比较专家系统、模糊方法、遗传算法、神经网络、蚁群算法的特点及其适合解决的实际问题
- 格式:pdf
- 大小:274.79 KB
- 文档页数:9
配网故障定位I 目前各种定位方法及适用范围II 目前存在的问题配电系统小电流接地故障电流微弱、故障电弧不稳定,使得准确定位其故障点成为难题。
对于小电流接地故障检测的诸多方法,除信号注入法外,其余检测方法均依赖发生故障前后配电网参数的变化。
鉴于小电流接地系统的自身特点,当受到电磁干扰和谐波污染,可使信号失真,影响各种选择原理的可靠性和准确性。
目前,多数检测方法仅是理论可行,在实用化方面存在较大困难和限制。
实践中,应用较为广泛的主要是基于注入信号的定位原理,该方法实际使用中并不理想,且检测时间较长。
另外一种常用的基于故障指示器的定位方法,检测相间短路故障效果不错,但对于单相接地故障检测,实用效果很不理想。
基于FTU的故障分段定位方法也没有很好的解决单相接地故障定位的问题,且实现配网自动化成本太高,限制了其应用范围。
III 配电网故障定位研究展望目前故障定位方法按照检测方式可分为主动式和被动式两种。
主动式一般是在线路不停电的情况下,故障发生后向系统注入特定的信号实现故障定位,如果接地点存在间歇性电弧现象,注入的信号在线路中将不连续,给故障定位带来困难,若是在离线的情况下利用其实现故障定位,需要外加直流高压使接地点保持击穿状态,势必增加投资和检测复杂性。
被动式主要是利用故障发生时采集信号中包含的故障信息以及故障前后线路参数的变化实现故障点的定位,不需要额外增加设备,在现场容易实现,所以利用被动式检测方法查找故障点是今后配电网故障定位的发展方向。
行波法具有不受系统参数、系统运行方式变化、线路不对称及互感器变换误差等因素的影响,在电子技术日益发展的今天,利用故障产生的行波信息实现配电网故障测距具有重要研究意义。
但如何解决好实际应用中面临的关键技术问题,比如行波测距模式的确定、行波信号的获取、架空电缆混合线路的影响、多分支线路的影响以及高阻接地故障的影响等,是其获得成功应用的关键。
另外,通过安装故障指示器或线路FTU来实现配电线路故障尤其是单相接地故障定位,仍然具有重要研究价值。
摘要:本文主要介绍了智能控制技术从经典控制理论、现代控制理论发展到今天的智能控制理论的发展过程和主要方法,并介绍了智能控制在工业发展、机械制造、电力电子学研究领域中的应用.关键字:自动化智能控制应用随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。
一、智能控制的发展过程从经典控制理论、现代控制理论发展到今天的智能控制理论,经历了很长时间.四十年代到五十年代形成了经典控制理论。
经典控制理论中基于传递函数建立起来的如频率特性、根轨迹等图解解析设计方法,对于单输入—单输出系统极为有效,至今仍在广泛地应用。
但传递函数对处于系统内部的变量不便描述,对某些内部变量还不能描述,且忽略了初始条件的影响。
鼓传递函数描述不能包含系统的所有信息。
现代控制理论主要研究具有高性能、高精度的多变量变参数系统的最优控制问题,它对多变量有很强的描述和综合能力,其局限在于必须预先知道被空对象或过程的数学模型.智能控制是在经典和现代控制理论基础上进一步发展和提高的。
智能控制的提出,一方面是实现大规模复杂系统控制的需要;另一方面是现代计算机技术、人工智能和微电子学等学科的高度发展,给智能控制提供了实现的基础。
智能控制提供了一种新的控制方法,基本解决了非线性、大时滞、变结构、无精确数学模型对象的控制问题。
二、智能控制的主要方法通俗地讲,智能控制就是利用有关知识(方法)来控制对象,按一定要求达到预定目的。
智能控制为解决控制领域的难题,摆脱了经典和现代控制理论的困境,开辟了新的途径.智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。
1、模糊控制模糊控制以模糊集合、模糊语言变量、模糊推理为其理论基础,以先验知识和专家经验作为控制规则。
人工智能算法总结
1、贝叶斯算法是一种基于概率的算法,它根据现有信息,计算出假设事件发生的概率。
贝叶斯算法有三个优点:(1)运行速度较快,实现简单;(2)数据量较少,可以处理模糊和不完整的数据;(3)能够处理不断变化的条件和概率。
2、遗传算法是一种简化的模拟进化的过程,用于求解最优化问题。
它模拟生物遗传过程,会从当前状态出发,不断进行繁衍和迭代,最终得出最优解。
它的优点是拥有很大的最优化空间,速度快,容易实现,但是只能处理浮点运算以及模糊的数据。
3、遗传算法是一种自适应的算法,它可以根据不同的环境来自动调整,以达到最优化的效果。
它能够根据环境不断调整,可以有效地应对变化的复杂环境。
它的缺点是空间大,需要大量的存储资源,而且收敛速度较慢。
4、网络算法是一种模拟人的脑结构,由输入层、隐藏层、输出层构成的人工网络,能够学习和记忆,可以用来解决复杂的问题。
