高中物理选修热学试题
- 格式:doc
- 大小:77.00 KB
- 文档页数:5
一、选择题1.关于分子动理论和热力学定律,下列说法中正确的是()A.空气相对湿度越大时,水蒸发越快B.物体的温度升高,每个分子的动能都增大C.第二类永动机不可能制成是因为它违反了热力学第一定律处逐渐减小到很难再靠近的过程中,分子间作用力先D.两个分子间的距离由大于910m增大后减小到零,再增大D解析:DA.空气相对湿度越大时,空气中水蒸气压强越接近同温度水的饱和汽压,水蒸发越慢,故A错误;B.温度是分子平均动能的标志,物体的温度越高,分子热运动就越剧烈,分子平均动能越大,但不是每个分子的动能都增大,故B错误;C.第二类永动机不可能制成是因为它违反热力学第二定律,但不违反能量守恒定律,选项C错误;D.两个分子间的距离由大于10-9m处逐渐减小到很难再靠近的过程中,分子间作用力先表现为引力,引力先增大到最大值后减小到零,之后,分子间作用力表现为斥力,从零开始增大,故D正确;故选D。
2.下列说法正确的是()A.布朗运动是悬浮在液体中固体颗粒的分子无规则运动的反映B.内能不同的物体,它们分子热运动的平均动能可能相同C.知道某物质的摩尔质量和密度可求出阿伏加德罗常数D.没有摩擦的理想热机可以把吸收的能量全部转化为机械能B解析:BA. 布朗运动是悬浮在液体中固体颗粒的运动,是由于液体分子无规则的碰撞造成的,则布朗运动反映了液体中分子的无规则运动,故A错误;B. 物体内能的大小与物体的温度、物质的量、体积以及物态有关,内能不同的物体,它们分子热运动的平均动能可能相同,故B正确;C. 知道某物质的摩尔质量和密度能求出摩尔体积,但不能求出阿伏加德罗常数。
故C错误;D. 热力学第二定律告诉我们,没有任何一种能量的转化率达到100%,故D错误;故选:B。
3.下列说法正确的是()A.把玻璃管道的裂口放在火上烧熔,它的尖端就变圆,是因为熔化的玻璃在表面张力的作用下,表面要收缩到最小的缘故B.用气筒给自行车打气,越打越费劲,说明气体分子之间有斥力C.实际气体在温度不太高、压强不太大时可以当做理想气体来处理D.为了节约能源,应提高利用率,随着技术的进步,一定可以制造出效率为100%的热机A解析:AA.液体表面存在张力,表面要缩小到最小而平衡,故A正确;B.用气筒给自行车打气,越大越费劲,是因为车胎内外压强差越来越大,与气体分子之间有斥力无关,故B错误;C.严格遵守气体实验定律的气体是理想气体,实际气体在温度不太低、压强不太大的情况下可以看作理想气体,故C错误;D.根据热力学第二定律可知,不可能制造出效率为100%的机器,故D错误。
高中物理选修3热力学第一定律计算题专项训练姓名:__________ 班级:__________考号:__________一、计算题(共15题)1、一定量的气体从外界吸收了4.7×105J的热量,同时气体对外做功2.5×105J,则气体的内能增加了___________J.2、如图所示为气体实验装置,开始时玻璃管内封闭的空气柱长度为3cm,此时气压表显示容器内气体的压强p=1.0×105Pa,现在将活塞缓慢向下推动,直到封闭空气柱的长度变为12cm。
试求:(1)这一过程中气体分子的平均动能如何变化?(2)最终气压表的示数是多少?(3)若在另一次快速压缩气体的过程中,气体内能增加1.5J,气体放出的热量为1.4J,那么活塞对气体做功是多少?3、一定质量的气体,从外界吸收了500J的热量,同时对外做了100J的功,问:物体的内能是增加还是减少?变化了多少?4、如图所示p―V图中,一定质量的理想气体由状态A经过ACB过程至状态B,气体对外做功280J,吸收热量410J;气体又从状态B经BDA过程回到状态A,这一过程中外界对气体做功200J.求:(1)ACB过程中气体的内能是增加还是减少?变化量是多少?(2)BDA过程中气体是吸热还是放热?吸收或放出的热量是多少?5、在一个恒定大气压P=1.0×105 Pa下,水沸腾时,1g的水由液态变成同温度的气态,其体积由1cm3变为1701cm3,此过程中气体吸收的热量为2264J。
求:⑴气体对外做的功W;⑵气体的内能变化量ΔU。
6、一定量的气体从外界吸收了2.6×J的热量,内能增加了4.2×J,是气体对外界做了功,还是外界对气体做了功?做了多少功?如果气体吸收的热量仍为2.6×J不变,但是内能只增加了1.6×J,这一过程做功情况怎样?7、一定质量的理想气体从状态A经状态B变化到状态C,其图象如图所示,求该过程中气体吸收的热量Q。
1. 问题:一个容积为V的容器中充满了1mol的气体,此时容器的温度为T1,请计算容器中气体的平均动能。
答案:平均动能=(3/2)nRT1,其中n为气体的物质的量,R为气体常数。
2. 一个容积为V的容器中装满了水,水的温度为t℃,水的重量为m,水的热容为c,此时将容器中的水加热,经过一段时间后,水的温度升高到T℃,请计算:
(1)水加热的总热量
Q=mc(T-t)
(2)水加热的平均热量
Qavg=Q/t
3..一元系统中,向容器中加入了$m$克汽油,汽油的温度为$T_1$,容器中的水的温度为$T_2$,汽油和水的比容为$V_1$和$V_2$,如果汽油和水的温度最终变为$T_3$,那么汽油的最终温度$T_4$为多少?
