食品中丙烯酰胺的危险性评估
- 格式:doc
- 大小:55.00 KB
- 文档页数:6
第六节、风险预测与丙烯酰胺评估杨文建lingwentt@南京财经大学食品学院风险预测:每个风险评价都应建立与其条件相应的风险预测,这种预测将对特定食品安全之内的活动作出安排,为进一步行动提供尽可能多的信息。
—新西兰食品监管:食品安全的风险管理框架风险预测包括为了帮助食品安全的优先领域,收集尽可能多的关于可能的风险的内容和属性等信息,并形成风险评估的政策。
风险预测是描述食品安全问题及其内涵的过程,以识别各种风险管理需要决定的相关风险或危害的要素。
风险预测包括危害优先顺序、建立风险评估政策以及安全标准和管理措施选择等相关的风险等。
——WHO/FAO食品/危害组合风险排序初步筛选风险管理的优先次序细化审核咨询风险预测的步骤1、食品/危害组合根据已有的科学依据,将微生物危害和食品供应分类,MOH、MAF、ESR已作出了预先的筛选,形成了食品/危害组合的可能清单。
2、初步筛选初步筛选形成食品/危害组合清单◆当地某些食品是现行的重要风险传播的明确载体/可疑载体。
◆没有证据证明当地某些产品的是现行的重要风险传播的可疑载体,但有国外食源性疾病传播的证据。
可疑的当前风险◆有证据显示某种特定食品存在危害,但却没有可用的资料显示该食品与不利的健康有关。
其他因素◆其在国际贸易环境中的重要性,或是利益相关者的担忧。
3、咨询主要是为了在该过程中获得一致的认同,并且发布食品/危害组合的名单。
4、审核审核和接受风险预测的食品/危害组合的名单。
希望优先预测的食品/危害组合的数量是可控的;否则有必要进行进一步的筛选操作。
5、细化确定食品/危害组合名单后,进一步收集相关信息。
包括:①危害因子信息;②食品信息;③食品消费信息;④该食品的工业生产;⑤国内外该食品引起危害的更多的信息;⑥危害因子对人体健康产生不利影响的国外资料以及该食品危害发生率;⑦该食品危害对经济影响的不理结果的信息;⑧社会方面影响。
①危害因子信息:包括危害感染可能产生的各种健康结果。
食品中丙烯酰胺的危险性评估丙烯酰胺(CH2=CH-CONH2)是一种白色晶体物质,分子量为70.08,是1950年以来广泛用于生产化工产品聚丙烯酰胺的前体物质。
聚丙烯酰胺主要用于水的净化处理、纸浆的加工及管道的内涂层等。
在欧盟,丙烯酰胺年产量约为8-10万吨。
2002年4月瑞典国家食品管理局(National Food Administration,NFA)和斯德哥尔摩大学研究人员率先报道,在一些油炸和烧烤的淀粉类食品,如炸薯条、炸土豆片、谷物、面包等中检出丙烯酰胺;之后挪威、英国、瑞士和美国等国家也相继报道了类似结果。
由于丙烯酰胺具有潜在的神经毒性、遗传毒性和致癌性,因此食品中丙烯酰胺的污染引起了国际社会和各国政府的高度关注。
为此,2002年6月25日世界卫生组织(WHO)和联合国粮农组织(FAO)联合紧急召开了食品中丙烯酰胺污染专家咨询会议,对食品中丙烯酰胺的食用安全性进行了探讨。
2005年2月,联合国粮农组织(FAO)和世界卫生组织(WHO)联合食品添加剂专家委员会(JECFA)第64次会议根据近两年来的新资料,对食品中的丙烯酰胺进行了系统的危险性评估。
1.人体接触途径人体可通过消化道、呼吸道、皮肤粘膜等多种途径接触丙烯酰胺,饮水是其中的一种重要接触途径,为此WHO将水中丙烯酰胺的含量限定为1μg /L。
2002年4月斯德哥尔摩大学研究报道,炸薯条中丙烯酰胺含量较WHO推荐的饮水中允许的最大限量要高出500多倍。
因此,认为食物为人类丙烯酰胺的主要来源。
此外,人体还可能通过吸烟等途径接触丙烯酰胺。
2. 吸收、分布及代谢丙烯酰胺可通过多种途径被人体吸收,其中经消化道吸收最快,在体内各组织广泛分布,包括母乳。
经口给予大鼠0.1 mg/kg bw 的丙烯酰胺,其绝对生物利用率为23-48%。
进入人体内的丙烯酰胺约90%被代谢,仅少量以原型经尿液排出。
丙烯酰胺进入体内后,在细胞色素P4502E1的作用下,生成活性环氧丙酰胺(glycidamide)。
食品中丙烯酰胺的危害暴露评估及检测方法丙烯酰胺(Acrylamide)是一种无色结晶性固体,常用于工业生产中的分散剂、沉淀剂、水处理剂等。
