ARM_Cortex-M3内核结构
- 格式:pdf
- 大小:722.58 KB
- 文档页数:35
Arm Cortex-M3内核与stm32课程思政1. 引言随着计算机科学与技术的发展,嵌入式系统在各个领域的应用日益广泛。
Arm Cortex-M3内核与stm32系列微控制器作为典型的嵌入式系统代表,其在实时控制、通信、汽车电子、工业控制等领域具有重要的应用价值。
对于计算机专业学生来说,深入学习Arm Cortex-M3内核与stm32系列微控制器的知识,不仅能够提高他们的嵌入式系统开发能力,还能为他们的综合素质和思想政治教育提供更为立体和深刻的帮助。
2. Arm Cortex-M3内核与stm32课程的教学资料(1)Arm Cortex-M3内核Arm Cortex-M3内核是Arm公司专门针对嵌入式系统设计的处理器内核,其具有低功耗、高性能和精简指令集的特点。
在Arm Cortex-M3内核的教学过程中,老师可以选择Arm冠方提供的冠方资料,例如《Cortex-M3 Technical Reference Manual》、《Cortex-M3 Devices Generic User Guide》等进行讲解,以便学生们全面了解Arm Cortex-M3内核的技术细节和应用场景。
(2)stm32系列微控制器stm32系列微控制器是由意法半导体公司开发的一款高性能、低功耗的微控制器,其集成了Arm Cortex-M3内核,具有丰富的外设资源和灵活的应用特性。
在stm32系列微控制器的教学过程中,老师可以配合使用意法半导体冠方提供的《stm32参考手册》、《stm32数据手册》等资料,帮助学生们深入了解stm32系列微控制器的硬件架构和软件开发技术。
3. Arm Cortex-M3内核与stm32课程的教学内容(1)Arm Cortex-M3内核的体系架构老师可以介绍Arm Cortex-M3内核的体系结构,包括处理器核、存储体系结构、总线结构、中断控制器等方面的内容。
通过讲解Arm Cortex-M3内核的体系结构,学生们可以系统性地理解嵌入式系统的硬件基础,为后续的软件开发和调试奠定坚实的基础。
arm cortex-m3全可编程soc原理如下:
1.架构:Cortex-M3 核心是基于ARMv7-M 架构,这是一个针对
嵌入式应用程序优化的架构。
它包含一个ARM 指令集、一个
ARM 连接至程序的接口以及一些特定于嵌入式应用的扩展。
2.核心功能:Cortex-M3 核心具有高性能、低功耗和低成本的特
点。
它包含一个32 位RISC 处理器,具有一个三级流水线。
核心还包含一个嵌套向量中断控制器,允许高效的异常和中断
处理。
3.可编程性:Cortex-M3 是完全可编程的。
这意味着硬件和软件
都可以通过编程来定制。
ARM 的微控制器工具链(如Keil 或
IAR)可用于编译和调试代码,以适应特定的应用需求。
4.系统集成:SoC 是一种将多个硬件组件集成到一个单一芯片上
的技术。
在Cortex-M3 中,这些组件可能包括内存、通信接口、
ADC、DAC 等。
通过将所有这些组件集成到单个芯片上,可以
降低系统成本、减小体积并提高可靠性。
5.低功耗:Cortex-M3 被设计为低功耗微控制器,适用于电池供
电的应用。
它具有多种低功耗模式,可以在不使用时降低功耗。
6.安全性:Cortex-M3 提供了多种安全特性,如内存保护单元
(MPU)和安全区域(Secure Zone),以保护敏感数据和代码。
ARM Cortex-M3 内核介绍内核包含四部分:1.乘法器;2.控制逻辑;3.Thumb 指令译码器;4.内部接口CM3 内部包含元素介绍:1. DAP,调试访问接口,Debug Access Port。
Cortex‐M3 的调试系统基于ARM 最新的CoreSight 架构。