c law enforcement. Therefore, c congestion was ciency of the improved algorithm with the Dijkstra algorithm. Thus, it could simulate the optimal driving path with better performance, which was targeted and innovative.关键词:蚁群算法;实际路况;最优路径Key words :ant colony optimization; actual road conditions; optimal path文/张俊豪蚁群算法在最优路径选择中的改进及应用0 引言在国务院发布的《国家中长期科学和技术发展规划纲要(2006-2020年)》中,将交通拥堵问题列为发展现代综合交通体系亟待解决的“三大热点问题”之一。
智能交通系统作为“互联网+交通”的产物,利用先进的科学技术对车、路、人、物进行统一的管控、调配,成为了当下各国缓解交通拥堵的一个重要途径。
路径寻优是智能交通系统的一个核心研究内容,可以有效的提升交通运输效率,减少事故发生频率,降低对城市空气的污染以及提升交通警察的执法效率等。
最著名的路径规划算法是Dijkstra算法和Floyd算法,Dijkstra算法能够在有向加权网络中计算得到某一节点到其他任何节点的最短路径;Floyd算法也称查点法,该算法和Dijkstra算法相似,主要利用的是动态规划思想,寻找加权图中多源节点的最短路径。
近些年,最优路径的研究主要集中以下几个方面:(1)基于A*算法的路径寻优。
A*算法作为一种重要的路径寻优算法,其在诸多领域内都得到了应用。
随着科技的发展,A*算法主要运用于人工智能领域,特别是游戏行业,在游戏中,A*算法旨在找到一条代价(燃料、时间、距离、装备、金钱等)最小化的路径,A*算法通过启发式函数引导自己,具体的搜索过程由函数值来决定。
2006人工智能小测验(2)1.什么叫做专家系统?它具有哪些特点与优点?答:专家系统是一个含有大量的某个领域专家水平的知识与经验智能计算机程序系统,能够利用人类专家的知识和解决问题的方法来处理该领域问题.简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。
专家系统特点启发性:专家系统能运用专家的知识与经验进行推理、判断和决策.透明性:专家系统能够解释本身的推理过程和回答用户提出的问题,以便让用户能够了解推理过程,提高对专家系统的信赖感。
灵活性:专家系统能不断地增长知识,修改原有知识,不断更新。
专家系统的优点包括下列八个方面:(1)专家系统能够高效率、准确、周到、迅速和不知疲倦地进行工作。
(2)专家系统解决实际问题时不受周围环境的影响,也不可能遗漏忘记。
(3)可以使专家的专长不受时间和空间的限制,以便推广珍贵和稀缺的专家知识与经验。
(4)专家系统能促进各领域的发展。
(5)专家系统能汇集多领域专家的知识和经验以及他们协作解决重大问题的能力。
(6)军事专家系统的水平是一个国家国防现代化的重要标志之一。
(7)专家系统的研制和应用,具有巨大的经济效益和社会效益.(8)研究专家系统能够促进整个科学技术的发展.2.请简要叙述专家系统一般结构及其功能。
答:1)专家系统的结构是指专家系统各组成部分的构造方法和组织形式。
系统结构选择恰当与否,是与专家系统的适用性和有效性密切相关的。
选择什么结构最为恰当,要根据系统的应用环境和所执行任务的特点而定.下图表示专家系统的简化结构图.2)专家系统功能接口是人与系统进行信息交流的媒介,它为用户提供了直观方便的交互作用手段。
黑板是用来记录系统推理过程中用到的控制信息、中间假设和中间结果的数据库。
它包括计划、议程和中间解3部分。
知识库包括两部分内容。
一部分是已知的同当前问题有关的数据信息;另一部分是进行推理时要用到的一般知识和领域知识。
调度器按照系统建造者所给的控制知识,从议程中选择一个项作为系统下一步要执行的动作。
优化算法智能算法智能控制技术的特点和应用 The document was prepared on January 2, 2021优化算法、智能算法、智能控制技术的特点和应用在建立了以频域法为主的经典控制理论的基础上,智能控制技术逐步发展。
随着信息技术的进步新方法和新技术进入工程化、产品化阶段。
这对自动控制理论技术提出了新的挑战,促进了智能理论在控制技术中的应用。
下面介绍了优化算法、智能算法、智能控制技术的特点及应用。
优化算法特点及应用什么是优化就是从各种方案中选取一个最好的。
从数学角度看,优化理论就是研究如何在状态空间中寻找到全局最优点。
优化算法通常用来处理问题最优解的求解,这个问题有多个变量共同决定的优化算法的一个特点往往给出的是一个局部最优解,不是绝对的最优解,或者说全局最优解。
一种优化算法是否有用很大程度取决问题本身,如果问题本身就是比较无序的,或许随机搜索是最有效的。
常用有3种优化算法:遗传算法、蚁群算法、免疫算法等。
遗传算法是一种基于模拟遗传机制和进化论的并行随机搜索优化算法。