然而,研究发现丙烯酰胺也存在于食品中,并被列为潜在致癌物质。
本文将重点介绍食品中丙烯酰胺的危害性、暴露评估与检测方法。
1.食品中丙烯酰胺的危害性:丙烯酰胺在高温条件下与氨基酸、蛋白质和糖类反应,形成劣质蛋白质,同时产生多种毒性物质。
大量临床研究表明,丙烯酰胺可致癌、致突变和致畸性。
动物实验表明,长期摄入含丙烯酰胺的食物可导致多种癌症,如肠癌、泌尿系统肿瘤等。
此外,丙烯酰胺还可能对中枢神经系统、生殖系统和内分泌系统造成损害。
2.食品中丙烯酰胺的暴露评估:目前,食品中丙烯酰胺的暴露主要通过膳食摄入途径。
暴露评估需要考虑丙烯酰胺在食品加工过程中的形成机制和影响因素。
影响丙烯酰胺形成的因素包括原料成分、加工工艺和条件等。
相关研究发现,淀粉类食品和谷类食品,如炸薯条、面包、烤面包、饼干等丙烯酰胺含量较高。
在评估食品中丙烯酰胺的暴露风险时,需要结合食品的消费量和频率进行综合分析。
3.食品中丙烯酰胺的检测方法:目前,食品中丙烯酰胺的检测方法主要包括色谱质谱法(GC-MS)、高效液相色谱法(HPLC)和气相色谱法(GC)等。
其中,GC-MS方法是最常用的定量分析方法,其具有高分辨率、高灵敏度和高选择性等优点。
HPLC方法适用于对大样品量进行分析,但其对于复杂样品的分离能力较弱。
GC方法则适用于固定样品的分析,但其对于分子量较大的化合物分析较困难。
此外,快速减少食品中丙烯酰胺含量的方法包括低温冷冻、酸碱处理、热交换反应和选择性催化等。
综上所述,食品中丙烯酰胺的存在对人体健康构成一定威胁,因此需要进行暴露评估和检测。
在评估食品暴露风险时,需要考虑食品加工条件和加工工艺对丙烯酰胺生成的影响。
同时,选择合适的检测方法可以有效地监测食品中丙烯酰胺的含量,从而保障食品安全。
最后,通过合理控制食品加工过程和选择低丙烯酰胺生成的食品原料,可以减少食品中丙烯酰胺的含量,从而降低其对人体健康的潜在风险。
丙烯酰胺摄入量标准
关于丙烯酰胺的摄入量标准,需要根据不同国家和地区的相关
法规和标准来进行考量。
丙烯酰胺是一种有毒化学物质,其摄入量
标准受到严格监管。
在美国,环境保护署(EPA)制定了对丙烯酰胺的饮用水标准,
规定其在饮用水中的浓度不得超过0.03毫克/升。
这一标准是为了
保护公众免受丙烯酰胺对健康的潜在危害。
而在食品安全方面,美国食品药品监督管理局(FDA)也对丙烯
酰胺的使用制定了严格的限制。
丙烯酰胺在食品加工过程中可能形
成丙烯酰胺衍生物,对此FDA也有相应的监管标准。
在欧盟,食品安全局(EFSA)对丙烯酰胺的摄入量进行了评估,并制定了相应的限制标准。
根据EFSA的相关报告,建议最大每日摄
入量为每公斤体重2.5微克。
总的来说,丙烯酰胺是一种有毒物质,其摄入量标准受到严格
控制。
无论是在饮用水中还是食品中,相关的监管部门都会对其进
行严格的监测和限制,以保护公众健康。
在日常生活中,应尽量避
免接触含有丙烯酰胺的产品,选择安全的饮用水和食品,以减少对丙烯酰胺的摄入。
丙烯酰胺的膳食风险评估研究进展作者:来源:《食品安全导刊》2019年第11期专家介绍:周萍萍博士,国家食品安全风险评估中心研究员、国家卫生健康委员会(WTO)通报评议专家、第二届食品安全国家标准审评委员会生产经营规范专业委员会委员、北京市科委评审专家。
1996年本科毕业于哈尔滨医科大学公共卫生学院营养与食品卫生专业,2010年毕业于中国疾病预防控制中心营养与食品安全所并获医学博士学位。
周萍萍从事食品化学污染物监控及食品安全风险评估研究工作近20年,主持并参与多项国家科技支撑计划、国家自然科学基金等课题,以及20余项国家级风险评估优先项目与食品安全应急风险评估任务。
她发表论文30余篇,出版专著10余部,发明专利1项,还曾获华夏医学科技奖一等奖一项、中华预防医学会科技技术奖二等奖一项、北京市科学技术奖二等奖一项、福建省科技进步奖二等奖一项。
2019年5月,国家食品安全风险评估中心重新启动丙烯酰胺评估项目,并将丙烯酰胺的风险监测纳入2020年的食品安全风险监测计划之中。
可见,研究减少食品中丙烯酰胺的可能途径,探讨优化我国工业生产、家庭食品制作中食品配料、加工烹饪条件,探索降低乃至可能消除食品中丙烯酰胺的方法,对保障我国食品安全具有重要意义。
