算和可视化软件Λ它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境ΛM A TLAB 5.1是于1997年5月推出的,包括神经网络(neu ral netw o rk ),信号处理(signal p rocessing ),控制系统(con tro lsystem ),图象处理(i m age p rocessing ),鲁棒控制(robu st con tro l ),非线性系统控制设计(non linear con tro l system design ),系统辨别(system iden tificati on ,最优化(op ti m isati on ),分析与综合(analysis and syn thesis ),模糊逻辑(fuzzy logic ),小波(w avelet ),样条(sp line )等工具箱Λ神经网络工具箱中的实用函数包括误差分析函数,∆函数,设计,初始化,学习规则,矩阵,邻域,绘图,仿真,训练,传递函数Λ利用这些函数和M A TLAB 提供的基本命令、函数便可以方便、快捷、直观地进行神经网络设计,完成繁复的工作Λ16第3期A H P 法专家调查法与神经网络相结合的综合定权方法3.5 综合分析方法运用步骤1)分别运用A H P 法、专家调查法和BP 网络得出合理的权重Λ2)判断上述两种方法得出的结果中各指标的权系数重要程度排序是否一致Λ在多目标决策中,各指标的相对重要程度是不同的Λ指标按其重要程度可分为若干等级,依次为P 1,P 2,…,P k ,重要性依次降低Λ每一类指标等级中又含有若干个指标,这些指标重要程度的差别远小于跨等级指标之间的差别Λ比较利用BP 网络训练、检验后得出的的结果与使用A H P 法、专家调查法定性分析得出的重要等级排序是否一致Λ如果一致,则说明BP 网络在训练过程中没有陷入到误差面中的局部最小点,达到了真正的最小点,得出的结果可以信赖Λ如果不一致,则说明BP 网络在训练过程中陷入到误差面中的局部最小点,没有达到真正的最小点,这就需要采取:重新选择初始权重、训练数据、增加隐层神经元数、改用动量算法等措施来重新训练、检验网络,得出新的权重值,直到与使用A H P 法、专家调查法定性分析得出的重要等级排序一致为止Λ3)利用已得权重结果对各待评对象进行评价Λ使用BP 网络所得评价结果虽然准确度很高,但解释性极差,因而就必须同时运用A H P 法和专家调查法增强评价结果的解释性Λ4 实证分析表1为我国14个省、直辖市1992年主要工业统计指标及综合评估值Λ表1省市评价指标全员劳动生产率(元 人)资金利税率(%)销售利润率(%)工业产值占用流动资金率(%)产值利税率(%)综合评估值北京 47177 16.61 8.89 31.05 15.77 0.7896天津433239.083.6529.808.440.3238上海5902313.846.0626.5512.870.7366江苏4682110.593.5122.467.410.4687浙江4164613.244.4624.339.330.5355安徽2644610.162.3826.809.850.2846福建3838111.974.7926.4510.640.4862广东5780810.294.5423.009.230.5895辽宁288697.682.1231.089.050.1543山东388128.923.3825.688.730.3562湖北3072110.874.1530.3611.440.3524湖南2464810.772.4230.7111.370.2594河南269259.343.0630.1110.840.2571江西232698.252.5832.578.620.1111 此问题是一个多指标决策与排序问题Λ上述5个评价指标从主观上很难判断哪个指标更为重要,因此认为它们处于同一重要等级Λ使用A H P 法及专家调查法所得5个评价指标权重值均在0.2左右Λ应用本文所述的基于人工神经网络的多指标综合评价方法,设有5个输入节点,分别是全员劳动生产率,资金利税率,销售利润率,工业产值占用流动资金率,产值利税率Λ输出节点1个,为综合评估指标Λ根据经验,隐层节点数选取为6Λ26系统工程理论与实践2001年3月将表1数据分为两部分,前14组数据用作学习样本,作为训练神经网络连接权值用,学习精度为SSE =0.001,后2组数据作为检验用Λ经过1606次的训练,训练所得权重矩阵结果(未详细列述)符合以A H P 法和专家调查法所得的重要度基本一致的判断标准Λ由此可见,BP 