遗传算法在控制领域中,已被用于研究离散时问最优控制、方程的求解和控制系统的鲁棒稳定问题等。
遗传算法用来训练神经网络权值,对控制规则和隶属度函数进行优化,也可用来优化网络结构。
蚁群算法是群体智能的典型实现,是一种基于种群寻优的启发式搜索算法。
蚁群算法小仅能够智能搜索、全局优化,而具有鲁棒性、正反馈、分布式计算、易与其它算法结合等特点。
等人将蚁群算法先后应用于旅行商问题、资源二次分配问题等经典优化问题,得到了较好的效果。
在动态环境下,蚁群算法也表现出高度的灵活性和健壮性,如在集成电路布线设计、电信路山控制、交通建模及规划、电力系统优化及故障分析等方面都被认为是目前较好的算法之一。
智能算法的特点及应用智能计算也有人称之为“软计算”。
是人们受生物界的启迪,根据其原理,模仿求解的算法。
智能计算的思想:利用仿生原理进行设计(包括设计算法)。
智能算法技术1. 人工神经网络人工神经网络是一种基于生物神经网络模型构建的计算模型,通过模拟神经元之间的连接和传递信息的方式来实现智能任务。
通过训练和研究,人工神经网络可以自动识别模式、分类数据、进行预测等任务,已广泛应用于图像处理、语音识别等领域。
2. 遗传算法遗传算法是一种基于自然选择和遗传机制的优化算法,模拟了生物进化过程中的遗传和变异。
通过模拟种群的遗传操作,如选择、交叉和变异,遗传算法可以搜索问题的解空间,找到最优解或近似最优解。
遗传算法被广泛应用于优化问题求解、机器研究等领域。
3. 模糊逻辑模糊逻辑是一种用于处理不确定性和模糊性信息的推理方法,通过模糊集合和模糊规则对问题进行建模和求解。
模糊逻辑可以模拟人类的推理过程,对模糊、模糊的情况进行处理,适用于不确定性较大的问题领域,如控制系统、决策支持等。
4. 支持向量机支持向量机是一种基于统计研究理论和结构风险最小化原则的分类器。
通过构造超平面来将数据进行分类,并寻找最优分类超平面,使得分类边界最大化。
支持向量机可以处理高维数据、非线性问题,并且具有较好的泛化能力。
它被广泛应用于模式识别、数据分类等领域。
5. 粒子群优化算法粒子群优化算法是一种基于群体行为和社会经济模型的优化算法。
通过模拟鸟群觅食的行为,粒子群优化算法可以在搜索空间中寻找最优解。
算法中的粒子代表搜索空间中的一个解,通过迭代更新粒子的位置和速度,最终找到最优解。
粒子群优化算法被广泛应用于优化问题求解、机器研究等领域。
以上是智能算法技术的一些常见方法和技术,通过使用这些算法,我们可以更好地处理复杂问题、进行数据分析和预测等任务,为人工智能的发展提供了强有力的支持。
数学建模十大经典算法数学建模是将现实问题转化为数学模型,并利用数学方法进行求解的过程。
下面是数学建模中常用的十大经典算法:1.线性规划(Linear Programming):通过确定一组线性约束条件,求解线性目标函数的最优解。
2.整数规划(Integer Programming):在线性规划的基础上,要求变量取整数值,求解整数目标函数的最优解。
3.非线性规划(Nonlinear Programming):目标函数或约束条件存在非线性关系,通过迭代方法求解最优解。
4.动态规划(Dynamic Programming):通过分阶段决策,将复杂问题分解为多个阶段,并存储中间结果,以求解最优解。
5.蒙特卡洛模拟(Monte Carlo Simulation):通过随机抽样和统计分析的方法,模拟系统的行为,得出概率分布或数值近似解。
6.遗传算法(Genetic Algorithm):模拟生物进化过程,通过选择、交叉和变异等操作,寻找最优解。
7.粒子群算法(Particle Swarm Optimization):模拟鸟群或鱼群的行为,通过个体间的信息交流和集体协作,寻找最优解。
8.模拟退火算法(Simulated Annealing):模拟金属退火的过程,通过控制温度和能量变化,寻找最优解。
9.人工神经网络(Artificial Neural Network):模拟生物神经网络的结构和功能,通过训练网络参数,实现问题的分类和预测。
10.遗传规划(Genetic Programming):通过定义适应性函数和基因编码,通过进化算子进行选择、交叉和变异等操作,求解最优模型或算法。
这些算法在不同的数学建模问题中具有广泛的应用,能够帮助解决复杂的实际问题。
一、填空题1.智能控制是一门新兴的学科,它具有非常广泛的应用领域,例如、、和。
1、交叉学科在机器人控制中的应用在过程控制中的应用飞行器控制2.传统控制包括和。
2、经典反馈控制现代理论控制3.一个理想的智能控制系统应具备的基本功能是、、和。
3 、学习功能适应功能自组织功能优化能力4.智能控制中的三元论指的是:、和。
4、运筹学,人工智能,自动控制5.近年来,进化论、、和等各门学科的发展给智能控制注入了巨大的活力,并由此产生了各种智能控制方法。
5、神经网络模糊数学专家系统6.智能控制方法比传统的控制方法更能适应对象的、和。
6、时变性非线性不确定性7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。