2018年3月28日,美国加州洛杉矶法官裁定星巴克等90家售卖咖啡的企业,须在当地售卖的咖啡产品上加贴致癌警告标签。
一石激起千层浪,该事件引起了众多消费者的恐慌,而其中的关键物质就是丙烯酰胺。
早在2002年,瑞典科学家首次发现丙烯酰胺之后,食品界便将其作为重点污染物,尤其是加工过程中的污染物予以关注。
什么是丙烯酰胺?丙烯酰胺对人体有怎样的危害?应如何预防或控制丙烯酰胺?在由食安中国网和《食品安全导刊》联合举办的《食安大讲堂》之“降低食品中丙烯酰胺含量的操作规程及国际进展在线研讨会”中,国家食品安全风险评估中心研究员周萍萍对这一热门话题做出了权威解答。
评定一种物质是否有害首先需要进行风险评估工作,然后再根据其结论开展风险管理和控制。
食品中丙烯酰胺的危害暴露评估及检测方法集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-编号食品毒理学(综述)题目:食品中丙烯酰胺的危害、暴露评估及检测方法食品学院营养与卫生学专业班级食硕1005学号学生姓名张锦二〇一一年二月食品中丙烯酰胺的危害、暴露评估及检测方法摘要:丙烯酰胺(acrylamide,AA)是日常生活中常见的一种化合物,也是公共卫生、食品安全研究的热点毒性物质,近几年来对丙烯酰胺神经毒性、遗传毒性、生殖毒性等的研究方兴未艾。
本文着重介绍丙烯酰胺的理化特性、代谢途径、遗传生殖毒性、生殖毒性等方面的状况,并简要介绍了其危害评估及检测方法。
关键词:丙烯酰胺;遗传毒性;生殖毒性;神经毒性0 引言丙烯酰胺(CH2=CH-CONH2,AA)是一种白色晶体物质,分子量为70.08,密度为11229/L,熔点为85℃,沸点为125℃,室温下稳定,可溶于水、乙醇、乙醚、丙酮和三氯甲烷,不溶于苯、庚烷等非极性溶剂。
在酸中稳定性强,在碱中容易分解,对光线敏感。
可生物降解,不会在环境中积累。
丙烯酰胺是1950年以来广泛用于生产化工产品聚丙烯酰胺的前体物质。
聚丙烯酰胺主要用于水的净化处理、纸浆的加工及管道的内涂层等[1]。
在欧盟,丙烯酰胺年产量约为8-10万吨。
2002年4月瑞典国家食品管理局和瑞典斯德哥尔摩大学的科学家经研究首次发现,在某些高温油炸和烧烤的淀粉类食品,如炸薯条、炸土豆片、谷物、面包等中发现含量很高的丙烯酰胺,其含量比世界卫生组织(WHO)规定的饮水中丙烯酰胺的含量(<1μg/d)高出500倍以上[2,3]。
之后挪威、英国、瑞士和美国等国家也相继报道了类似结果。
1 丙烯酰胺的代谢丙烯酰胺可通过多种途径被人体吸收,其中经消化道吸收最快,在体内各组织广泛分布,包括母乳,并且能透过血胎屏障[4]。
经口给予大鼠0.1 mg/kg bw 的丙烯酰胺,其绝对生物利用率为23-48%。
丙烯酰胺限量标准丙烯酰胺是一种重要的有机化合物,在化工领域得到了广泛应用。
为了保证丙烯酰胺的质量和安全性,各个国家和地区都制定了一系列的限量标准。
本文将详细介绍丙烯酰胺限量标准的相关内容。
首先,丙烯酰胺的限量标准主要包括对其残留量、纯度、重金属含量等方面的要求。
残留量是指丙烯酰胺在生产过程中残留在产品中的含量,也是评判产品质量的一个重要指标。
各个国家和地区对丙烯酰胺的残留量限制不尽相同,但一般都要求低至几毫克每千克。
其次,丙烯酰胺的纯度标准也是限量标准的重要内容之一。
纯度是指丙烯酰胺中有效成分的含量,一般以百分比表示。
纯度标准的主要目的是确保产品的质量,同时也是保证丙烯酰胺在特定应用领域的效果和安全性。
此外,丙烯酰胺的限量标准还包括对其中所含重金属的限制。
重金属是指密度较大的金属元素,如铅、铬、汞等。
这些重金属对人体和环境都有一定的危害,因此丙烯酰胺的限量标准一般都要求重金属含量的限制在安全范围内。
丙烯酰胺限量标准的制定主要是为了保护人体健康和环境安全。
由于丙烯酰胺的广泛应用,一旦超过限量标准,可能会对人体和环境造成一定的危害。
因此,各个国家和地区都对丙烯酰胺的生产和使用进行了严格的监管,并制定了相应的限量标准。
丙烯酰胺作为一种重要的有机化合物,在化工领域得到了广泛的应用。
它可以用于合成各种高分子化合物,如聚丙烯酰胺、聚丙烯酸等,这些高分子化合物在水处理、纸浆和纸张、石油开采等领域起着重要的作用。
