复合材料力学第11章
- 格式:pptx
- 大小:2.93 MB
- 文档页数:47
第九章复合材料力学材料力学的任务是研究均匀、各向同性材料在外力作用下的变形、受力和破坏的规律。
为合理设计构件提供有关强度、刚度和稳定性分析的基本理论和方法。
自20世纪40年代开始,现代复合材料得到了飞速发展,这种由两种或两种以上组分材料复合而成的多相材料,其物理、化学、力学等性能,满足了任何单一材料都难以满足的性能要求。
然而,这种复合材料在外力作用下的变形、受力和破坏的规律已不同于像传统金属材料那样的规律,因此复合材料力学就是研究这种新型的材料在外力作用下的变形、受力和破坏规律,为合理设计复合材料构件提供有关强度、刚度和稳定性分析的基本理论和方法。
本章介绍的复合材料力学是以纤维和塑料组成的纤维增强复合材料为主要对象的,主要介绍连续纤维增强复合材料在外力作用下的变形、受力和破坏的规律。
9.1 各向异性体弹性力学基础传统的金属材料一般看作是各向同性体,通常在弹性范围内研究其变形和受力采用的是各向同性体弹性力学。
然而纤维增强复合材料最常用的是层合板结构形式,即由纤维和基体组成一种铺层(或称单层),并以不同方向层合而成一种多向层合板(如果同一种铺层都处于同一方向称为单向层合板)。
这种层合板成为复合材料结构件的基本单元,而铺层是层合板的基本单元。
因此本章介绍复合材料的刚度与强度,是从介绍铺层的刚度与强度开始,然后介绍多向层合板的刚度和强度。
铺层是由无纬布或交织布经预浸胶处理并按实际结构件的形状及构成多向层合板所规定的方向进行铺设,然后加温(或常温)固化制成。
所以铺层、层合板和复合材料结构件是一次完成的一般的铺层(无论是无纬布或交织布形成的)是正交各向异性的,即具有两个相互垂直的弹性对称面。
因此复合材料不同于金属材料,它具有各向异性的弹性特性,为此首先要对各向异性体弹性力学作一简要介绍。
各向异性体弹性力学与各向同性体弹性力学的主要差别,仅在于应力-应变关系的不同,而解决弹性力学问题还需涉及的平衡方程、几何方程、协调方程和边界条件等,则完全相同。
第11章 复合材料层合板的强度力分析复合材料层合板中单层板的铺叠方式有多种,每一种方式对应一种新的结构形式与材料性能。
层合板的应力状态也可以是无数种,因此各种不同应力状态下层合板的强度不可能靠实验来确定.只能通过建立一定的强度理论,将层合板的应力和基本强度联系起来。
由于层合板中各层应力不同,应力高的单层板先发生破坏,于是可以通过逐层破坏的方式确定层合板的强度。
因此,复合材料层合板的强度是建立在单层板强度理论基础上的。
另外,由层合板的刚度特性和内力可以计算出层合板各单层板的材料主方向上的应力。
这样就可以采取和研究各向同性材料强度相同的方法,根据单层板的应力状态和破坏模式,建立单层板在材料主方向坐标系下的强度准则。
本章主要介绍单层板的基本力学性能、单层板的强度失效准则,以及层合板的强度分析方法。
§11.1单层板的力学性能由层合板的结构可知,层合板是若干单向纤维增强的单层板按一定规律组合而成的。
当纤维和基体的性质、体积含量确定后,单层板材料主方向的强度与和其工程弹性常数一样,是可以通过实验唯一确定的。
11.1.1单层板的基本刚度与强度材料主方向坐标系下的正交各向异性单层板,具有4个独立的工程弹性常数,分别表示为:纤维方向(方向1)的杨氏模量1E ,垂直纤维方向(方向2)的杨氏模量2E ,面内剪切模量12G ;另外,还有两个泊松比2112,νν,但它们两个 不是独立的。