7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控制系统8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。
8、不确定性、高度的非线性、复杂的任务要求9.智能控制系统的主要类型有、、、、和。
9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统10.智能控制的不确定性的模型包括两类:(1) ;(2) 。
10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。
11.控制论的三要素是:信息、反馈和控制。
12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和。
知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和。
知识库、推理机14.专家系统中的知识库包括了3类知识,它们分别为、、和。
判断性规则控制性规则数据15.专家系统的推理机可采用的3种推理方式为推理、和推理。
15、正向推理、反向推理和双向推理16.根据专家控制器在控制系统中的功能,其可分为和。
16、直接型专家控制器、间接型专家控制器17.普通集合可用 函数表示,模糊集合可用 函数表示。
一、填空题1.智能控制是一门新兴的学科,它具有非常广泛的应用领域,例如、、和。
1、交叉学科在机器人控制中的应用在过程控制中的应用飞行器控制2.传统控制包括和。
2、经典反馈控制现代理论控制3.一个理想的智能控制系统应具备的基本功能是、、和。
3 、学习功能适应功能自组织功能优化能力4.智能控制中的三元论指的是:、和。
4、运筹学,人工智能,自动控制5.近年来,进化论、、和等各门学科的发展给智能控制注入了巨大的活力,并由此产生了各种智能控制方法。
5、神经网络模糊数学专家系统6.智能控制方法比传统的控制方法更能适应对象的、和。
6、时变性非线性不确定性7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。
7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控制系统8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。
8、不确定性、高度的非线性、复杂的任务要求9.智能控制系统的主要类型有、、、、和。
9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统10.智能控制的不确定性的模型包括两类:(1) ;(2) 。
10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。
11.控制论的三要素是:信息、反馈和控制。
12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和。
知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和。
知识库、推理机14.专家系统中的知识库包括了3类知识,它们分别为、、和。
判断性规则控制性规则数据15.专家系统的推理机可采用的3种推理方式为推理、和推理。
15、正向推理、反向推理和双向推理16.根据专家控制器在控制系统中的功能,其可分为和。
16、直接型专家控制器、间接型专家控制器17.普通集合可用 函数表示,模糊集合可用 函数表示。
优化算法的分类优化算法是一种用于找到问题的最优解或近似最优解的方法。
在计算机科学和运筹学领域,优化算法被广泛应用于解决各种实际问题,例如机器学习、图像处理、网络设计等。
优化算法的分类可以根据其基本原理或应用领域进行划分。
本文将介绍一些常见的优化算法分类。
1. 传统优化算法传统优化算法是指早期开发的基于数学原理的算法。
这些算法通常基于确定性模型和数学规则来解决问题。
以下是一些常见的传统优化算法:(1) 穷举法穷举法是一种朴素的优化算法,它通过遍历所有可能的解空间来寻找最优解。
穷举法的优点是能够找到全局最优解(如果存在),缺点是搜索空间过大时会非常耗时。
(2) 贪婪算法贪婪算法是一种启发式算法,它通过每一步选择当前状态下最优的决策,从而逐步构建最优解。
贪婪算法的优势是简单快速,但它可能无法找到全局最优解,因为它只考虑了当前最优的选择。
(3) 动态规划动态规划是一种基于最优子结构和重叠子问题性质的优化算法。
它将原问题拆分为一系列子问题,并通过保存子问题的解来避免重复计算。
动态规划的优点是可以高效地求解复杂问题,例如最短路径问题和背包问题。
(4) 分支界限法分支界限法是一种搜索算法,它通过不断分割搜索空间并限制搜索范围,以找到最优解。
分支界限法可以解决一些组合优化问题,如旅行商问题和图着色问题。
2. 随机优化算法随机优化算法是基于概率和随机性的算法,通过引入随机扰动来逐步寻找最优解。