不同于以往的ARM 处理器,内核本身不再含有JTAG 接口。
取而代之的,是CPU 提供称为调试访问接口(DAP)的总线接口。
通过这个总线接口,可以访问芯片的寄存器,也可以访问系统存储器,甚至是在内核运行的时候访问!对此总线接口的使用,是由一个调试端口(DP)设备完成的。
DPs 不属于CM3 内核,但它们是在芯片的内部实现的。
目前可用的DPs 包括SWJ‐DP(既支持传统的JTAG 调试,也支持新的串行线调试协议),另一个SW‐DP 则去掉了对JTAG 的支持。
另外,也可以使用ARM CoreSignt 产品家族的JTAG‐DP 模块。
这下就有 3 个DPs 可以选了,芯片制造商可以从中选择一个,以提供具体的调试接口(通常都是选SWJ‐DP)。
2. ETM 的作用就是记录处理器做的事情并送到外面的调试器。
由于微控制器带有大量的片内存储器,因此不能简单地通过观察外部管脚来确定处理器核是如何运行的。
ETM 对深嵌入处理器内核提供了实时跟踪能力。
它向一个跟踪端口输出处理器执行的信息。
软件调试器允许使用JTAG 接口对ETM 进行配置并以用户易于理解的格式显示捕获到的跟踪信息。
ETM 直接连接到ARM 内核而不是主AMBA 系统总线。
3.NVIC 是Cortex-M3 处理器中一个完整的部分,它可以进行高度配置,为处理器提供出色的中断处理能力。
在NVIC 的标准执行中,它提供了一个非屏蔽中断(NMI)和32 个通用物理中断,这些中断带有8 级的抢占优先权。
NVIC可以通过综合选择配置为1 到240 个物理中断中的任何一个,并带有多达256。
CortexM3技术参考手册CortexM3技术参考手册CortexM3是一种基于ARMv7架构的32位微控制器,由ARM公司开发。
它是一种高效、可编程的微控制器,适用于各种嵌入式应用,如工业控制、汽车电子、智能家居等。
本文将介绍CortexM3的技术参考手册,帮助读者更好地了解该微控制器的功能和使用方法。
一、CortexM3架构CortexM3采用ARMv7架构,支持Thumb和Thumb-2指令集。
它采用32位处理器,具有较高的处理效率和灵活的编程能力。
该微控制器具有以下主要特点:1、处理速度:CortexM3采用ARMv7架构,最高运行速度可达100MHz。
2、存储器:CortexM3内置32KB的Flash存储器,可用于存储程序代码和数据。
此外,它还内置了4KB的SRAM,用于存储临时数据。
3、外设接口:CortexM3具有多种外设接口,包括UART、SPI、I2C、ADC等,可满足各种不同的应用需求。
4、调试接口:CortexM3内置调试接口,方便开发人员对程序进行调试和仿真。
二、CortexM3编程CortexM3的编程主要涉及硬件抽象层(HAL)和驱动程序(Driver)的开发。
其中,HAL提供了一组标准的接口函数,用于访问CortexM3的硬件资源。
驱动程序则是在HAL的基础上开发的,用于实现具体的硬件功能。
三、CortexM3应用实例下面以一个简单的例子来说明如何使用CortexM3实现一个基于UART 的通信接口。
1、硬件连接:将CortexM3的UART接口与另一台设备通过串口连接。
2、软件设置:在CortexM3的HAL中配置UART接口的波特率、数据位、停止位等参数。
3、编写程序:编写一个简单的程序,通过UART接口发送和接收数据。
4、调试与测试:通过调试接口对程序进行调试和测试,确保通信正常。
四、总结本文介绍了CortexM3的技术参考手册,包括其架构、编程和应用实例等。
ARM Cortex-M3 内核结构2.1ARM Cortex-M3 处理器简介2、1、1 概述ARM公司成立于上个世纪九十年代初,致力于处理器内核研究,ARM 即 Advanced RISC Machines 的缩写,ARM公司本身不生产芯片,只设计内核,靠转让设计许可,由合作伙伴公司来生产各具特色的芯片。