解:$T_4=\frac{mT_1V_1+T_2V_2}{mV_1+V_2}T_3$
4. 一定体积的气体在温度为273K,压强为100kPa时,改变温度到273K,压强到400kPa,求气体的体积。
解:由比容量关系可得:
V2/V1=P2/P1
V2=V1×P2/P1
V2=V1×400/100
V2=4V1
答案:V2=4V1。
选修3-3热学部分高考试题选编第一题:⑴(2017全国I 卷,5分)氧气分子在C 00和C 1000温度下单位速率间隔的分子数占总分子数的百分比随气体分子速率的变化分别如图中两条曲线所示。
下列说法正确的是_______A.图中两条曲线下面积相等B.图中虚线对应于氧气分子平均动能较小的情景C.图中实线对应于氧气分子在C 1000时的情景D.图中曲线给出了任意速率区间的氧气分子数目E.与C 00相比,C 1000时氧气分子速率出现在s /m 400~0区间内的分子数占总分子数的百分比较大 ⑴(2019全国III 卷,10分)如图,一粗细均匀的细管开口向上竖直放置,管内有一高度为cm 0.2的水银柱,水银柱下密封了一定量的理想气体,水银柱上表面到管口的距离为cm 0.2。
若将细管倒置,水银柱下表面恰好位于管口处,且无水银滴落,管内气体温度与环境温度相同。
已知大气压强为cmHg 76,环境温度为K 296。
⑴求细管的长度;⑵若在倒置前,缓慢加热管内被密封的气体,直到水银柱的上表面恰好与管口平齐为止,求此时密封气体的温度。
参考答案与解析1.解析:根据气体分子单位速率间隔的分子数占总分子数的百分比随气体分子速率的变化曲线的意义可知,题图中两条曲线下面积相等,选项A 正确;题图中虚线占百分比较大的分子速率较小,所以对应于氧气分子平均动能较小的情景,选项B 正确;题图中实线占百分比较大的分子速率较大,分子平均动能较大,根据温度是分子平均动能的标志,可知实线对应于氧气分子在C 1000时的情景,选项C 正确;根据分子速率分布图可知,题图中曲线给出了任意速率区间的氧气分子数目占总分子数的百分比,不能得出任意速率区间的氧气分子数目,选项D 错误;由分子速率分布图可知,与C 00相比,C 1000时氧气分子速率出现在s /m 400~0区间的分子数占总分子数的百分比较小,选项E 错误。
答案:ABC2.解析:⑴设玻璃管倒置前后密封气体的压强分别为1p 、'1p ,对水银柱受力分析,由共点力平衡条件可得:h p p +=01,h p p -=0'1。
高中热力学试题及答案一、选择题1. 热力学第一定律的数学表达式是:A. ΔU = Q + WB. ΔH = Q - WC. ΔS = Q/TD. ΔG = Q - TΔS答案:A2. 根据熵增原理,孤立系统的熵总是:A. 增加B. 减少C. 保持不变D. 无法确定答案:A3. 以下哪个过程是可逆过程?A. 摩擦生热B. 气体自由膨胀C. 气体在活塞下缓慢压缩D. 气体在活塞下快速压缩答案:C二、填空题4. 热力学第二定律的开尔文表述是:不可能从单一热源吸热使之完全转化为功而不引起其他变化。
__________________________。
5. 理想气体的内能只与温度有关,与体积和压强无关。
对于一定质量的理想气体,其内能变化ΔU等于__________。
答案:nCvΔT三、简答题6. 简述热力学第二定律的克劳修斯表述。
答案:热力学第二定律的克劳修斯表述是:不可能实现一个循环过程,其唯一结果就是将热量从低温物体传递到高温物体。
7. 解释什么是熵,以及熵增原理的意义。
答案:熵是热力学中描述系统无序度的物理量,通常用符号S表示。
熵增原理表明,在孤立系统中,自发过程总是向着熵增加的方向发展,这反映了自然界趋向于无序的普遍趋势。
四、计算题8. 一个理想气体在等压过程中,温度从T1升高到T2,求该过程中气体的熵变ΔS。
答案:首先,根据等压过程的性质,体积V与温度T的关系为V/T = 常数。
对于理想气体,熵变ΔS可以通过以下公式计算:ΔS = nCln(T2/T1) + Rln(V2/V1)由于V/T = 常数,所以V2/V1 = T2/T1,代入公式得:ΔS = nCln(T2/T1)9. 一个质量为m,温度为T的物体,通过热传导的方式与环境达到热平衡,求物体的最终温度。
答案:当物体与环境达到热平衡时,物体的温度将等于环境的温度。
因此,物体的最终温度就是环境的温度。
结束语:本试题涵盖了高中热力学的基本概念和计算方法,旨在帮助学生理解和掌握热力学的基本原理及其应用。
高中物理热学试题及答案一、选择题(每题3分,共30分)1. 热量的单位是()A. 焦耳B. 牛顿C. 瓦特D. 帕斯卡2. 热力学第一定律的数学表达式是()A. ΔU = Q + WB. ΔH = Q - WC. ΔS = Q/TD. ΔG = Q + W3. 温度是物体冷热程度的度量,其单位是()A. 米B. 千克C. 开尔文D. 秒4. 热传导的微观解释是()A. 粒子的布朗运动B. 粒子的碰撞C. 粒子的扩散D. 粒子的波动5. 物体的比热容是指()A. 单位质量的物体温度升高1℃所吸收的热量B. 单位质量的物体温度升高1℃所放出的热量C. 单位质量的物体温度降低1℃所吸收的热量D. 单位质量的物体温度降低1℃所放出的热量6. 理想气体的内能只与()有关A. 体积B. 温度C. 压力D. 质量7. 热机效率是指()A. 热机输出功率与输入功率的比值B. 热机输出功率与输入功率的差值C. 热机输入功率与输出功率的比值D. 热机输入功率与输出功率的差值8. 热力学第二定律的开尔文表述是()A. 不可能从单一热源吸热使之完全变为功而不产生其他影响B. 不可能使热量从低温物体传到高温物体而不产生其他影响C. 不可能从单一热源吸热使之完全变为功并产生其他影响D. 不可能使热量从高温物体传到低温物体而不产生其他影响9. 绝对零度是()A. -273.15℃B. 0℃C. 273.15℃D. 100℃10. 热力学第三定律表明()A. 绝对零度不可能达到B. 绝对零度可以轻易达到C. 绝对零度是温度的极限D. 绝对零度是温度的起点二、填空题(每题2分,共20分)1. 热力学第一定律表明,能量在转化和转移过程中______。
2. 热力学第三定律指出,当温度趋近于绝对零度时,所有纯物质的______趋于零。
3. 热传导、热对流和热辐射是热传递的三种基本方式,其中热辐射不需要______。