以下是一些常见的随机优化算法:(1) 模拟退火算法模拟退火算法模拟了固体物体冷却过程中的原子运动,通过逐步减小随机扰动的概率来搜索最优解。
模拟退火算法可以通过接受劣解来避免陷入局部最优解。
(2) 遗传算法遗传算法模拟了生物进化过程,通过遗传操作(如交叉和变异)来搜索最优解。
遗传算法通常包括种群初始化、选择、交叉和变异等步骤,能够自适应地搜索解空间。
(3) 蚁群算法蚁群算法模拟了蚂蚁在寻找食物时的行为,通过蚂蚁之间的信息交流和挥发性信息素来搜索最优解。
求最值的16种方法全文共四篇示例,供读者参考第一篇示例:在日常生活和工作中,我们经常会遇到需要求最值的问题,比如找出最大的数值、最小的数值或者最优的解决方案。
有些时候,在求最值的过程中,我们可以通过简单的比较得出结果,但有时候需要一些专门的方法和技巧来解决问题。
本文将介绍16种常见的求最值的方法,希望对大家有所帮助。
一、直接比较法直接比较法是最简单的一种求最值的方法,即通过逐一比较每个元素,找出最大值或最小值。
这种方法适用于小规模的数据和简单的比较需求,代码实现简单易懂,但效率较低。
二、排序法排序法是一种常见的求最值方法,通过对数据进行排序,可以很容易地找到最大值或最小值。
排序的复杂度通常为O(nlog(n)),适用于中等规模的数据。
三、遍历法四、分治法分治法是一种高效的求最值方法,将数据集分成若干个子问题,递归地求解子问题,最后合并得到最值。
这种方法通常用于大规模数据的求解,具有较高的效率。
五、动态规划法动态规划法是一种求解优化问题的经典方法,通过定义状态转移方程和递推关系,逐步求解问题的最优解。
这种方法适用于复杂的问题,如背包问题、最长公共子序列等。
六、贪心算法贪心算法是一种求最值的常用方法,通过每一步选择局部最优解,并最终达到全局最优解。
这种方法通常适用于局部最优解能直接推导到全局最优解的场景。
七、分支界限法分支界限法是一种搜索最优解的方法,通过逐步扩展搜索树,剪枝不满足条件的分支,从而快速找到最值。
这种方法适用于带约束条件的最优解问题。
动态规划法是一种通过子问题的解来求解原问题的方法,通常适用于规模较小且具有重叠子问题的情况。
九、蒙特卡罗法蒙特卡罗法是一种通过大量的随机模拟来求解问题的方法,通过估计解的概率分布来找出最值。
十、模拟退火法模拟退火法是一种基于物理学原理的求解最优解的方法,通过模拟金属退火过程,寻找全局最优解。
十一、遗传算法遗传算法是一种模拟生物进化过程的求解方法,通过选择、交叉和变异等操作,不断优化解的质量。
专家系统背背问答题吧。。。 神经网络就看这个资料上的 第二章看看书上课后题。。 遗传算法 看看书上例题。。
1.什么是专家系统?基本特征是? 专家系统是一个具有智能特点的计算机程序,其智能化表现在能够模仿人类专家的思维来求解特定领域中的复杂问题。也就是说,专家系统包含领域专家的大量知识,拥有类似人类专家思维的推理能力,并能用这些只是来解决实际问题。 与其他人工智能应用系统相比,专家系统具有下列特点: (1) 能高效率、准确、迅速和不知疲倦的进行工作,在解决实际问题时不受环境影响。 (2) 能回答用户提出的问题并解释自身的推理过程,以便用户了解推理过程,提高对专家系统的信赖感。 (3) 能汇集多个领域专家的知识、经验,以及他们协作解决重大问题的能力,拥有更渊博的知识、更丰富的经验和更强的工作能力,从而使专家的专长不受时间和空间的限制,便于推广珍贵和稀缺专家的知识和经验。 (4) 具有“自学习”能力,可不断扩充、完善和修改原有知识,这一特点使得专家系统具有十分广泛的应用领域。 (5) 从处理问题的方法看,专家系统是靠知识和推理来解决问题的,更擅长于解决不确定性问题。 (6) 在专家系统中,知识库与推理机既相互联系、又相互独立。当知识库做适当修改和更新时,只要推理策略不变,推理机就可以不变,因而系统具有灵活性和可扩充性。
2.专家系统有哪些部分构成?简述各部分的作用和工作原理 (1)知识库 以某种表示形式存储在计算机内知识的集合,通常是以文件的形式存放于外部介质上,专家系统运行时被调入内存。为了建立知识库,要解决知识获取和知识表示问题,知识获取及知识工程师如何让从专家那里获得专门知识的问题,只是表示则要解决如何用计算机能够理解的形式表达和存储知识。 (2)推理机 用于记忆所采用规则和控制策略的程序,能够根据知识进行推理并导出结论,其功能是模拟领域专家的思维过程,控制并执行对问题的求解。包括推理方法和控制策略两部分。 (3)综合数据库 用于存放系统运行时需要和新产生的所有信息,包括问题描述、中间结果、解题过程记录等。在问题求解的开始阶段,数据库用来存放用户提供的初始事实;其内容会随着推理的进展而变化,推理机会根据数据可的内容从知识库中选择合适的知识进行推理,并将得到的中间结果存放于数据库中。 (4)解释程序 回答用户提出的各种问题,并能跟踪和记录推理过程,包括解释推理结论的正确性及系统输出其他候选解的原因。 (5)知识获取程序 负责管理知识库的知识,包括根据需要修改、删除或添加知识及由此引起的必要的改动,维持知识库的一致性、完整性。 (6)人机接口 是专家系统与专家、知识工程师、用户间进行交互的界面,通过该接口可以输入专家的知识,更新、完善、扩充知识库。此外,推理机通过人机接口与用户交互,已得到相应的事实数据。最后,在推理结束时系统会通过人机接口向用户显示结果;解释机构通过人机接口向用户解释推理过程,回答用户问题。 3.简述专家系统的开发过程。说明设计中要注意的问题。 (1)问题知识化 即辨别所研究问题的实质,了解要解决的问题及定义方法,判断是否可将分解为子问题,调查问题包含哪些典型数据。 (2)知识概念化 概括知识表示所需要的相关概念、数据类型、已知状态和目标状态、提出的假设及控制策略等。 (3)概念性形式化 确定用来组织知识的数据结构,应用人工智能中各种知识表示方法把与概念化过程有关的关键概念、子问题及信息流特性等变化为比较正式的假设空间、过程模拟和数据特性等表达。 (4)形式规则化 把形式化了的知识变化为有编程语言表示的可供计算机执行的语句和程序。 (5)规则合法化 确认知识规则化后的合理性和有效性。
引言:随着技术的发展,群体智能算法正在成为解决复杂问题的有效方法之一。
群体智能算法是一类借鉴自然界群体行为的启发式优化算法,通过多个个体的相互协作与竞争,来求解复杂问题。
本文将介绍常见的群体智能算法,并对其原理、应用、优缺点进行详细阐述,以期帮助读者更好地理解和应用这些算法。
概述:群体智能算法的主要特点是通过模拟群体中个体的行为进行求解。
这种算法中个体之间通过信息交流、竞争和合作等方式实现问题的优化。
常见的群体智能算法包括遗传算法、粒子群优化算法、蚁群算法、人工鱼群算法和蜂群算法等。
下面将对这些算法的原理、应用以及优缺点进行详细介绍。
正文:一、遗传算法1.原理:遗传算法是一种通过模拟自然界的生物进化过程来优化问题的方法。
它通过染色体编码个体,利用交叉、变异等操作新的个体,并通过适应度函数评估个体的适应度。
然后,根据适应度选择优秀个体进行下一代的繁衍。
2.应用:遗传算法广泛应用于优化问题的求解,如函数优化、机器学习、图像处理等领域。
3.优缺点:优点:全局搜索能力强,易于并行化实现。
缺点:对问题的描述要求高,需要预先设定好适应度函数和编码方式。
二、粒子群优化算法1.原理:粒子群优化算法模拟鸟群或鱼群中的群体协作行为。
每个粒子代表一个潜在解,通过追随当前最优个体和个体之间的信息交流,来寻找最优解。
2.应用:粒子群优化算法广泛应用于连续优化问题的求解,例如参数优化、神经网络训练等。
3.优缺点:优点:收敛速度快,易于实现。
缺点:容易陷入局部最优。
三、蚁群算法1.原理:蚁群算法模拟蚂蚁在寻找食物时的行为。
蚂蚁通过信息素的释放和感知,选择路径并与其他蚂蚁相互交流,最终找到最短路径。
2.应用:蚁群算法广泛应用于路径规划、调度问题等领域。
3.优缺点:优点:适用于离散问题,具有较好的全局搜索能力。
缺点:参数设置较为复杂,易于陷入局部最优。
四、人工鱼群算法1.原理:人工鱼群算法模拟鱼群觅食的行为。
每个鱼代表一个潜在解,通过觅食、追随和扩散等行为寻找最优解。
第一章绪论1。
什么是智能、智能系统、智能控制?答:“智能”在美国Heritage词典定义为“获取和应用知识的能力"。
“智能系统"指具有一定智能行为的系统,是模拟和执行人类、动物或生物的某些功能的系统.“智能控制"指在传统的控制理论中引入诸如逻辑、推理和启发式规则等因素,使之具有某种智能性;也是基于认知工程系统和现代计算机的强大功能,对不确定环境中的复杂对象进行的拟人化管理.2.智能控制系统有哪几种类型,各自的特点是什么?答:智能控制系统的类型:集散控制系统、模糊控制系统、多级递阶控制系统、专家控制系统、人工神经网络控制系统、学习控制系统等。
各自的特点有:集散控制系统:以微处理器为基础,对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统。
该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。
人工神经网络:它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的.专家控制系统:是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题.可以说是一种模拟人类专家解决领域问题的计算机程序系统。
多级递阶控制系统是将组成大系统的各子系统及其控制器按递阶的方式分级排列而形成的层次结构系统。
这种结构的特点是:1.上、下级是隶属关系,上级对下级有协调权,它的决策直接影响下级控制器的动作。
2.信息在上下级间垂直方向传递,向下的信息有优先权。
比较专家系统、模糊方法、遗传算法、神经网络、蚁群算法的特点及其适合解决的实际问题 一、专家系统(Expert System)