然而,由于丙烯酰胺的毒性和对环境的潜在危害,各个国家和地区对其限量标准进行了严格的制定和执行。
总之,丙烯酰胺限量标准是保证产品质量和安全性的重要保障措施。
这些标准的制定主要是为了保护人体健康和环境安全,同时也体现了对生产者的管理和监管。
只有通过制定和执行丙烯酰胺限量标准,才能有效地控制丙烯酰胺的质量和安全性,推动其在化工领域的健康发展。
食品中丙烯酰胺的污染及其评估方法研究近年来,食品安全问题频繁爆发,引起了广泛的关注和讨论。
人们开始关注食品中可能存在的潜在风险物质,如丙烯酰胺。
丙烯酰胺是一种广泛存在于食品制造过程中的化学物质,它可能对人体健康产生潜在的危害。
首先,我们需要了解丙烯酰胺是如何进入食品的。
丙烯酰胺通常是由食品加工中的高温和干燥过程产生的。
在一些制作食品的工业过程中,如烘焙、炒炸等,会产生剧烈的高温,这导致食品中的氨基酸和糖类反应生成丙烯酰胺。
同时,丙烯酰胺也可以通过食品包装材料中的添加剂释放出来,如塑料袋、保鲜膜等,这增加了人们对丙烯酰胺的接触风险。
然而,丙烯酰胺的危害性还存在争议。
一方面,丙烯酰胺在实验动物身上已经显示出潜在的致癌风险,这导致了对于其在食品中的含量的担忧。
另一方面,目前尚未有足够的证据证明人类通过摄入食品中含有的丙烯酰胺会导致类似的危险。
虽然目前丙烯酰胺在食品中的含量限制在很低的水平,但仍然需要进行更多的研究来全面评估其对人体健康的潜在危害。
为评估食品中丙烯酰胺的污染情况,需要建立一种有效的检测方法。
目前,研究人员已经发展了多种方法来检测食品中的丙烯酰胺。
其中,气相色谱法是一种常用的方法,它可以通过将食品样品转化为气态来进行分析。
另外,液相色谱法和质谱法也常用于丙烯酰胺的检测。
这些方法可以提供高灵敏度和高选择性的分析结果,有助于评估食品中丙烯酰胺的污染程度。
通过以上分析,我们可以看出食品中丙烯酰胺的污染问题需要引起更多的关注和研究。
虽然目前食品行业已经采取了一些措施来降低丙烯酰胺的生成和释放,但仍然需要进一步加强监管和标准制定,确保食品的安全性。
此外,需要进行更多的研究来确定丙烯酰胺对人体的潜在风险,并改进评估方法的准确性和可靠性。
总之,食品中丙烯酰胺的污染问题是一个值得关注的话题。
我们需要进一步了解丙烯酰胺的来源和危害性,并且发展更可靠的检测方法来保障食品安全。
只有通过持续的努力,我们才能确保食品中的潜在风险物质得到有效的控制和监管,保护人们的健康。
48 食品安全导刊 2018年11月早在2002年,研究人员就在食品中发现了丙烯酰胺。
经试验证明,丙烯酰胺是一种有毒化合物,可损伤细胞内遗传物质,并具有一定的致癌性,因此国际癌症机构将其列为2A 级致癌物,故引起了食品行业对其的广泛关注。
欧洲和其他发达国家地区政府曾寄希望于食品工业及餐饮业能够自我约束以控制食品中的丙烯酰胺,但收效甚微。
因此,2017年7月,欧盟成员国表决通过了欧盟委员会的提案,以期运用法律手段强制食品生产者降低丙烯酰胺的生成。
该法律于2017年12月11日出台,在为期4个月的过渡期结束后,于2018年4月11日正式具备法律约束力。
欧盟法律的出台,也向世界其他地区发出了强烈的信号——对于丙烯酰胺的控制和约束需进一步加强。
相关法律法规目前,全球较大的监管机构都对丙烯酰胺的管理制定了相应的法律法规。
欧盟委员会于2018年4月出台的新法规要求,食品公司制定降低措施,并采用一切可行的手段将其产品中的丙烯酰胺降至基准水平;小型独立零售公司不受测量要求的限制,但必须符合特定的烹饪程序。
欧洲食品安全局曾于2015年发布了关于食品中丙烯酰胺的第一次全面风险评估,此次,欧洲食品安全局食品链污染物专家组的专家再次肯定了以前的评估,即食品中的丙烯酰胺可能增加所有年龄段消费者患癌症的风险。
美国食品及药品管理局在2016年发布的指导意见中建议企业了解其生产食品中的丙烯酰胺含量,并考虑采用降低其含量的方法。
美国加利福尼亚州第65号提案要求对含有与癌症相关的有毒物质(包括丙烯酰胺)消费品发出警告,故2018年3月的一项法院判决裁定,咖啡卖家必须在其产品中附上致癌警告。
联合国粮农组织/世界卫生组织食品添加剂联合专家委员会为食品法典委员会编制的“减少食品中丙烯酰胺的业务守则”(CAC/RCP 67-2009)提供了减少形成丙烯酰胺的指导。
