• 如以第j0个决策单元的效率指数为目标,以所有决策单元 的效率指数为约束,就构造了如下的CCR(C2R)模型:
s
ur yrj o
max hjo
r 1 m
vi xij o
i 1
s
ur yrj
s.t.
r 1 m
1, j 1,2, n
vi xij
i 1
u 0, v 0
• 上述规划模型是一个分式规划,使用Charnes-Cooper变 化,令:
.
ur
. . . . . …. .
ys1 ys2 ys3 … ysj … ysn s
us
权系数 s种输出
各字母定义如下:
• xij-------- 第j个决策单元对第i种类型输入的投入总量.xij〉0 • yrj-------- 第j个决策单元对第பைடு நூலகம்种类型输出的产出总量.yrj〉0 • vi -------- 对第i种类型输入的一种度量,权系数 • ur -------- 对第r种类型输出的一种度量,权系数 • i ----------1,2,…,m • r ----------1,2,…,s • j ----------1,2,…,n
• 对于每一个决策单元DMUj都有相应的效率评价指数:
s
hj
uT yi vT x j
ur yrj
r 1 mn
vi xij
,
j 1,2,
,n
i 1
我们总可以适当的取权系数v和u,使得 hj≤1, j=1,…,n
• 对第j0个决策单元进行效率评价,一般说来,hj0越大表 明DUMj0能够用相对较少的输入而取得相对较多的输出。 这样我们如果对DUMj0进行评价,看DUMj0在这n个 DMU中相对来说是不是最优的,我们可以考察当尽可能 的变化权重时, hj0的最大值究竟是多少。