4. 物体吸收或放出热量时,其温度不一定变化,例如冰在熔化过程中______。
五、热学试题集粹(15+5+9+20=49个)一、选择题(在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确)1.下列说法正确的是[]A.温度是物体内能大小的标志B.布朗运动反映分子无规则的运动C.分子间距离减小时,分子势能一定增大D.分子势能最小时,分子间引力与斥力大小相等2.关于分子势能,下列说法正确的是[]A.分子间表现为引力时,分子间距离越小,分子势能越大B.分子间表现为斥力时,分子间距离越小,分子势能越大C.物体在热胀冷缩时,分子势能发生变化D.物体在做自由落体运动时,分子势能越来越小3.关于分子力,下列说法中正确的是[]A.碎玻璃不能拼合在一起,说明分子间斥力起作用B.将两块铅压紧以后能连成一块,说明分子间存在引力C.水和酒精混合后的体积小于原来体积之和,说明分子间存在的引力D.固体很难拉伸,也很难被压缩,说明分子间既有引力又有斥力4.下面关于分子间的相互作用力的说法正确的是[]A.分子间的相互作用力是由组成分子的原子内部的带电粒子间的相互作用而引起的B.分子间的相互作用力是引力还是斥力跟分子间的距离有关,当分子间距离较大时分子间就只有相互吸引的作用,当分子间距离较小时就只有相互推斥的作用C.分子间的引力和斥力总是同时存在的D.温度越高,分子间的相互作用力就越大5.用r表示两个分子间的距离,Ep表示两个分子间的相互作用势能.当r=r0时两分子间的斥力等于引力.设两分子距离很远时Ep=0 []A.当r>r0时,Ep随r的增大而增加B.当r<r0时,Ep随r的减小而增加C.当r>r0时,Ep不随r而变D.当r=r0时,Ep=06.一定质量的理想气体,温度从0℃升高到t℃时,压强变化如图2-1所示,在这一过程中气体体积变化情况是[]图2-1A.不变B.增大C.减小D.无法确定7.将一定质量的理想气体压缩,一次是等温压缩,一次是等压压缩,一次是绝热压缩,那么[]A.绝热压缩,气体的内能增加B.等压压缩,气体的内能增加C.绝热压缩和等温压缩,气体内能均不变D.三个过程气体内能均有变化8.如图2-2所示,0.5mol理想气体,从状态A变化到状态B,则气体在状态B时的温度为[]图2-2A.273KB.546KC.810KD.不知TA所以无法确定9.如图2-3是一定质量理想气体的p-V图线,若其状态由a→b→c→a(ab为等容过程,bc为等压过程,ca为等温过程),则气体在a、b、c三个状态时[]图2-3A.单位体积内气体分子数相等,即na=nb=ncB.气体分子的平均速度va>vb>vcC.气体分子在单位时间内对器壁单位面积碰撞次数Na>Nb>NcD.气体分子在单位时间内对器壁单位面积作用的总冲量Ia>Ib=Ic10.一定质量的理想气体的状态变化过程如图2-4所示,MN为一条直线,则气体从状态M到状态N的过程中[]图2-4A.温度保持不变B.温度先升高,后又减小到初始温度C.整个过程中气体对外不做功,气体要吸热D.气体的密度在不断减小题号 1 2 3 4 5 6 7 8 9 10答案BD BC BD C AB C A C CD BD11.一定质量的理想气体自状态A经状态B变化到状态C,这一过程在V-T图中的表示如图2-5所示,则[]A.在过程AB中,气体压强不断变大B.在过程BC中,气体密度不断变大C.在过程AB中,气体对外界做功D.在过程BC中,气体对外界放热12.如图2-6所示,一圆柱形容器上部圆筒较细,下部的圆筒较粗且足够长.容器的底是一可沿下圆筒无摩擦移动的活塞S,用细绳通过测力计F将活塞提着,容器中盛水.开始时,水面与上圆筒的开口处在同一水平面上(如图),在提着活塞的同时使活塞缓慢地下移.在这一过程中,测力计的读数[]图2-6A.先变小,然后保持不变B.一直保持不变C.先变大,然后变小D.先变小,然后变大13.如图2-7所示,粗细均匀的U形管,左管封闭一段空气柱,两侧水银面的高度差为h,U型管两管间的宽度为d,且d<h,现将U形管以O点为轴顺时针旋转90°至两个平行管水平,并保持U形管在竖直平面内,两管内水银柱的长度分别变为h1′和h2′.设温度不变,管的直径可忽略不计,则下列说法中正确的是[]图2-7A.h1增大,h2减小B.h1减小,h2增大,静止时h1′=h2′C.h1减小,h2增大,静止时h1′>h2′D.h1减小,h2增大,静止时h1′<h2′14.如图2-8所示,一根竖直的弹簧支持着一倒立气缸的活塞,使气缸悬空而静止,设活塞与缸壁间无摩擦且可以在缸内自由移动,缸壁导热性能良好使缸内气体总能与外界大气温度相同,则下述结论中正确的是[]A.若外界大气压增大,则弹簧将压缩一些B.若外界大气压增大,则气缸上底面距地面的高度将减小C.若气温升高,则气缸上底面距地面的高度将减小D.若气温升高,则气缸上底面距地面的高度将增大15.如图2-9所示,导热气缸开口向下,内有理想气体,气缸固定不动,缸内活塞可自由滑动且不漏气.活塞下挂一个砂桶,砂桶装满砂子时,活塞恰好静止.现给砂桶底部钻一个小洞,细砂慢慢漏出,外部环境温度恒定,则[]图2-9A.气体压强增大,内能不变B.外界对气体做功,气体温度不变C.气体体积减小,压强增大,内能减小D.外界对气体做功,气体内能增加题号11 12 13 14 15答案ABD A A BD AB二、填空题1.估算一下,可知地球表面附近空气分子之间的距离约为________m(取一位有效数字);某金属的摩尔质量为M,密度为ρ,阿伏加德罗常量为N.若把金属分子视为球形,经估算该金属的分子直径约为________.2.高压锅的锅盖通过几个牙齿似的锅齿与锅镶嵌旋紧,锅盖与锅之间有橡皮制的密封圈,不会漏气.锅盖中间有一排气孔,上面套上类似砝码的限压阀,将排气孔堵住.当加热高压锅,锅内气体压强增大到一定程度时,气体就把限压阀顶起来,蒸汽即从排气孔中排出锅外.已知某高压锅限压阀的质量为0.1kg,排气孔直径为0.3cm,则锅内气体压强最大可达________Pa.3.圆筒内装有100升1atm的空气,要使圆筒内空气压强增大到10atm,应向筒内打入同温度下2atm的压缩气体________L.4.如图2-10所示为一定质量理想气体的状态变化过程的图线A→B→C→A,则B→C的变化是________过程,若已知TA=300K,TB=400K,则TC=________K.