如何控制丙烯酰胺的生成?随着法规要求的愈发严格,以及消费者对丙烯酰胺关注的增加,食品生产加工企业面临的压力越来越大,因此如何减少食品中的丙烯酰胺含量是食品企业亟待解决的问题。
食安大讲堂Sep 2018 CHINA FOOD SAFETY512018年3月,美国加州法院的一纸裁定将知名咖啡连锁店——星巴克推上了风口浪尖。
裁定要求,加州的咖啡从业者必须在售卖的咖啡产品上标示致癌标签警示,一时间引起了众多消费者的恐慌,而其中的关键物质就是丙烯酰胺。
咖啡中的丙烯酰胺是否具有致癌作用?限量值是多少?其危害作用到底有多严重?在由食安中国网和《食品安全导刊》联合举办的《食安大讲堂》之“食品中丙烯酰胺的危害及预防在线研讨会”中,国家食品安全风险评估中心的周萍萍研究员就此做出了权威解答。
若要对某一危害进行风险评估,一般需遵循如下4个步骤:首先是识别危害,即识别物质的毒性和不良作用;其次是对危害特征进行描述,确定关键效应和剂量关系,推导健康指导值;再次要进行暴露评估,通过对食品或其他相关来源摄入的危害因素进行定性和(或)定量评估;最后,综合分析危害对人群健康产生不良作用的风险及程度,并对风险特征加以描述。
对丙烯酰胺的风险评估也需遵循此步骤。
何为丙烯酰胺?丙烯酰胺是一种分子量为70.08的高度水溶性有机化合物,其于2002年首次被发现,在高温条件下加工含有碳水化合物(淀粉、小分子糖类)和蛋白质的食物就容易产生丙烯酰胺。
常见的丙烯酰胺含量较高的食物有薯条、薯片、面包、油条、曲奇、烘焙好的咖啡豆等。
丙烯酰胺可通过多种途径被人体吸收,主要途径如下。
一是通过水、食物进入人们的消化道;二是通过吸烟等途径使呼吸道接触丙烯酰胺;三是通过皮肤黏膜等途径接触丙烯酰胺,其中经消化道吸收最快。
丙烯酰胺进入人体后广泛分布于体内各个组织,包括母乳,其主要作用机理是在细胞色素P450 2E1的作用下部分生成环氧丙酰胺,而环氧丙酰胺更容易与DNA 上的鸟嘌呤结合形成加合物,进而导致遗传物质损伤和基因突变。
科研机构利用大鼠和小鼠对丙烯酰胺进行了研究,实验结果表明,经口给予大鼠0.1mg/kg bw 丙烯酰胺,其绝对生物利用率为23%~48%。
食品中丙烯酰胺的危险性评估丙烯酰胺(CH=CH-CONH)是一种白色晶体物质,分子量为70.08,22是1950年以来广泛用于生产化工产品聚丙烯酰胺的前体物质。
聚丙烯酰胺主要用于水的净化处理、纸浆的加工及管道的内涂层等。
在欧盟,丙烯酰胺年产量约为8-10万吨。
2002年4月瑞典国家食品管理局(National FoodAdministration,NFA)和斯德哥尔摩大学研究人员率先报道,在一些油炸和烧烤的淀粉类食品,如炸薯条、炸土豆片、谷物、面包等中检出丙烯酰胺;之后挪威、英国、瑞士和美国等国家也相继报道了类似结果。
由于丙烯酰胺具有潜在的神经毒性、遗传毒性和致癌性,因此食品中丙烯酰胺的污染引起了国际社会和各国政府的高度关注。
为此,2002年6月25日世界卫生组织(WHO)和联合国粮农组织(FAO)联合紧急召开了食品中丙烯酰胺污染专家咨询会议,对食品中丙烯酰胺的食用安全性进行了探讨。
2005年2月,联合国粮农组织(FAO)和世界卫生组织(WHO)联合食品添加剂专家委员会(JECFA)第64次会议根据近两年来的新资料,对食品中的丙烯酰胺进行了系统的危险性评估。
人体可通过消化道、呼吸道、皮肤粘膜等多种途径接触丙烯酰胺,饮水是其中的一种重要接触途径,为此WHO将水中丙烯酰胺的含量限定为1μg /L。
2002年4月斯德哥尔摩大学研究报道,炸薯条中丙烯酰胺含量较WHO推荐的饮水中允许的最大限量要高出500多倍。
因此,认为食物为人类丙烯酰胺的主要来源。
此外,人体还可能通过吸烟等途径接触丙烯酰胺。
丙烯酰胺可通过多种途径被人体吸收,其中经消化道吸收最快,在体内各组织广泛分布,包括母乳。
经口给予大鼠 0.1 mg/kg bw 的丙烯酰胺,其绝对生物利用率为23-48%。
进入人体内的丙烯酰胺约90%被代谢,仅少量以原型经尿液排出。
丙烯酰胺进入体内后,在细胞色素P4502E1的作用下,生成活性环氧丙酰胺(glycidamide)。