网的训练是建立在权重重要程度排序与实际情况相符的基础上进行的Λ运用网络输出与样本期望值之间的差异结果分析本人所建BP 网的自学习能力,详情见表2Λ表2 网络输出与样本期望值差异比较省份北京天津上海江苏浙江安徽福建网络输出0.79580.31450.73100.46900.53760.29900.4766期望值0.78960.32380.73660.46870.53550.28460.4862相对误差0.00780.02870.00760.00060.00390.05600.0197省份广东辽宁山东湖北湖南河南江西网络输出0.59300.15000.36630.34660.24470.26820.1165期望值0.58950.15430.35620.35240.25940.25710.1111相对误差0.00590.02790.02840.01650.05670.04320.0486 训练结束后,利用训练好的三层BP 网,分别输入校验后的数据,得到的结果如下:网络输出 期望值 相对误差河北 0.1865 0.1893 0.0148山西 0.1619 0.1616 0.0018 由以上结果可以看出,利用BP 网得出的训练数据输出值与样本之间的最大相对误差为0.0567,检验数据输出值与期望值之间的最大相对误差为0.0148,可见该网络的自学习能力非常强,网络性能很好Λ这说明此种综合评价方法是有效的Λ参考文献:[1] 王明涛.多指标综合评价中权系数确定的一种综合分析方法[J ].系统工程,1999,17(2):56-61.[2] 戴文战.基于三层BP 网络的多指标综合评估方法及应用[J ].系统工程理论与实践,1999,19(5):29-34.[3] 张际先,宓霞.神经网络及其在工程中的应用[M ].北京:机械工业出版社.1996.[4] 楼顺天,于卫,闫华梁.M A TLAB 程序设计语言[M ].西安:西安电子科技大学出版社.1997.[5] 楼顺天,施阳.基于M A TLAB 的系统分析与设计——神经网络[M ].西安:西安电子科技大学出版社.1998.36第3期A H P 法专家调查法与神经网络相结合的综合定权方法。
神经网络如何实现智能决策支持系统在当今数字化的时代,智能决策支持系统正逐渐成为企业、组织乃至社会各个领域中不可或缺的一部分。
它能够帮助人们在面对复杂的问题和大量的数据时,做出更为明智和准确的决策。
而神经网络作为一种强大的人工智能技术,为实现智能决策支持系统提供了关键的支持。
要理解神经网络如何实现智能决策支持系统,首先得知道什么是神经网络。
简单来说,神经网络就像是我们大脑中的神经元网络,通过无数个节点(类似于神经元)相互连接,形成一个能够处理和传递信息的系统。
神经网络具有强大的学习能力。
它可以从海量的数据中自动提取特征和模式,这是实现智能决策支持的重要基础。
想象一下,一个企业拥有多年的销售数据、市场趋势、客户反馈等各种信息。
传统的分析方法可能会因为数据的复杂性和多样性而感到力不从心,但神经网络却能够轻松应对。
它会自动分析这些数据中的潜在规律,例如哪些因素会影响产品的销量,哪些客户更有可能成为忠实客户等等。
那么,神经网络是如何学习的呢?这就涉及到训练的过程。
训练神经网络就像是教一个孩子认识世界。
我们给它提供大量的样本数据,告诉它哪些是正确的,哪些是错误的。
通过不断地调整节点之间的连接权重,神经网络逐渐学会了如何准确地预测和分类。
在智能决策支持系统中,神经网络能够对未来的趋势进行预测。
比如说,通过分析历史的股票价格数据,神经网络可以预测未来股票的走势,为投资者提供决策参考。
又比如,在物流领域,它可以根据以往的运输数据和需求预测,优化配送路线和库存管理,降低成本,提高效率。
神经网络还能够进行风险评估。
在金融领域,它可以评估贷款申请人的信用风险,帮助银行决定是否批准贷款。
在医疗领域,它可以根据患者的症状、病史和检查结果,评估疾病的风险和可能的发展趋势,为医生的治疗决策提供支持。
为了让神经网络更好地服务于智能决策支持系统,数据的质量和数量至关重要。
就像给孩子提供丰富、准确的知识才能让他们更好地成长一样,给神经网络提供优质的数据,它才能学到更有用的知识。