图2-105.一圆柱形的坚固容器,高为h,上底有一可以打开和关闭的密封阀门.现把此容器沉入水深为H 的湖底,并打开阀门,让水充满容器,然后关闭阀门.设大气压强为p0,湖水密度为ρ.则容器内部底面受到的向下的压强为________.然后保持容器状态不变,将容器从湖底移到湖面,这时容器内部底面受到的向下压强为________.填空题参考答案1.3×10-9 2.2.4×105 3.450 4.等压1600/3 5.p0+ρgHρgH1.如图2-14所示,有一热气球,球的下端有一小口,使球内外的空气可以流通,以保持球内外压强相等,球内有温度调节器,以便调节球内空气的温度,使气球可以上升或下降,设气球的总体积V0=500m3(不计算壳体积),除球内空气外,气球质量M=180kg.已知地球表面大气温度T0=280K,密度ρ0=1.20kg/m3,如果把大气视为理想气体,它的组成和温度几乎不随高度变化.问:为使气球从地面飘起,球内气温最低必须加热到多少开?图2-142.已知一定质量的理想气体的初始状态Ⅰ的状态参量为p1、V1、T1,终了状态Ⅱ的状态参量为p2、V2、T2,且p2>p1,V2>V1,如图2-15所示.试用玻意耳定律和查理定律推导出一定质量的理想气体状态方程.要求说明推导过程中每步的根据,最后结果的物理意义,且在p-V图上用图线表示推导中气体状态的变化过程.图2-153.在如图2-16中,质量为mA的圆柱形气缸A位于水平地面,气缸内有一面积S=5.00×10-3m2,质量mB=10.0kg的活塞B,把一定质量的气体封闭在气缸内,气体的质量比气缸的质量小得多,活塞与气缸的摩擦不计,大气压强=1.00×105Pa.活塞B经跨过定滑轮的轻绳与质量为mC=20.0kg的圆桶C相连.当活塞处于平衡时,气缸内的气柱长为L/4,L为气缸的深度,它比活塞的厚度大得多,现在徐徐向C桶内倒入细沙粒,若气缸A能离开地面,则气缸A的质量应满足什么条件?图2-164.如图2-17所示,一圆柱形气缸直立在水平地面上,内有质量不计的可上下移动的活塞,在距缸底高为2H0的缸口处有固定的卡环,使活塞不会从气缸中顶出,气缸壁和活塞都是不导热的,它们之间没有摩擦.活塞下方距缸底高为H0处还有一固定的可导热的隔板,将容器分为A、B两部分,A、B中各封闭同种的理想气体,开始时A、B中气体的温度均为27℃,压强等于外界大气压强p0,活塞距气缸底的高度为1.6H0,现通过B中的电热丝缓慢加热,试求:图2-17(1)与B中气体的压强为1.5p0时,活塞距缸底的高度是多少?(2)当A中气体的压强为1.5p0时,B中气体的温度是多少?5.如图2-18所示是一个容积计,它是测量易溶于水的粉末物质的实际体积的装置,A容器的容积V3.S是通大气的阀门,C是水银槽,通过橡皮管与容器B相通.连通A、B的管道很细,容积A=300cm可以忽略.下面是测量的操作过程:(1)打开S,移动C,使B中水银面降低到与标记M相平.(2)关闭S,缓慢提升C,使B中水银面升到与标记N相平,量出C中水银面比标记N高h1=25cm.(3)打开S,将待测粉末装入容器A中,移动C使B内水银面降到M标记处.(4)关闭S,提升C使B内水银面升到与N标记相平,量出C中水银面比标记N高h2=75cm.(5)从气压计上读得当时大气压为p0=75cmHg.设整个过程温度保持不变.试根据以上数据求出A中待测粉末的实际体积.图2-186.某种喷雾器贮液筒的总容积为7.5L,如图2-19所示,现打开密封盖,装入6L的药液,与贮液筒相连的活塞式打气筒,每次能压入300cm3、1atm的空气,若以上过程温度都保持不变,则图2-19(1)要使贮气筒中空气压强达到4atm,打气筒应该拉压几次?(2)在贮气筒内气体压强达4atm,才打开喷嘴使其喷雾,直至内外气体压强相等,这时筒内还剩多少药液?7.(1)一定质量的理想气体,初状态的压强、体积和温度分别为p1、V1、T1,经过某一变化过程,气体的末状态压强、体积和温度分别为p2、V2、T2.试用玻意耳定律及查理定律推证:p1V1/T1=p2V2/T2.(2)如图2-19,竖直放置的两端开口的U形管(内径均匀),内充有密度为ρ的水银,开始两管内的水银面到管口的距离均为L.在大气压强为p0=2ρgL时,用质量和厚度均不计的橡皮塞将U形管的左侧管口A封闭,用摩擦和厚度均不计的小活塞将U形管右侧管口B封闭,橡皮塞与管口A内壁间的最大静摩擦力fm=ρgLS(S为管的内横截面积).现将小活塞向下推,设管内空气温度保持不变,要使橡皮塞不会从管口A被推出,求小活塞下推的最大距离.图2-198.用玻马定律和查理定律推出一定质量理想气体状态方程,并在图2-20的气缸示意图中,画出活塞位置,并注明变化原因,写出状态量.图2-209.如图2-21所示装置中,A、B和C三支内径相等的玻璃管,它们都处于竖直位置,A、B两管的上端等高,管内装有水,A管上端封闭,内有气体,B管上端开口与大气相通,C管中水的下方有活塞顶住.A、B、C三管由内径很小的细管连接在一起.开始时,A管中气柱长L1=3.0m,B管中气柱长L2=2.0m,C管中水柱长L0=3m,整个装置处于平衡状态.现将活塞缓慢向上顶,直到C管中的水全部被顶到上面的管中,求此时A管中气柱的长度L1′,已知大气压强p0=1.0×105Pa,计算时取g=10m/s2.图2-2010.麦克劳真空计是一种测量极稀薄气体压强的仪器,其基本部分是一个玻璃连通器,其上端玻璃管A与盛有待测气体的容器连接,其下端D经过橡皮软管与水银容器R相通,如图2-22所示.图中K1、K2是互相平行的竖直毛细管,它们的内径皆为d,K1顶端封闭.在玻璃泡B与管C相通处刻有标记m.测量时,先降低R使水银面低于m,如图2-22(a).逐渐提升R,直到K2中水银面与K1顶端等高,这时K1中水银面比顶端低h,如图2-22(b)所示.设待测容器较大,水银面升降不影响其中压强,测量过程中温度不变.已知B(m以上)的容积为V,K1的容积远小于V,水银密度为ρ.(1)试导出上述过(2)已知V=628cm3,毛细管的直径d=0.30mm,水银密度ρ=13.6×103程中计算待测压强p的表达式.kg/m3,h=40mm,算出待测压强p(计算时取g=10m/s2,结果保留2位数字).图2-2111.