第十一讲定价实践
- 格式:ppt
- 大小:1.32 MB
- 文档页数:62
《金融衍生品定价的数学模型和案例分析》简介同济大学数学系姜礼尚期权(option)是一类金融衍生工具,但从更广义上讲,期权是一种未定权益(Contingent Claim),它是一种选择权;应用Black-Scholes-Morton 期权定价原理,可以为多种不同形式的未定权益和选择权给出一个“公平”的估价。
基于这个理念,我们认为期权定价原理的应用绝不仅限于期权本身的定价,而应更广泛地应用于金融、保险、财务、投资等各个不同领域。
本书正是从这个思路出发,试图利用期权定价原理对当前市场上流行的一些金融和保险的创新产品进行定价。
在这里我们把这些创新产品看成是相关标的资产(underlying assets):外汇、黄金、股指、公司资产和利率等的衍生物,基于无套利原理,得到一个风险中性的“公平”价格,它的定价强烈地依赖于相关标的资产的数学模型,虽然它只是一种近似,但对金融机构的实际定价具有重要的参考价值。
本书可以看作是拙作“期权定价的数学模型和方法”(高等教育出版社,2003年)的应用篇,着重研究在已有定价模型和方法的基础上,针对各种金融和保险创新产品的具体实施条款,建立数学模型(即建立偏微分方程定解问题),求出它的闭合解或数值解,并进行定量分析,讨论一些金融参数和创新产品定价之间的依从关系。
为了帮助更多读者掌握用偏微分方程方法研究Black-Scholes-Merton期权定价原理,我们专门写了“期权定价的偏微分方程模型和方法”一章放在附录中,供大家学习和参考。
本书作为金融数学专业的教学用书和金融、保险、管理等领域的参考教材,它适用于两大类读者:第一类读者是应用数学专业的教师和研究人员,特别是广大攻读金融数学各类学位的研究生和本科生,第二类读者是金融、保险、管理等的从业人员,特别是正在从事金融和保险创新产品设计的金融(保险)分析师,金融(保险)机构的决策人员以及相关的研究工作者。
我们深信本书将对他们的学习和研究有所裨益。
成都中考核心考点(成都版)简介--只要抓住核心考点,就能拿到卷子上80%的分数在历年的成都中考数学试题中,核心考点虽然只占总考点的20%,却占总分值的80%。
掌握了核心考点,相当于用20%的时间来把握80%的分数,在最短的时间内实现快速提分。
本文共分两轮复习:第一轮过关核心考点聚焦常考考点,五年真题回顾,三年诊断精选。
本文分13讲,由成都市中考数学A卷和B卷难度区分度较大,A卷1-19题较基础,大部分学生都容易掌握,选题主要以中考题和诊断题为主,20题-28题有一定综合性,选题除了中考题和诊断题外,还选择了大量的模拟题和改编题。
第一讲:考点1-考点6,第二讲:考点7-考点10,第三讲:考点11-考点14,第四讲:考点15-考点19,第五讲:考点20,第六讲:考点21,………第十三讲:考点28.(从考点20开始,每个考点一讲)。
第二轮过关B卷攻略专攻B卷重难,五年考点扫描,专题考向攻略。
暂定:B填空7-8讲,应用题1讲,几何综合3讲,抛物线综合5讲考点26、应用题命题方向:○1分式方程及不等式(组)或方程组;○2一元二次方程与二次函数关系式(或与不等式结合); ○3建立一次函数关系式或二次函数关系式(会利用函数求最值)等; 五年真题26. (18成都)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?26. (17成都) 随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的,,,,A B C D E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x ,(单位:千米),乘坐地铁的时间1y 单位:分钟)是关于x 的一次函数,其关系如下表:地铁站ABCDEx (千米)8 9 10 11.5 13 1y (分钟)1820222528(1)求1y 关于x 的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用22111782y x x =-+来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家里所需的时间最短?并求出最短时间.建立一次函数关系式或二次函数关系式(会利用函数求最值)26.(16成都)某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少. 根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种x棵橙子树.(1)直接写出平均每棵树结的橙子数y(个)与x之间的关系式;(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少个?分式方程与不等式:26、(15成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元够进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元。
经济利润利润问题也是一种常见的百分数应用题,商店出售商品总是期望获得利润,一般情况下,商品从厂家购进的价格称为进价(成本),商家在出售时会在成本价的基础上提高价格标价,这个价格称为定价,出售商品所赚的钱称为利润。
厂家商店从厂家a价格进货提高价格后b价格卖给顾客b价格为售价/定价此时利润=-b-a顾客售价-成本=利润利润÷成本=利润率成本×(1+利润率)=售价商家促销打折为了将商品卖出,商家会通过打折的方式来吸引顾客,(打几折就是在定价基础上乘以零点几)定价-成本=定价时利润定价时利润÷成本=定价时利润率定价×折数=售价售价-成本=利润利润÷成本=最终利润率成本×(1+利润率)=售价姓名:第十一讲利润问题(1)利润问题也是一种常见的百分数应用题,商店出售商品总是期望获得利润,一般情况下,商品从厂家购进的价格称为进价(成本),商家在出售时会在成本价的基础上提高价格标价,这个价格称为定价,出售商品所赚的钱称为利润,因此,利润=卖价-成本,利润率=利润÷成本。
例1、一种服装的成本是200元,服装店按照50%的利润率定价。
由于销售价过高,后打八折出售。
这种服装现在定价是多少元?实际获得的利润率是百分之几?练习一1.某品牌的一台手机的成本是800元。
商场按60%的利润率定价,又打九折出售。
每一台手机售出后能获得利润元。
2.一件定价为600元的衣服,六折出售后仍然有20%的利润率。
这间衣服卖出后可赚元。
3.一件衣服进货价是80元,按标价打六折出售仍可获52元的利润,则这件衣服的标价是元。
例2、一件商品,先以60%的利润率定价,再打七折售出。
售出时的利润率是百分之几?练习二1.一件商品,先以50%的利润率定价,再打八折售出。
售出时的利润率是 %。
2.一件商品,先以80%的利润率定价,打折售出后利润率是8%。
这件商品打了折。
3. 一件商品,打八折售出后仍然有44%的利润率。