食品毒理学丙烯酰胺的毒理学评价丙烯酰胺的毒理学评价摘要:了解食物中丙烯酰胺对人体健康的影响, 综述了食品中丙烯酰胺的来源, 以及丙烯酰胺的性质和毒理学评价。
关键字:丙烯酰胺;毒性学;安全性毒理学评价丙烯酰胺是一种白色晶体化学物质,是生产聚丙烯酰胺的原料。
淀粉类食品在高温〔>120℃〕烹调下容易产生丙烯酰胺。
研究说明,人体可通过消化道、呼吸道、皮肤黏膜等多种途径接触丙烯酰胺,饮水是其中的一条重要接触途径。
丙烯酰胺进入体内又可通过多种途径被人体吸收,其中经消化道吸收最快。
进入人体内的丙烯酰胺约90%被代谢,仅少量以原形经尿液排出。
丙烯酰胺进入体内后,会在体内与DNA上的鸟嘌呤结合形成加合物,导致基因突变等遗传物质损伤。
丙烯酰胺主要存在于经高温加热处理的富含糖类的食物中, 其含量随着加热时间的延长和温度的升高而增加。
目前关于丙烯酰胺生成途径的资料有限, 根据现有的研究资料, 影响丙烯酰胺形成的因素可能包括糖类、氨基酸、脂肪、高温、加热时间和食物中的水分等【1】。
1、丙烯酰胺的基本性质及研究丙烯酰胺〔Acrylamide〕,CAS的登记号为79-06-1,其分子量71.09,化学分子式CH2CHCONH2。
丙烯酰胺是一种不饱和酰胺,其单体为无色透明片状结晶,沸点125℃,熔点84~85℃。
能溶于水、乙醇、乙醚、丙酮、氯仿,不溶于苯及庚烷中。
丙烯酰胺单体在室温下很稳定,但当处于熔点或以上温度、氧化条件以及在紫外线的作用下很容易发生聚合反应。
当加热使其溶解时,丙烯酰胺释放出强烈的腐蚀性气体和氮的氧化物类化合物【2-4】。
丙烯酰胺是一种中等毒性的亲神经毒物,可通过未破损的皮肤、粘膜、肺和消化道吸收入人体,分布于体液中【5】。
丙烯酰胺的神经毒性已经为许多学者所公认,大量的中毒事件也多是围绕其神经毒性方面,但丙烯酰胺导致周围神经和中枢神经系统损伤的机制还不十分清楚。
现场劳动卫生学研究和体格检查发现长期职业接触丙烯酰胺的工人主要表现为四肢麻木、乏力、手足多汗、头痛头晕、远端触觉减退等,累及小脑时还会出现步履蹒跚、四肢震颤觉、深反射减退等,并发现外周神经损害多表现为通向胞体的长纤维末端首先受损,逐渐向胞体方向发展,呈“返死现象”[6]。
食品中丙烯酰胺的危险性评估丙烯酰胺(CH2=CH-CONH2)是一种白色晶体物质,分子量为70.08,是1950年以来广泛用于生产化工产品聚丙烯酰胺的前体物质。
聚丙烯酰胺主要用于水的净化处理、纸浆的加工及管道的内涂层等。
在欧盟,丙烯酰胺年产量约为8-10万吨。
2002年4月瑞典国家食品管理局(National Food Administration,NFA)和斯德哥尔摩大学研究人员率先报道,在一些油炸和烧烤的淀粉类食品,如炸薯条、炸土豆片、谷物、面包等中检出丙烯酰胺;之后挪威、英国、瑞士和美国等国家也相继报道了类似结果。
由于丙烯酰胺具有潜在的神经毒性、遗传毒性和致癌性,因此食品中丙烯酰胺的污染引起了国际社会和各国政府的高度关注。
为此,2002年6月25日世界卫生组织(WHO)和联合国粮农组织(FAO)联合紧急召开了食品中丙烯酰胺污染专家咨询会议,对食品中丙烯酰胺的食用安全性进行了探讨。
2005年2月,联合国粮农组织(FAO)和世界卫生组织(WHO)联合食品添加剂专家委员会(JECFA)第64次会议根据近两年来的新资料,对食品中的丙烯酰胺进行了系统的危险性评估。
1.人体接触途径人体可通过消化道、呼吸道、皮肤粘膜等多种途径接触丙烯酰胺,饮水是其中的一种重要接触途径,为此WHO将水中丙烯酰胺的含量限定为1μg/L。
2002年4月斯德哥尔摩大学研究报道,炸薯条中丙烯酰胺含量较WHO推荐的饮水中允许的最大限量要高出500多倍。
因此,认为食物为人类丙烯酰胺的主要来源。
此外,人体还可能通过吸烟等途径接触丙烯酰胺。
2. 吸收、分布及代谢丙烯酰胺可通过多种途径被人体吸收,其中经消化道吸收最快,在体内各组织广泛分布,包括母乳。
经口给予大鼠 0.1 mg/kg bw 的丙烯酰胺,其绝对生物利用率为23-48%。
进入人体内的丙烯酰胺约90%被代谢,仅少量以原型经尿液排出。
丙烯酰胺进入体内后,在细胞色素P4502E1的作用下,生成活性环氧丙酰胺(glycidamide)。