如图2-23所示,容器A和气缸B都是透热的,A放置在127℃的恒温箱中,而B放置在27℃、1atm的空气中,开始时阀门S关闭,A内为真空,其容器VA=2.4L;B内轻活塞下方装有理想气体,其体积为VB=4.8L,活塞上方与大气相通.设活塞与气缸壁之间无摩擦且不漏气,连接A和B的细管容积不计.若打开S,使B内封闭气体流入A,活塞将发生移动,待活塞停止移动时,B内活塞下方剩余气体的体积是多少?不计A与B之间的热传递.图2-22 图2-2312.如图2-23有一热空气球,球的下端有一小口,使球内外的空气可以流通,以保持球内外压强相等,球内有温度调节器,以便调节球内空气温度,使气球可以上升或下降,设气球的总体积V0=500 m3(不计球壳体积),除球内空气外,气球质量M=180kg.已知地球表面大气温度T0=280K,密度ρ0=1.20kg/m3,如果把大气视为理想气体,它的组成和温度几乎不随高度变化,问:为使气球从地面飘起,球内气温最低必须加热到多少开?13.如图2-25均匀薄壁U形管,左管上端封闭,右管开口且足够长,管的横截面积为S,内装密度为ρ的液体.右管内有一质量为m的活塞搁在固定卡口上,卡口与左管上端等高,活塞与管壁间无摩擦且不漏气.温度为T0时,左、右管内液面高度相等,两管内空气柱长度均为L,压强均为大气压强p0.现使两边温度同时逐渐升高,求:(1)温度升高到多少时,右管活塞开始离开卡口上升?(2)温度升高到多少时,左管内液面下降h?图2-24 图2-2514.如图2-26所示的装置中,装有密度ρ=7.5×102kg/m3的液体的均匀U形管的右端与体积很大的密闭贮气箱相连通,左端封闭着一段气体.在气温为-23℃时,气柱长62cm,右端比左端低40cm.当气温升至27℃时,左管液面上升了2cm.求贮气箱内气体在-23℃时的压强为多少?(g取10m/s2)15.两端开口、内表面光滑的U形管处于竖直平面内,如图2-27所示,质量均为m=10kg的活塞A、B在外力作用下静止于左右管中同一高度h处,将管内空气封闭,此时管内外空气的压强均为p0=1.0×105Pa.左管和水平管横截面积S1=10cm2,右管横截面积S2=20cm2,水平管长为3h.现撤去外力让活塞在管中下降,求两活塞稳定后所处的高度.(活塞厚度略大于水平管直径,管内气体初末状态同温,g取10m/s2)图2-26 图2-27计算题参考答案1.解:设使气球刚好从地面飘起时球内空气密度为ρ,则由题意知ρ0gV0=Mg+ρgV0,设温度为T、密度为ρ、体积为V0的这部分气体在温度为T0,密度为ρ0时体积为V,即有ρV0=ρ0V.由等压变化有V0/T=V/T0,解得T=400K.2.解:设气体先由状态Ⅰ(p1、V1、T1),经等温变化至中间状态A(pA、V2、T1),由玻意耳定律,得p1V1=pAV2,①再由中间状态A(pA、V2、T1)经等容变化至终态Ⅱ(p2、V2、T2),由查理定律,得pA/T1=p2/T2,②由①×②消去pA,可得p1V1/T1=p2V2/T2,上式表明:一定质量的理想气体从初态(p1、V1、T1)变到终态(p2、V2、T2),压强和体积的乘积与热力学温度的比值是不变的.过程变化如图6所示.图63.解:取气缸内气柱长为L/4的平衡态为状态1,气缸被缓慢提离地面时的平衡态为状态2.以p1、p2表示状态1、2的压强,L2表示在状态2中气缸内气柱长度.由玻意耳定律,得p1L/4=p2L2,①在状态1,活塞B处于力学平衡状态,由力学平衡条件得到p1S+mCg=p0S+mBg,②在状态2,气缸A处于力学平衡状态,由力学平衡条件得到p2S+mAg=p0S,③由①、②、③三式解得mA=(p0S/g)-((p0S+mBg-mCg)/4g)(L/L2),以题给数据代入就得到mA=(50-10(L/L2))kg,由于L2最大等于L.故由⑤式得知,若想轻绳能把气缸A提离地面,气缸的质量应满足条件mA≤40kg.4.(1)B中气体做等容变化,由查理定律pB/p′B=TB/T′B,求得压强为1.5p0时气体的温度T′B=450K.A中气体做等压变化,由于隔板导热,A、B中气体温度相等,A中气体温度也为450K.对A中气体VA′/VA=TA′/TA,VA′=(TB′/TA)VA=0.9H0S,活塞距离缸底的高度为1.9H0.(2)当A中气体压强为1.5p0,活塞将顶在卡环处,对A中气体pAVA/TA=p″AV"A/T"A,得T"A=(p"AV"A/pAVA)TA=750K.即B中气体温度也为750K.5.解:对于步骤①②,以A、B中气体为研究对象.初态p1=p0,V1=VA+VB,末态p2=p0+h1,V2=VA,依玻意耳定律p1V1=p2V2,解得VB=100cm3.对于步骤③④,以A、B中气体为研究对象,初态p′1=p0,V′1=V,末态p′2=p0+h2,V′2=V-VB,依玻意耳定律p′1V′1=p′2V′2,解得V=200cm3,粉末体积V0=VA+VB-V=200cm3.6.解:(1)贮液筒装入液体后的气体体积V1=V总-V液①设拉力n次打气筒压入的气体体积V2=nV0,②根据分压公式:(温度T一定)pV1=p1V1+p1V2,③解①②③,可得n=(pV1-p1V1)/p1V0=15(次),④(2)对充好气的贮液筒中的气体,m,T一定喷雾后至内外压强相等,贮液筒内气体体积为V2,pV1=p2V2,⑤贮液筒内还剩有药液体积V剩=V总-V2⑥解⑤⑥得:V剩=1.5L.⑦7.(1)证明:在如图5所示的p-V图中,一定质量的气体从初状态A(p1,V1,T1)变化至末状态B(p2,V2,T2),假设气体从初状态先等温变化至C(pC,V2,T1),再等容变化至B(p2,V2,T2).第一个变化过程根据玻耳定律有,p1V1=pCV2.第二个变化过程根据查理定律有,pC/p2=T1/T2.由以上两式可解得:p1V1/T1=p2V2/T2.图5(2)解:设小活塞下推最大距离L1时,左管水银面上升的距离为x,以p0表示左右两管气体初态的压强,p1、p2表示压缩后左右两管气体的压强.根据玻意耳定律,左管内气体p0LS=p1(L-x)S,右管内气体p0LS=p2(L+x-L1)S,左、右两管气体末状态压强关系p2=p1+ρg·2x.橡皮塞刚好不被推出时,根据共点力平衡条件p1S=p0S+fm=3ρgLS,由上四式解得x=L/3,L1=26L/33.8.图略.