神经网络与专家系统的结合及其应用研究第l0卷第2期江八一农垦大学……醚盎塑'王智敏(黑龙江八一农垦大学工程学院密山158308)摘要在分析神经罔络与专家系统相结合的优点基础上.探讨了神经阿络与专家系统的几种常见结合方式,■述了该方法的典型应用一一基于神经阿络的故障诊断系统,并以发动机故障诊断为倒精出了两者结台的具体宴现.中国分类号TP3191引言专家系统和神经网络是两种主要的人工智能应用技术.将专家系统与神经网络有机结合,两者取长朴短,充分发挥各自特长.再加入模糊理论等先进技术.是当前智能系统发展的基本特征和必然趋势.如何把它们结合得更合理更巧妙已成为有关专家共同探讨的新兴前沿课题.本文对神经网络和专家系统的结合方式进行了初步探索.神经网络为现代机器的故障诊断提供了新的理论方法和技术手段,具有很大的发展潜力和应用前景.利用神经网络与专家系统技术相结合.提高了系统的智能水平.可实现诊断的准确,快速和高效性,也为汽车发动机的故障诊断提供了一种新的方法和思路.2神经网络与专家系统的互补神经网培可以弥补解决传统专家系统在应用中遇到的问题.比如,(1)专家系统的.脆弱性印知识和经验不全面.遇到没解决过的问题就无能为力;利用神经网络的自学习不断丰富知识库内容,从而解决知识更新的同题.《2)对于E8"知识获取的困难这.瓶颈问题,利用ANN的高效性和方便的自学习功能,只需用领域专家解决问题的实例来训练ANN.使在同样的输入条件下,ANN能获得与专家给出的解答尽可能接近的输出.(3)推理中的匹配冲突.组合爆炸及.无穷递归使传统鹤推理速度慢,效率低,主要是由于E8采用串行方式,推理方法简单和控制策略不灵活.而ANN的知识推理通过神经元之间的作用实现,总体上ANN的推理是并行的.速度快.一般来说.ANN是基于精人~输出的一种直觉性反射,也叫形象思维经验思维,适于发挥经验知识的作用,进行浅层次的经验推理E8是基于知识,规则匹配的逻辑知识的作用,进行深层次的逻辑推理.鹤的特色是符号推理,ANN擅长数值计算.由此可见.传统鹤与^NN科学地加以综合,并加人探层次知识,取长补短,充分发挥各自的特长,将会提高智能系统的智力水平.1998—04—28l趺稿?中国农业大学东区2l4信箱孙永厚?男,31岁?讲师.中国农业大学(东区)硬士研究生毕业.第2期孙永厚等:神墅哩鳖童塞墨堡塑堕全垦基堡旦里塞3神经网络与专家系统结合的方式神经网络与专家系统结合的方法多种多样,常见的有以下几种.首先,按连接方式分为:(1)并列协同法:并列使用神经网络,专家系统和算法库等作为各自独立的模块,执行系统的某些功能,最后经过组合,得到问题的解答.(2)串行法:将专家系巍租神经阿络串联相接来求解问题.例如:专家系统1用于帮助神经网络进行训练及复杂的人机交流;神经网络用来进行决策和问题求解;专家系统2用来解释神经网络的输出结果,并驱动有关执行机构.上述两种方法根据被求解问题的需要把系统分为若干个模块?每个模块分别用专家系统或人工神经网络技术实现.这两种方法通称为模块相接法或集成法.其次,按两者的地位分为:(1)专家系统为主,神经网络为辅(见图1).专家系统在必要时调用神经网络文件.例如嵌人法,即在专家系统内嵌人神经网络,用于执行在专家系统周期中耗费时间最多的工柞模式匹配,以加快专家系统的执行速度.(2)神经网络为主,专家系统为辅(见图2).神经网络在必要时调用专家系统文件,由专家系统给出解释.进行界面臂理.例如功能模拟法,神经网络模拟专家系统来实现某种功能,以追求系统性能的改善.图1Bs为主的结构图2ANN为主的结构图3两院制结构此外,还有指导式和两院制结构等.其中,两院制结构(见图3)将使Bs和ANN两种形式的知识可以共事.虽难以实现却最具发展前景.所谓两院制结构.就是在整个系统中.大多数知识同时以神经网络和符号形式两种方式表示,每部分以各自独特的推理机制工柞.岿要时可从一种形式中抽取知识并将其转化成另一种形式.实质上两种形式的知识是共事的.例如用神经网络构造一个符号化模型.~Bs和ANN的结合在具体应用时,可以不拘一格,将上述各种方式混合运用.以便更挥此种方法的优越性,实现更多的功能.本文后面实例中对神经网络和专家系统的结合方式进行了初步探索.总体上将神经网络嵌人到专家系统中,具体诊断推理时主要采取两者的串型或并型等连接方式.4应用实例:故障诊断系统4l基于神经网络的故障诊断专家系统神经网络与专家系统技术相结合比较适用于故障诊断.基于神经网络的故障诊断专家系统,将利用神经网络的自学习功能联想记忆功能和分布式并行信息处理功能等来解决诊断系统的知识表述,知识获取和并行推理等问题.神经网络与专家系统的集成可以发挥各自的优势.非常适合于表达故障诊断及处理系统的知识.48黑龙江八一农垦大学第10卷该系统的知识表述分两种:一种是将专家经验形式化成规则,并存储于知识库中:另一种是通过现场历史数据对神经网络进行训练,将难以形式化的专家经验以非线性映射的形式存储于神经网络的结点上,由协调机构针对不厨情况用规则和神经网络对系统故障进行诊断,得出相应的诊断结果.