该环氧丙酰胺比丙烯酰胺更容易与DNA上的鸟嘌呤结合形成加合物,导致遗传物质损伤和基因突变;因此,被认为是丙烯酰胺的主要致癌活性代谢产物。
研究报道,给予大小鼠丙烯酰胺后,在小鼠肝、肺、睾丸、白细胞、肾和大鼠肝、甲状腺、睾丸、乳腺、骨髓、白细胞和脑等组织中均检出了环氧丙酰胺鸟嘌呤加合物。
目前,尚未见人体丙烯酰胺暴露后形成DNA加合物的报道。
此外丙烯酰胺和环氧丙酰胺还可与血红蛋白形成加合物,在给予动物丙烯酰胺和摄入含有丙烯酰胺食品的人群体内均检出血红蛋白加合物,建议可用该血红蛋白加合物作为接触性生物标志物来推测人群丙烯酰胺的暴露水平。
3 丙烯酰胺毒性3.1急性毒性急性毒性试验结果表明,大鼠、小鼠、豚鼠和兔的丙烯酰胺经口LD50为150-180 mg/kg,属中等毒性物质。
3.2 神经毒性和生殖发育毒性大量的动物试验研究表明丙烯酰胺主要引起神经毒性;此外,为生殖、发育毒性。
神经毒性作用主要为周围神经退行性变化和脑中涉及学习、记忆和其他认知功能部位的退行性变;生殖毒性作用表现为雄性大鼠精子数目和活力下降及形态改变和生育能力下降。
大鼠90天喂养试验,以神经系统形态改变为终点,最大未观察到有害作用的剂量(NOAEL)为0.2 mg/kg bw/天。
大鼠生殖和发育毒性试验的NOAEL为2 mg/kg bw/天。
3.3 遗传毒性丙烯酰胺在体内和体外试验均表现有致突变作用,可引起哺乳动物体细胞和生殖细胞的基因突变和染色体异常,如微核形成、姐妹染色单体交换、多倍体、非整倍体和其他有丝分裂异常等,显性致死试验阳性。
并证明丙烯酰胺的代谢产物环氧丙酰胺是其主要致突变活性物质。
3.4 致癌性动物试验研究发现,丙烯酰胺可致大鼠多种器官肿瘤,包括乳腺、甲状腺、睾丸、肾上腺、中枢神经、口腔、子宫、脑下垂体等。
国际癌症研究机构(IARC) 1994年对其致癌性进行了评价,将丙烯酰胺列为2类致癌物(2A)即人类可能致癌物,其主要依据为丙烯酰胺在动物和人体均可代谢转化为其致癌活性代谢产物环氧丙酰胺。
3.5 人体资料对接触丙烯酰胺的职业人群和因事故偶然暴露于丙烯酰胺的人群的流行病学调查,均表明丙烯酰胺具有神经毒性作用,但目前还没有充足的人群流行病学证据表明通过食物摄入丙烯酰胺与人类某种肿瘤的发生有明显相关性。
4.食品中丙烯酰胺形成、含量和人体可能暴露量4.1食品中丙烯酰胺形成丙烯酰胺主要在高碳水化合物、低蛋白质的植物性食物加热(120°C 以上)烹调过程中形成。
140-180℃为生成的最佳温度,而在食品加工前检测不到丙烯酰胺;在加工温度较低,如用水煮时,丙烯酰胺的水平相当低。
水含量也是影响其形成的重要因素,特别是烘烤、油炸食品最后阶段水分减少、表面温度升高后,其丙烯酰胺形成量更高;但咖啡除外,在焙烤后期反而下降。
丙烯酰胺的主要前体物为游离天门冬氨酸(土豆和谷类中的代表性氨基酸)与还原糖,二者发生Maillard反应生成丙烯酰胺。
食品中形成的丙烯酰胺比较稳定;但咖啡除外,随着储存时间延长,丙烯酰胺含量会降低。
4.2食品中丙烯酰胺含量既然丙烯酰胺的形成与加工烹调方式、温度、时间、水分等有关,因此不同食品加工方式和条件不同,其形成丙烯酰胺的量有很大不同,即使不同批次生产出的相同食品,其丙烯酰胺含量也有很大差异。
在JECFA 64次会议上,从24个国家获得的2002-2004年间食品中丙烯酰胺的检测数据共6,752个,其中67.6%的数据来源于欧洲,21.9%来源于南美,8.9%的数据来源与亚洲,1.6%的数据来源于太平洋。
检测的数据包含早餐谷物、土豆制品、咖啡及其类似制品、奶类、糖和蜂蜜制品、蔬菜和饮料等主要消费食品,其中含量较高的三类食品是:高温加工的土豆制品(包括薯片、薯条等),平均含量为0.477 mg/kg,最高含量为5.312 mg/kg;咖啡及其类似制品,平均含量为0.509 mg/kg,最高含量为7.3 mg/kg;及早餐谷物类食品,平均含量为0.313 mg/kg,最高含量为7.834 mg/kg;其它种类食品的丙烯酰胺含量基本在0.1 mg/kg 以下,结果见表1。