由等温变化的玻意耳定律,得p1V2=pCV2,再由等容变化的查理定律,得pC/T1=p2/T2,两式联立,化简得:p1V1/T1=p2V2/T2.9.解:设活塞顶上后,A、B两管气柱长分别为L1′和L2′,则[p0+ρg(L1-L2)]L1=[p0+ρg(L1′-L2′)]L1′,且L1-L1′+L2-L2′=L0,解得L1′=2.5m.表明A管中进水0.5m,因C管中原有水3.0m,余下的2.5m水应顶入B管,而B管上方空间只有2.0m,可知一定有水溢出B管.按B管上方有水溢出列方程,对封闭气体p1=p0-ρg(L1-L2),p1′=p0+ρgL1′,p1L1=p1′L1′,联立解得L1′=2.62m.10.解:(1)水银面升到m时B中气体刚被封闭,压强为待测压强p.这部分气体末态体积为ah,a=πd2/4,压强为p+hρg,由玻意尔定律,得pV=(p+ρgh)πd2h/4,整理得p(V-πd2h/4)=ρghπd2h/4.根据题给条件,πd2h/4远小于V,得pV=(hρg)πd2h/4,化简得p=ρgh2πd2/4V.(2)代入数值解得p=2.4×10-2Pa.11.解:设原气缸中封闭气体初状态的体积VB分别为VB1和VB2两部分.打开S后,VB1最终仍留在B中,而VB2将全部流入容器A内.对于仍留在B中的这部分气体,因p、T不变,故VB1不变.对于流入A中的气体,由于p不变,据盖·吕萨克定律得VB2/T1=VA/T2,代入数据得VB2=1.8L,最后B内活塞下方剩余气体体积VB1=VB-VB2=3L.12.解:设使气球刚好从地面飘起时球内空气密度为ρ,则由题意知ρ0gV0=ρgV0+Mg.设温度为T、密度为ρ、体积为V0的这部分气体在温度为T0、密度为ρ0时体积为V,即有ρV0=ρ0V.由等压变化有V0/T=V/T0,联解得T=400K.13.解:(1)右管内气体为等容过程,p0/T0=p1/T1,p1=p0+mg/S,T1=T0(1+mg/p0S).(2)对左管内气体列出状态方程:p0LS/T0=p2V2/T2,p2=p0+mg/S+2ρgh,V2=(L+h)S,∴T2=T0L(p0+mg/S+2ρgh)(L+h)/p0.14.解:在下列的计算中,都以1cm液柱产生的压强作为压强单位.设贮气箱气体在-23℃时压强为p0,则U形管左侧气体在-23℃时压强p0′=p0-40.设贮气箱气体在27℃时压强为p,则U形管左侧气体在27℃时压强p′=p-44.对左侧气体据理想气体状态方程得p0′×62S/250=p′×60S/300.对贮气箱内的气体,据查理定律得p0/250=p/300.以上四式联立解出p0相当于140cm液柱的压强,故p0=7.5×102×10×1.40Pa=1.05×104Pa.15.解:撤去外力后左侧向下压强p左=p0+mg/S1=2×105Pa=2p0,右侧向下压强p右=p0+mg/S2=1.5×105Pa=1.5p0,故活塞均下降,且左侧降至水平管口.设右侧降至高为x处,此时封闭气体压强变为p′=1.5p0.对封闭气体p0(4hS1+hS2)=1.5p0(3hS1+xS2),∴x=h/2.。
高考物理选考热学计算题(一)评卷人得分一.计算题(共50小题)1.开口向上、内壁光滑的汽缸竖直放置,开始时质量不计的活塞停在卡口处,气体温度为27℃,压强为0.9×105 Pa,体积为1×10﹣3m3,现缓慢加热缸内气体,试通过计算判断当气体温度为67℃时活塞是否离开卡口。
(已知外界大气压强p0=1×105Pa)2.铁的密度ρ=7.8×103kg/m3、摩尔质量M=5.6×10﹣2 kg/mol,阿伏加德罗常数NA=6.0×1023mol﹣1.可将铁原子视为球体,试估算:(保留一位有效数字)①1 克铁含有的分子数;②铁原子的直径大小.3.如图所示,一个上下都与大气相通的直圆筒,内部横截面积为S=0.01m2,中间用两个活塞A和B封住一定质量的气体。
A、B都可沿圆筒无摩擦地上下滑动,且不漏气。
A的质量不计,B的质量为M,并与一劲度系数为k=5×103N/m的较长的弹簧相连。
已知大气压p0=1×105Pa,平衡时两活塞之间的距离l0=0.6m,现用力压A,使之缓慢向下移动一段距离后保持平衡。
此时用于压A的力F=500N.求活塞A下移的距离。
4.如图,密闭性能良好的杯盖扣在盛有少量热水的杯身上,杯盖质量为m,杯身与热水的总质量为M,杯子的横截面积为S.初始时杯内气体的温度为T0,压强与大气压强p0相等.因杯子不保温,杯内气体温度将逐步降低,不计摩擦.(1)求温度降为T1时杯内气体的压强P1;(2)杯身保持静止,温度为T1时提起杯盖所需的力至少多大?(3)温度为多少时,用上述方法提杯盖恰能将整个杯子提起?5.如图,上端开口、下端封闭的足够长的细玻璃钌竖直放置,﹣段长为l=15.0cm 的水银柱下方封闭有长度也为l的空气柱,已知大气压强为p0=75.0cmHg;如果使玻璃管绕封闭端在竖直平面内缓慢地转动半周.求在开口向下时管内封闭空气柱的长度.6.如图所示为一种减震垫,由12个形状相同的圆柱状薄膜气泡组成,每个薄膜气泡充满了体积为V1,压强为p1的气体,若在减震垫上放上重为G的厚度均匀、质量分布均匀的物品,物品与减震垫的每个薄膜表面充分接触,每个薄膜上表面与物品的接触面积均为S,不计每个薄膜的重,大气压强为p0,气体的温度不变,求:(i)每个薄膜气泡内气体的体积减少多少?(ii)若撤去中间的两个薄膜气泡,物品放上后,每个薄膜上表面与物品的接触面积增加了0.2S,这时每个薄膜气泡的体积又为多大?7.一足够高的内壁光滑的导热气缸竖直地浸放在盛有冰水混合物的水槽中,用不计质量的活塞封闭了一定质量的理想气体,活塞的面积为1.5×10﹣3m2,如图1所示,开始时气体的体积为3.0×10﹣3m3,现缓慢地在活塞上倒上一定质量的细沙,最后活塞静止时气体的体积恰好变为原来的三分之一.设大气压强为1.0×105Pa.重力加速度g取10m/s2,求:(1)最后气缸内气体的压强为多少?(2)最终倒在活塞上细沙的总质量为多少千克?(3)在P﹣V图上(图2)画出气缸内气体的状态变化过程(并用箭头标出状态变化的方向).8.如图所示,竖直放置的气缸,活塞横截面积为S=0.01m2,厚度不计。