神经网络系统在完成一个诊断实例之后,可以记忆诊断过程和结果,从而归纳出新的诊断规则,不断扩充知识库的内容,使知识库具有自学习功能,这是本系统与普通诊断系统的重要区别.系统的推理主要包括ANN的浅层经验知识推理和Es的深层逻辑知识推理.ANN采用数据驱动的正向推理策略,从韧始状态出发,向前推理,到目标状态为止.这种推理方式对同一层处理单元来说是并行的,不需要进行规则的前提匹配,克服了传统推理中的匹配冲突等困难.这种推理过程只与网络自身参数有关,其参数可通过学习算法进行自适应训练,因此具有自适应能力.4-2发动机故障诊断系统的螭构特点笔者研审I了一种用于汽车发动机的故障诊断系统,采用了神经网络与专家系统相结合的方法.一般地,神经网络用于对故障进行分类,给出韧步诊断结果,专家系统通过人机对话进行推理.最后给具体诊断结果并解释诊断过程,用户通过人机界面对系统进行操作和管理.系统总体上采用神经网络嵌人的方式,在具体的子模块中包含很多个神经网络和专家系统文件,根据要实现的不同功能要求,分别采用神经网络与专家系统的串受,并受或混合型等方式连接.具体解决某一问题时.系统各子模块有些以专家系统为主,也有些以神经网络为主,更多的情况是将两者有机结合来进行混合求解;有些子模块中利用神经网络和专家系统可以分别求解.供用户参考选择,再通过人机对话确定最后结果.4.3典垂的诊断过程诊断系统子模块的典型结构如图4所示,采用串型连接方式,将Es和^NN两者结合运用.其中,专家系统1用来进行复杂的人机交流;神经网络1用于问题求解;专家系统2用来解释神经网络的输出结果,并进一步推理,得出具体诊断结果.实时专家围4诊断系统子模块的典型螭构/第2期孙永厚荨:神经网培与专i隧统些堕鱼垦基堕旦塞!!以*发动机内部机械一故障为倒简介其诊断过程.判断汽车发动机内部机械部分有无故障最简便的方法就是测量各汽缸压缩终了压力利用神经网络分析这些数据与正常相比偏高或偏低,从而对其进行故障分类.再由专家系统推断出相应故障原因,给出诊断结果.对来自接口由传感器测出的汽缸压力数据值.由镦机内部进行分析处理,井进入内部机械台勺相应子模块.该模块中首先由神经网络进行计算.得出故障分类结果.再进入专家系统中进一步推理.专家系统首先解释神经阿络的输出结果:(例如)某一汽缸压力偏高进一步诊断推理(人机对话):(屏幕显示)请问:行驶中还出现过热或突爆吗?(用户选择)回答:YBs{回车)(弹出窗口)诊断结果:积炭过多或经几次修理后压缩比有了变化,请及时修整15结束语根据要实现的不同功能要求,将神经网络与专家系统结合时可以采用多种方式,如串型,并型或混台型连接等等.这些结合方式各具特色,可以充分发挥神经网络和专家系统各自的优点.从而组合成各种薪型的智能化实用系统.采用神经用络和专家系统相结合构造新型的神经网络专家系统,是智能系统发展的必然趋势.神经网络方法模拟了人类的形象思维,是一种非逻辑,非语言,非静态,非局域和非线性的信息处理方法.它与传统人工智能方法不是简单取代而是互为扑充,辩证统一的关系;此种方法与专家系统结合的发展和应用将给人工智能,计算机科学与信息科学荨领域带来历史性的变革.参考文献1蔡自必等人工智能及其应用北京:清华大学出版杜.1998.6—112张际先.盛霞神经阿培及其在工程中的应用北京:机械工业出版社.1996.1—193衰泉.何募荨专家幕境与神经罔终结合的油机故障诊断系统.中国农业大学.l998.a(2)4戚扬.韩北山汽车教障诊断北京:人民交通出版社.1988383—38689一g2STUDY oNTHEeOMBINA TIONoFNEURALNETWORK WITHEXPERTSYSTEMANDITSAPPLICATIONSSunY onghouYuanQuanWangZhiminABSTRACT:Inthispaper.6omccoⅢmonwaystocombineArtificialNeuralNetwork(ANN)withExpertSystem(E8)areprovided.basedoaanalysingthebenefitsofthe combination.Thetypicalapplicationinfaultdiagnosticexpertsystembasedon ANNisindicated. Thepracticeofthesecombiningwayispresentedbyanexample aboutenginefaultdiagnostic.Keywords:Neuralnetwork~ExpertsystemIFaultdiagnostic。