这种运行模式运营的成果受到全球半导公司以及用户的青睐。
目前ARM体系结构的处理器内核有:ARM7TDMI、ARM9TDMI、ARM10TDMI、ARM11以及Cortex等。
2005年ARM推出的ARM Cortex系列内核,分别为:A系列、R系列与M系列,其中A系列就是针对可以运行复杂操作系统(Linux、Windows CE、Symbian 等)的处理器;R系列就是主要针对处理实时性要求较高的处理器(汽车电子、网络、影像系统);M系列又叫微控制器,对开发费用敏感,对性能要求较高的场合。
Cortex-M系列目前的产品有M0、M1、M3,其中M1用在FPGA中。
Cortex-M系列对微控制器与低成本应用提供优化,具有低成本、低功耗与高性能的特点,能够满足微控制器设计师进行创新设计的需求。
其中,ARM Cortex-M3处理器的性能就是ARM7的两倍,而功耗却只有ARM7的1/3,适用于众多高性能、极其低成本需求的嵌入式应用,如微控制器、汽车系统、大型家用电器、网络装置等,ARM Cortex-M3提供了32位微控制器市场前所未有的优势。
Cortex-M3内核,内部的数据路径为32位,寄存器为32位,存储器接口也就是32位。
Cortex-M3采用了哈佛结构,拥有独立的指令总线与数据总线,可以让取指与数据访问分开进行。
Cortex-M3还提供一个可选的MPU,对存储器进行保护,而且在需要的情况下也可以使用外部的cache。
另外在Cortex-M3中, 存储器支持小端模式与大端存储格式。
Cortex-M3内部还附赠了很多调试组件,用于在硬件水平上支持调试操作,如指令断点,数据观察点等。
第二章ARM Cortex-M3内核结构教学目标通过本章的学习,要理解ARM Cortex-M3内核结构,结合MCS-51单片机,分析其优缺点;掌握ARM Cortex-M3内核寄存器组织、处理器运行模式、存储器映象、异常及其操作;了解存储器保护单元及应用;了解ARM Cortex-M3调试组件的工作原理及应用。
本章是ARM Cortex-M3微控制器体系结构分析,内容涉及内核结构、CPU寄存器组织、存储器映射、异常形为及操作,在学习过程中与8位单片机(MCS-51单片机、PIC系列单片机等)结合分析,以期达到良好学习效果。
ARM Cortex-M3处理器简介2.1.1 概述ARM公司成立于上个世纪九十年代初,致力于处理器内核研究,ARM 即Advanced RISC Machines 的缩写,ARM公司本身不生产芯片,只设计内核,靠转让设计许可,由合作伙伴公司来生产各具特色的芯片。
这种运行模式运营的成果受到全球半导公司以及用户的青睐。
目前ARM体系结构的处理器内核有:ARM7TDMI、ARM9TDMI、ARM10TDMI、ARM11以及Cortex等。
2005年ARM推出的ARM Cortex系列内核,分别为:A系列、R系列和M系列,其中A系列是针对可以运行复杂操作系统(Linux、Windows CE、Symbian 等)的处理器;R系列是主要针对处理实时性要求较高的处理器(汽车电子、网络、影像系统);M系列又叫微控制器,对开发费用敏感,对性能要求较高的场合。
Cortex-M系列目前的产品有M0、M1、M3,其中M1用在FPGA中。
Cortex-M系列对微控制器和低成本应用提供优化,具有低成本、低功耗和高性能的特点,能够满足微控制器设计师进行创新设计的需求。
其中,ARM Cortex-M3处理器的性能是ARM7的两倍,而功耗却只有ARM7的1/3,适用于众多高性能、极其低成本需求的嵌入式应用,如微控制器、汽车系统、大型家用电器、网络装置等,ARM Cortex-M3提供了32位微控制器市场前所未有的优势。