高中热力学试题及答案大全一、选择题1. 热力学第一定律的数学表达式是:A. ΔU = Q - WB. ΔH = Q + WC. ΔS = Q/TD. ΔG = ΔH - TΔS答案:A2. 以下哪个过程是不可逆过程?A. 理想气体的等温膨胀B. 理想气体的绝热膨胀C. 理想气体的等压膨胀D. 理想气体的等熵膨胀答案:B3. 熵增加原理表明,在孤立系统中,自发过程的熵:A. 保持不变B. 减少C. 增加D. 先减少后增加答案:C二、填空题1. 热力学第二定律表明,不可能从单一热源_______而产生其他影响。
答案:吸热2. 在热力学中,一个系统与外界交换能量的两种基本方式是_______和_______。
答案:做功;热传递三、简答题1. 简述热力学第二定律的克劳修斯表述和开尔文-普朗克表述。
答案:热力学第二定律的克劳修斯表述是:不可能实现一个循环过程,其唯一结果就是从一个热源吸热并将这热量完全转化为功。
开尔文-普朗克表述是:不可能从单一热源吸热使之完全转化为功而不产生其他影响。
2. 什么是熵?熵在热力学中的意义是什么?答案:熵是热力学中描述系统无序程度的物理量,通常用符号S表示。
熵在热力学中的意义是衡量系统状态的无序程度,是热力学第二定律的数学表达形式之一,反映了能量分散的程度。
四、计算题1. 一个理想气体在等压过程中从体积V1 = 1m³膨胀到V2 = 2m³,气体的摩尔质量为M = 0.029kg/mol,气体常数R = 8.314J/(mol·K),初始温度T1 = 300K。
求气体的最终温度T2。
答案:首先计算气体的摩尔数n = (M/V1)。
然后利用等压过程中温度与体积的关系T1V1/n = T2V2/n,解得T2 = (T1V1/V2) = (300K *1m³ / 2m³) = 150K。
结束语:通过本试题及答案的练习,同学们可以加深对热力学基本概念、原理和计算方法的理解。
高三物理热学全部题型练习题1. 题目:热量和功的关系题目描述:做功时,系统释放了20 J的热量,求该系统的净功。
解答:根据热力学第一定律可知,系统净功等于系统所做的功减去释放的热量。
所以,净功 = 做的功 - 释放的热量。
净功 = 0 J - 20 J = -20 J。
因此,该系统的净功为-20 J。
2. 题目:温度和热量的转移题目描述:一杯水的温度为20℃,将放在室温为25℃的房间内,经过一段时间,杯中水的温度变为22℃。
求该过程中水释放了多少热量。
解答:根据热力学第一定律可知,传热时系统释放的热量等于所吸收的热量。
所以,所释放的热量 = 所吸收的热量。
根据温度的变化可知,水从20℃降到22℃,吸收了25℃的热量。
所释放的热量 = 25 J。
因此,该过程中水释放了25 J的热量。
3. 题目:理想气体的升压等温过程题目描述:一摩尔理想气体初时体积为1 L,压强为1 atm,最后体积变为2 L,求该过程中系统吸收的热量。
解答:根据理想气体的状态方程 PV = nRT,其中P为压强,V为体积,n为物质的摩尔数,R为气体常数,T为温度。
由于该过程为等温过程,所以温度保持不变。
即T1 = T2。
根据理想气体的状态方程可得,P1V1 = P2V2。
代入已知数据可得,1 atm × 1 L = P2 × 2 L。
解得P2 = 0.5 atm。
由于等温过程中吸收的热量等于外界对系统所做的功,而理想气体的等温过程的功为:W = nRT × ln(V2/V1)。
代入已知数据可得,W = (1 mol × 0.0821 atm L/mol K × T) × ln(2/1)。
由于T1 = T2,所以T取任意值均可。
假设T = 300 K,代入可得W ≈ 0.08 J/mol。
因此,该过程中系统吸收的热量约为0.08 J/mol。
4. 题目:热机的效率题目描述:一台热机从高温热源吸收300 J的热量,向低温热源释放150 J的热量。
高中物理选修(3-3)热学试题(第一章,第二章)内容一选择题:1.只知道下列那一组物理量,就可以估算出气体中分子间的平均距离A.阿伏加徳罗常数,该气体的摩尔质量和质量B.阿伏加徳罗常数,该气体的摩尔质量和密度C.阿伏加徳罗常数,该气体的质量和体积D.该气体的质量、体积、和摩尔质量2.关于布朗运动下列说法正确的是A.布朗运动是液体分子的运动B.布朗运动是悬浮微粒分子的运动C.布朗微粒做无规则运动的原因是由于它受到水分子有时吸引、有时排斥的结果D.温度越高,布朗运动越显著3.铜的摩尔质量为μ(kg/ mol),密度为ρ(kg/m3),若阿伏加徳罗常数为N A,则下列说法中哪个是错误..的A.1m3铜所含的原子数目是ρN A/μ B.1kg铜所含的原子数目是ρN AC.一个铜原子的质量是(μ / N A)kg D.一个铜原子占有的体积是(μ / ρN A)m3 4.分子间同时存在引力和斥力,下列说法正确的是A.固体分子间的引力总是大于斥力B.气体能充满任何仪器是因为分子间的斥力大于引力C.分子间的引力和斥力都随着分子间的距离增大而减小D.分子间的引力随着分子间距离增大而增大,而斥力随着距离增大而减小5.关于物体内能,下列说法正确的是A.相同质量的两种物体,升高相同温度,内能增量相同B.一定量0℃的水结成0℃的冰,内能一定减少C.一定质量的气体体积增大,既不吸热也不放热,内能减少D.一定质量的气体吸热,而保持体积不变,内能一定减少6.质量是18g的水,18g的水蒸气,32g的氧气,在它们的温度都是100℃时A.它们的分子数目相同,分子的平均动能相同B.它们的分子数目相同,分子的平均动能不相同,氧气的分子平均动能大C.它们的分子数目相同,它们的内能不相同,水蒸气的内能比水大D.它们的分子数目不相同,分子的平均动能相同7.有一桶水温度是均匀的,在桶底部水中有一个小气泡缓缓浮至水面,气泡上升过程中逐渐变大,若不计气泡中空气分子的势能变化,则A.气泡中的空气对外做功,吸收热量 B.气泡中的空气对外做功,放出热量C.气泡中的空气内能增加,吸收热量 D.气泡中的空气内能不变,放出热量8.关于气体压强,以下理解不正确的是A.从宏观上讲,气体的压强就是单位面积的器壁所受压力的大小B.从微观上讲,气体的压强是大量的气体分子无规则运动不断撞击器壁产生的C.容器内气体的压强是由气体的重力所产生的D.压强的国际单位是帕,1Pa=1N/m29.一定质量的理想气体处于平衡状态Ⅰ,现设法使其温度降低而压强升高,达到平衡状态Ⅱ,θS F则( )A .状态Ⅰ时气体的密度比状态Ⅱ时的大B .状态Ⅰ时分子的平均动能比状态Ⅱ时的大C .