由中国疾病预防控制中心营养与食品安全研究所提供的资料显示,在监测的100余份样品中,丙烯酰胺含量为:薯类油炸食品,平均含量为0.78 mg/kg,最高含量为3.21 mg/kg;谷物类油炸食品平均含量为0.15 mg/kg,最高含量为0.66 mg/kg;谷物类烘烤食品平均含量为0.13 mg/kg,最高含量为0.59 mg/kg;其它食品,如速溶咖啡为0.36 mg/kg、大麦茶为0.51 mg/kg、玉米茶为0.27 mg/kg。
就这些少数样品的结果来看,我国的食品中的丙烯酰胺含量与其他国家的相近。
表1 不同食品中丙烯酰胺的含量(24个国家的数据)4.3人群丙烯酰胺的可能摄入量根据对世界上17个国家丙烯酰胺摄入量的评估结果显示,一般人群平均摄入量为0.3-2.0 µg/kg bw/天,90-97.5百分位数的高消费人群其摄入量为 0.6-3.5 µg/kg bw/天,99百分位数的高消费人群其摄入量为 5.1 µg/kg bw/天。
按体重计,儿童丙烯酰胺的摄入量为成人的2-3倍。
其中丙烯酰胺主要来源的食品为炸土豆条16-30%,炸土豆片6-46%,咖啡13-39%,饼干10-20%,面包10-30%,其余均小于10%。
JECFA 根据各国的摄入量,认为人类的平均摄入量大致为1 µg/kg bw/天,而高消费者大致为4µg/kg bw/天,包括儿童。
由于我国尚缺少足够数量的各类食品中丙烯酰胺含量数据,以及这些食品的摄入量数据;因此,还不能确定我国人群的暴露水平。
但由于食品中以油炸薯类食品、咖啡食品和烘烤谷类食品中的丙烯酰胺含量较高,而这些食品在我国人群中的摄入水平应该不高于其他国家,因此,我国人群丙烯酰胺的摄入水平应不高于JECFA评估的一般人群的摄入水平。
5. 危险性评估对非遗传毒性物质和非致癌物的危险性评估,通常方法是在NOAEL的基础上再加上安全系数,产生出每天容许摄入量(ADI)或每周耐受摄入量(PTWI),用人群实际摄入水平与ADI或PTWI进行比较,就可对该物质对人群的危险性进行评估。
而对遗传毒性致癌物,以往的危险性评估认为应尽可能避免接触这类物质,没有考虑这类物质摄入量和致癌作用强度的关系,没有可接受的耐受阈剂量,因此管理者不能以此来确定监管污染物的重点和预防措施,而管理者又非常需要评估者提供不同摄入量可能造成的不同健康危险度的信息。
因此,目前国际上在对该类物质进行危险性评估时,建议用剂量反应模型BMDL和暴露边界比(MOE)进行评估。
BMDL为诱发5%或10%肿瘤发生率的低侧可信限,BMDL除以人群估计摄入量,则为暴露限(MOE)。
MOE越小,该物质致癌危险性也就越大,反之就越小。
对丙烯酰胺的非致癌效应进行评估,动物试验结果引起神经病理性改变的NOAEL值为0.2 mg/kg bw。
根据人类平均摄入量为1 µg/kg bw/天,高消费者为4 µg/kg bw/天进行计算,则人群平均摄入和高摄入的MOE分别为200和50;丙烯酰胺引起生殖毒性的NOAEL值2mg/kg bw,则人群平均摄入和高摄入的MOE分别为2000和500。
JECFA认为按估计摄入量来考虑,此类副作用的危险性可以忽略,但是对于摄入量很高的人群,不排除能引起神经病理性改变的可能。
对丙烯酰胺的危险性评估重点为致癌效应的评估。
由于流行病学资料及动物和人的生物学标记物数据均不足以进行评价,因此根据动物致癌性试验结果,用8种数学模型对其致癌作用进行分析。
最保守的估计,推算引起动物乳腺瘤的BMDL为0.3 mg/kg bw/天,根据人类平均摄入量为1 µg/kg bw/天,高消费者为4 µg/kg bw/天计算,平均摄入和高摄入量人群的 MOE分别为300和75。
JECFA认为对于一个具有遗传毒性致癌物来说,其MOE值较低,也就是诱发动物的致癌剂量与人的可能最大摄入量之间的差距不够大,比较接近,其对人类健康的潜在危害应给予关注,建议采取合理的措施来降低食品中丙烯酰胺的含量。
目前,欧洲有些食品生产企业在减少食品加工过程中丙烯酰胺的产生方面已取得了很好的效果。
在对丙烯酰胺的危险性评估中,用动物实验来推导的BMDL数据,人群摄入量评估,加之人与动物代谢活化强度的差别,因此存在不确定性。
故需在进行的几项丙烯酰胺的长期动物试验结束后再次进行评价,并需考虑丙烯酰胺在体内转化为环氧丙酰胺的情况,以及发展中国家丙烯酰胺摄入量的数据,并将人体生物学标记物与摄入量和毒性终点结果相联系进行评估。