这4个独立弹性常数表示正交各向异性单层板的刚度。
单层板的基本强度也具有各向异性,沿纤维方向的拉伸强度比垂直于纤维方向的强度要高。
另外,同一主方向的拉伸和压缩的破坏模式不同,强度也往往不同,所以单层板在材料主方向坐标系下的强度指标共有5个,称为单层板的基本强度指标,分别表示为:纵向拉伸强度X t (沿纤维方向),纵向压缩强度X c (沿纤维方向),横向拉伸强度Y t (垂直纤维方向),横向压缩强度Y c (垂直纤维方向),面内剪切强度S (在板平面内)。
复合材料力学答案【篇一:材料力学】教程第二版 pdf格式下载单辉祖主编本书是单辉祖主编《材料力学教程》的第2版。
是根据高等工业院校《材料力学教学基本要求》修订而成。
可作为一般高等工业院校中、少学时类材料力学课程的教材,也可作为多学时类材料力学课程基本部分的教材,还可供有关工程技术人员参考。
内容简介回到顶部↑本教村是普通高等教育“十五”国家级规划教材。
. 本教材仍保持第一版模块式的特点,由《材料力学(Ⅰ)》与《材料力学(Ⅱ)》两部分组成。
《材料力学(Ⅰ)》包括材料力学的基本部分,涉及杆件变形的基本形式与组合形式,涵盖强度、刚度与稳定性问题。
《材料力学(Ⅱ)》包括材料力学的加深与扩展部分。
本书为《材料力学(Ⅱ)》,包括非对称弯曲与特殊梁能量法(二)、能量法(二)、静不定问题分析、杆与杆系分析的计算机方法、应力分析的实验方法、疲劳与断裂以及考虑材料塑性的强度计算等八章。
各章均附有复匀题与习题,个别章还安排了利用计算机解题的作业。
..与第一版相同,本教材具有论述严谨、文字精炼、重视基础与应用、重视学生能力培养、专业面宽与教学适用性强等特点,而且,在选材与论述上,特别注意与近代力学的发展相适应。
本教材可作为高等学校工科本科多学时类材料力学课程教材,也可供高职高专、成人高校师生以及工程技术人员参考。
以本教材为主教材的相关教学资源,尚有《材料力学课堂教学多媒体课件与教学参考》、《材料力学学习指导书》、《材料力学网上作业与查询系统》与《材料力学网络课程》等。
...作译者回到顶部↑本书提供作译者介绍单辉祖,北京航空航天大学教。
1953年毕业于华东航空学院飞机结构专业,1954年在北京航空学院飞机结构专业研究生班学习。
1992—1993年,在美国特拉华大学复合材料中心.从事合作研究。
.历任教育部工科力学教材编审委员、国家教委工科力学课程指导委员会委员、中国力学学会教育工作委员会副主任委员、北京航空航天大学校务委员会委员、校学科评审组成员与校教学指导委员会委员等。
复合材料的定义:是由有机高分子、无机非金属或金属等几类不同材料通过复合工艺组合而成的新材料,它既能保留原组分材料的主要特色,又通过复合效应获得原组分所不具备的性能;可以通过设计使各组分的性能互相补充并彼此关联,从而获得新的性能。
复合材料的特点:1复合材料具有可设计性2材料与结构具有同一性3复合材料结构设计包括材料设计4材料性能对复合工艺的依赖性5复合材料具有各向异性和非均质性的力学性能特点.复合材料的优点:1比强度高、比模量大2抗疲劳性好3减振性能好4破损安全性好5耐腐蚀性能好6电性能好7热性能好‘复合材料的缺点:1玻璃纤维复合材料的弹性模量低2层间强度低3属脆性材料4树脂基复合材料的耐热性较低5材料性能的分散性大。