1,什么是专家系统? 在日常生活中大家所认知的“专家”一般都拥有某一特定领域的大量专业知识,以及丰富的实际经验。在解决问题时,专家们通常拥有一套独特的思维方式,能较圆满地解决一类困难问题,或向用户提出一些建设性的建议等。 专家系统一般定义为一个具有智能特点的计算机程序。 它的智能化主要表现为能够在特定的领域内模仿人类专家思维来求解复杂问题。因此,专家系统必须包含领域专家的大量知识,拥有类似人类专家思维的推理能力,并能用这些知识来解决实际问题。 专家系统的基本结构如图1所示,其中箭头方向为数据流动的方向。
专家系统通常由知识库和推理机两个主要组成要素。 知识库存放着作为专家经验的判断性知识,例如表达建议、 推断、 命令、 策略的产生式规则等, 用于某种结论的推理、 问题的求解,以及对于推理、 求解知识的各种控制知识。 知识库中还包括另一类叙述性知识, 也称作数据,用于说明问题的状态,有关的事实和概念,当前的条件以及常识等。
知识库 规则库 数据库 推理机 解释程序 调度程序 人机交互界面 知识获取
推理咨询 领域专家
系统用户 图1 专家系统的基本组成 专家系统的问题求解过程是通过知识库中的知识来模拟专家的思维方式的,因此,知识库是专家系统质量是否优越的关键所在,即知识库中知识的质量和数量决定着专家系统的质量水平。一般来说,专家系统中的知识库与专家系统程序是相互独立的,用户可以通过改变、完善知识库中的知识内容来提高专家系统的性能。 推理机实际上是一个运用知识库中提供的两类知识,基于木某种通用的问题求解模型,进行自动推理、 求解问题的计算机软件系统。 它包括一个解释程序, 用于决定如何使用判断性知识推导新的知识, 还包括一个调度程序, 用于决定判断性知识的使用次序。 推理机的具体构造取决于问题领域的特点,及专家系统中知识表示和组织的方法。 推理机针对当前问题的条件或已知信息,反复匹配知识库中的规则,获得新的结论,以得到问题求解结果。在这里,推理方式可以有正向和反向推理两种。正向推理是从前件匹配到结论,反向推理则先假设一个结论成立,看它的条件有没有得到满足。由此可见,推理机就如同专家解决问题的思维方式,知识库就是通过推理机来实现其价值的。 人机界面是系统与用户进行交流时的界面。通过该界面,用户输入基本信息、回答系统提出的相关问题,并输出推理结果及相关的解释等。 综合数据库专门用于存储推理过程中所需的原始数据、中间结果和最终结论,往往是作为暂时的存储区。解释器能够根据用户的提问,对结论、求解过程做出说明,因而使专家系统更具有人情味。 知识获取是专家系统知识库是否优越的关键,也是专家系统设计的“瓶颈”问题,通过知识获取,可以扩充和修改知识库中的内容,也可以实现自动学习功能。
2,专家系统的特点 在功能上, 专家系统是一种知识信息处理系统, 而不是数值信息计算系统。在结构上, 专家系统的两个主要组成部分 – 知识库和推理机是独立构造、分离组织, 但又相互作用的。在性能上, 专家系统具有启发性, 它能够运用专家的经验知识对不确定的或不精确的问题进行启发式推理, 运用排除多余步骤或减少不必要计算的思维捷径和策略;专家系统具有透明性, 它能够向用户显示为得出某一结论而形成的推理链, 运用有关推理的知识(元知识)检查导出结论的精度、一致性和合理性, 甚至提出一些证据来解释或证明它的推理;专家系统具有灵活性, 它能够通过知识库的扩充和更新提高求解专门问题的水平或适应环境对象的某些变化,通过与系统用户的交互使自身的性能得到评价和监护。
3,专家系统适合解决的实际问题 专家系统是人工智能的一个应用,但由于其重要性及相关应用系统之迅速发展,它已是信息系统的一种特定类型。专家系统一词系由以知识为基础的专家系统(knowledge-based expert system)而来,此种系统应用计算机中储存的人类知识,解决一般需要用到专家才能处理的问题,它能模仿人类专家解决特定问题时的推理过程,因而可供非专家们用来增进问题解决的能力,同时专家们也可把它视为具备专业知识的助理。由于在人类社会中,专家资源确实相当稀少,有了专家系统,则可使此珍贵的专家知识获得普遍的应用。 专家系统技术广泛应用在工程、科学、医药、军事、商业等方面,而且成果相当丰硕,甚至在某些应用领域,还超过人类专家的智能与判断。其功能应用领域概括有:解释(Interpretation)-如测试肺部测试(如PUFF)、预测(Prediction)-如预测可能由黑蛾所造成的玉米损失(如PLAN)、 诊断(Diagnosis)-如诊断血液中细菌的感染(MYCIN)。又如诊断汽车柴油引擎故障原因之CATS系统、故障排除(Fault Isolation)-如电话故障排除系统ACE、设计(Design)-如专门设计小型马达弹簧与碳刷之专家系统MOTOR BRUSH DESIGNER、规划(Planning)-就出名的有辅助规划IBM计算机主架构之布置,重安装与重安排之专家系统CSS,以及辅助财物管理之Plan Power专家系统、 监督(Monitoring)-如监督IBM MVS操作系统之YES/MVS、 除错(Debugging)-如侦查学生减法算术错误原因之BUGGY、修理(Repair)-如修理原油储油槽之专家系统SECOFOR、行程安排(Scheduling)-如制造与运输行称安排之专家系统ISA。