复合材料细观力学:研究复合材料单层的宏观性能与组分材料性能及细观结构之间的定量关系。
复合材料细观力学假设:1复合材料单层是宏观非均匀、线弹性的、并且无初应力2纤维是均质、线弹性的,各项同性或横观各项同性的,形状和分布是规则的3基体是均质、线弹性、各项同性的4各相间粘结完好,界面无间隙。
在分析方法上,细观力学可采用材料力学法、弹性力学法和半经验法。
一次超静定问题和静定问题(串联模型的纵、横向弹性模量)C是接触系数,它表示纤维横向接触的程度,且介于0和1之间。
哈尔平-蔡提出了一种近似地表达比较复杂的细观力学结果的内插法。
临界纤维体积含量的定义:纤维微屈曲和剪切破坏是复合材料纵向压缩破坏的两个主要原因。
织物:指以相互垂直的经纱和纬纱构成的正交织物,如玻璃纤维布。
以织物为增强材料制成的复合材料单层板称为织物复合材料单层板,又称双向单层板。
应力传递理论:当复合材料受作用时,载荷直接作用到基体上,然后基体将载荷通过纤维与基体间界面上的剪应力传递到纤维上。
主要有理想刚塑性基体、弹性基体和弹塑性基体三大类。
短纤维全部随机分布于相互平行的平面内而制得的复合材料称为平面随机取向短纤维复合材料。
假设层合板为连续、均匀、正交各向异性的单层构成的一种连续性材料,并假设各单层之间是完全紧密粘接,且限于线弹性、小变形情况下研究层合板的刚度与强度,这种层合理论称为经典层合理论。
复合材料⼒学⽬录复合材料细观⼒学 (1)简⽀层合板的⾃由振动 (9)不同条件下对称层合板的弯曲分析 (14)复合材料细观⼒学——混凝⼟细观⼒学⼀、研究背景复合材料细观⼒学复合材料细观⼒学是20世纪⼒学领域重要的科学研究成果之⼀,是连续介质⼒学和材料科学相互衍⽣形成的新兴学科。
近20年来,我国科技⼯作者应⽤材料细观⼒学的理论和⽅法,成功研究了许多复合材料的增强,断裂和破坏问题,给出了⼀些特⾊和有价值的研究成果。
混凝⼟细观⼒学混凝⼟作为⼀种重要的建筑材料已有百余年的历史,它⼴泛应⽤于房屋、桥梁、道路、矿井、及军⼯等诸多⽅⾯。
在⽔⼯建筑⽅⾯,混凝⼟也被⼤量使⽤,特别是⼤体积混凝⼟,它是重⼒坝和拱坝的主要组成部分,对混凝⼟各项⼒学性能的准确把握及应⽤,在⼀定程度上决定了⽔⼯建筑物的质量和安全性能。
⼆、研究⽬的长期以来,在混凝⼟应⽤的各个领域⾥,⼈们对混凝⼟的⼒学特性进⾏了⼤量的研究。
如何充分的利⽤混凝⼟的⼒学性能,建造出更经济、更安全和更合理的建筑物或⼯程结构,⼀直都是结构⼯程设计领域研究的重要课题。
三、研究现状混凝⼟是由粗⾻料和⽔泥砂浆组成的⾮均质材料,它的⼒学性能受到材料的品质、组分、施⼯⼯艺和使⽤条件等因素的影响。
过去,⼈们对混凝⼟⼒学性能的研究很⼤程度上是依靠实验来确定的。
随着实验技术的发展,混凝⼟各种⼒学性能被揭⽰出来。
但由于实验需要花费⼤量的⼈⼒、物⼒和财⼒,⽽且所得到的实验成果往往由于实验条件的限制也是很有限的。
现代科学的⼀个重要的思维⽅式与研究⽅法就是层次⽅法,在对客观世界的研究中,当停留在某⼀层次,许多问题⽆法解决时,深⼊到下⼀个层次,问题就会迎刃⽽解。
对混凝⼟断裂问题的研究归纳为如下四个研究层次:1)宏观层次:混凝⼟这种⾮均质材料存在着⼀个特征体积,经验的特征体积相应于3~4倍的最⼤⾻料体积。
当混凝⼟体积⼤于这种特征体积时,材料被假定为均质的,当⼩于这种特征体积时,材料的⾮均质性将会⼗分明显。