又如,工作站(work shop)制造步骤安排系统、 教学(Instruction)-如教导使用者学习操作系统之TVC专家系统、控制(Control)帮助Digital Corporation计算机制造及分配之控制系统PTRANS、 分析(Analysis)-如分析油井储存量之专家系统DIPMETER及分析有机分子可能结构之DENDRAL系统。它是最早的专家系统,也是最成功者之一、维护(Maintenance)如分析电话交换机故障原因之后,能建议人类该如何维修之专家系统COMPASS、架构设计(Configuration)如设计VAX计算机架构之专家系统XCON以及设计新电梯架构之专家系统VT等、校准(Targeting)-例如校准武器准心之专家系统BATTLE。
二、模糊方法(Fuzzy Method) 模糊方法是一种基于模糊数学理论的新型控制方法。模糊控制中的模糊量描述是以模糊集合为基础的,模糊控制的核心在于模糊控制器。模糊控制器在模糊控制中起十分关键的作用。实施模糊控制要经过3 个过程,即:将输入的机器、精确量经输入隶属函数映射成模糊输入变量(模糊化) ;用模糊规则对模糊输入变量推理,并得到模糊控制变量(模糊推理) ;用输入隶属函数将模糊控制变量转换成能进行实际控制的精确控制量。 与一般数字逻辑的“0”和“1”不同!模糊逻辑并不是非零即一,它表示了程度的概念。比如说一个人是否秃顶,用数字的概念就需要一个确定的数字,如5万根头发以上不是秃顶,少于5万根就是秃顶。这样的逻辑在现实生活中是明显不合理的,多一根或少一根的误差太大,而模糊逻辑就可以更准确的表达出秃顶的程度,它可以从零到1按接近程度连续变化,比如有4万根头发,我们可以说是80%(或0.8)的秃顶。如此也可以准确表示人体发烧的程度,38度属于高烧的程度为0.7等等,自己确定模糊集的范围。 模糊控制的输出量是唯一的,也就是说它给执行机构是一个确定的信号。在模糊控制器的设计过程中,一般是先将一个精确的输入量模糊化。使每一个输入量都对于一个模糊集合。然后又专家经验制订模糊控制规则,并进行模糊推理。控制规则使模糊控制器的核心所在。最后,要将模糊控制的输出进行清晰化处理,使输出量唯一。这是因为输入量开始时对应了一个模糊集合。经过模糊推理,必然得到一个模糊的输出量集合。但是一个执行机构的控制是唯一的,不能模棱两可。所以,要根据一定的计算方法得出一个唯一的输出量,传递给执行机构。进行各项调节。 运用模糊逻辑可以简便的输入几个参数,用模糊逻辑设计一个表格查出合理的输出值,比数字式PID或者建立数学模型要简单有效的多,但是缺点是输出值是否正确不能事先验证。 该控制器的设计是基于模糊控制理论。传统的控制理论需要建立反应相关对象实质的数学模型,但是在很多工程中(如人工智能,生物学等)要进行精确的数学建模是很困难的。所以在实际控制过程中,通常采取模糊技术。 模糊数学由美国控制论专家L.A.扎德(L.A.Zadeh,1921--)教授所创立。他于1965年发表了题为《模糊集合论》(《Fuzzy Sets》)的论文,从而宣告模糊数学的诞生。L.A.扎德教授多年来致力于“计算机”与“大系统”的矛盾研究,集中思考了计算机为什么不能象人脑那样进行灵活的思维与判断问题。尽管计算机记忆超人,计算神速,然而当其面对外延不分明的模糊状态时,却“一筹莫展”。可是,人脑的思维,在其感知、辨识、推理、决策以及抽象的过程中,对于接受、贮存、处理模糊信息却完全可能。计算机为什么不能象人脑思维那样处理模糊信息呢?其原因在于传统的数学,例如康托尔集合论(Cantor′s Set),不能描述“亦此亦彼”现象。集合是描述人脑思维对整体性客观事物的识别和分类的数学方法。康托尔集合论要求其分类必须遵从形式逻辑的排中律,论域(即所考虑的对象的全体)中的任一元素要么属于集合A,要么不属于集合A,两者必居其一,且仅居其一。这样,康托尔集合就只能描述外延分明的“分明概念”,只能表现“非此即彼”,而对于外延不分明的“模糊概念”则不能反映。这就是目前计算机不能象人脑思维那样灵活、敏捷地处理模糊信息的重要原因。为克服这一障碍,L.A.扎德教授提出了“模糊集合论”。在此基础上,现在已形成一个模糊数学体系。言下之意,模糊数学控制模块要比单片机好。模糊方法已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。它的应用还包括: 开关感应电动机模糊滑动模位置控制,导弹末端制导的模糊逻辑PID控制器等。
三、遗传算法(Genetic Algorithm) 1, 遗传算法定义 遗传算法(Genetic Algorithm)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它是有美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Hilland教授所提出的GA通常为简单遗传算法(SGA)。 遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,