状态Ⅰ时分子的平均距离比状态Ⅱ时的大D .状态Ⅰ时每个分子的动能都比状态Ⅱ时分子平均动能大10.如图所示,气缸内装有一定质量的气体,气缸的截面积为S ,其活塞为梯形,它的一个面与气缸成θ角,活塞与器壁间的摩擦忽略不计,现用一水平力F 推活塞,汽缸不动,此时大气压强为P 0,则气缸内气体的压强P 为A .P=P 0+θcos S F B .P=P 0+S FC .P=P 0+S F θcosD .P=P 0+SF θsin11.如图所示,活塞质量为m ,缸套质量为M ,通过弹簧吊在天花板上,气缸内封住一定质量的空气 ,缸套与活塞无摩擦,活塞截面积为S ,大气压强为p 0,则 A. 气缸内空气的压强为p 0-Mg /S B .气缸内空气的压强为p 0+mg /SC .内外空气对缸套的作用力为(M +m )gD .内外空气对活塞的作用力为Mg12.关于热力学温度的下列说法中, 不正确的是( ) A.热力学温度与摄氏温度的每一度的大小是相同的 B.热力学温度的零度等于-273.15℃ C.热力学温度的零度是不可能达到的D.气体温度趋近于绝对零度时, 其体积趋近于零13.若在水银气压计上端混入少量空气, 气压计的示数与实际大气压就不一致, 在这种情况下( )A.气压计的读数可能大于外界大气压B.气压计的读数总小于实际大气压C.只要外界大气压不变, 气压计的示数就是定值D.可以通过修正气压计的刻度来予以校正14、根据分子动理论,下列关于气体的说法中正确的是 A .气体的温度越高,气体分子无规则运动越剧烈 B .气体的压强越大,气体分子的平均动能越大 C .气体分子的平均动能越大,气体的温度越高D .气体的体积越大,气体分子之间的相互作用力越大15. .如图所示,绝热隔板K 把绝热的气缸分隔成体积相等的两部分,K 与气缸壁的接触是光滑的。
两部分中分别盛有相同质量、相同温度的同种气体a 和b 。
气体分子之间相互作用势能可忽略。
现通过电热丝对气体a 加热一段时间后,a 、b 各自达到新的平衡 A .a 的体积增大了,压强变小了 B .b 的温度升高了C .加热后a 的分子热运动比b 的分子热运动更激烈D .a 增加的内能大于b 增加的内能16封闭在气缸内一定质量的气体,如果保持气体体积不变,当温度升高时,以下说法正确的是( )a KbA.气体的密度增大C.气体分子的平均动能减小B.气体的压强增大D.每秒撞击单位面积器壁的气体分子数增多17.如图是氧气分子在不同温度(0℃和100℃)下的速率分布,由图可得信息A.同一温度下,氧气分子呈现出“中间多,两头少”的分布规律B.随着温度的升高,每一个氧气分子的速率都增大C.随着温度的升高,氧气分子中速率小的分子所占的比例高D.随着温度的升高,氧气分子的平均速率变小18.一定质量的理想气体, 处于某一初态, 现要使它经过一些状态变化后回到原来初温, 下列哪些过程可能实现( )A.先等压压缩, 再等容减压B.先等压膨胀, 再等容减压C.先等容增压, 再等压膨胀D.先等容减压, 再等压膨胀19.用r表示两分子之间的距离,E p表示两个分子间的相互作用势能,当r=r0时时,两个分子之间引力等于斥力,设两个分子间相距较远时,E p=0,则()A.当分子间距r 变小时,引力减小,斥力增大B.当r>r0时,引力大于斥力,r增大时分子力做负功,E p增加C.当r<r0时,引力大于斥力,r减小时分子力做负功,E p减小D.当r=r0时, E p=020.如图所示,一端封闭的玻璃管开口向下竖直倒插在水银槽中,其位置保持固定。
已知封闭端内有少量空气。
若大气压强变小一些,则管中在水银槽水银面上方的水银柱高度h和封闭端内空气的压强p将如何变化( )A.h变小,p变大B.h变大,p变大C.h变大,p变小D.h变小,p变小21.一定质量的理想气体经历如图所示的一系列变化过程,ab、bc、cd和da这四个过程中在P-T图上都是直线段,其中ab的延长线通过坐标原点O,bc垂直于ab而cd 平行于ab,由图可以判断( )A.ab过程中气体体积不断增大B.bc过程中气体体积不断减小C.cd过程中气体体积不断增大D.da过程中气体体积不断减小22、下列说法不符合分子动理论观点的是A.用气筒打气需外力做功,是因为分子间的后斥力作用B.温度升高,布朗运动显著,说明悬浮颗粒的分子运动剧烈C.相距较远的两个分子相互靠近的过程中,分子势能先减小后增大D.相距较远的两个分子相互靠近的过程中,分子间引力先增大后减小23、关于气体的压强,下列说法中正确的是A.气体的压强是气体分子间的吸引和排斥产生的B.气体分子的平均速率增大,气体的压强一定增大C.当某一容器自由下落时,容器中气体的压强将变为零24、下列说法正确的是A.分子间同时存在着引力和斥力B.拉伸物体时,分子间引力增大,斥力减小,所以分子间引力大于斥力C.在真空容器中注入气体,气体分子迅速散开充满整个容器,是因为气体分子间的斥力大于引力D.当分子间相互作用力做正功时,分子势能增大25、用r表示两个分子间的距离,Ep表示两个分子间的相互作用的势能,当r=r0时两分子间斥力大小等于引力大小,设两分子相距很远时E P=0,则A.当r>r0时,Ep随r的增大而增加B. 当r<r0时,Ep随r的减小而增加C.当r>r0时,Ep不随r而变D. 当r=r0时,Ep=026、关于布朗运动,下列叙述正确的是:A.我们所观察到的布朗运动,就是液体分子的无规则运动B.布朗运动是悬浮在液体中的固体分子的无规则运动C.布朗动动的激烈程度与温度无关D.悬浮在液体中的颗粒越小,它的布朗运动就越显著17.若以M表示水的摩尔质量,V表示水的摩尔体积,ρ表示水的密度。
N A为阿伏加德罗常数,m表示水的分子质量,V′表示水分子体积。
则下列关系中正确的是()A.N A=V/V′B.V=M/ρC.m=M/N A D.V=ρM28.关于分子势能下面说法中,正确的是()A.当分子距离为r0=10-10m时分子势能最大B.当分子距离为r0=10-10m时分子势能最小,但不一定为零C.当分子距离为r0=10-10m时,由于分子力为零,所以分子势能为零D.分子相距无穷远时分子势能为零,在相互靠近到不能再靠近的过程中,分子势能逐渐增大29.下列说法正确的是()A.一定质量的理想气体,温度不变时,体积减小,压强增大B.在失重的情况下,密闭容器内的气体对器壁没有压强C.外界对气体做功,气体的内能一定增大D.气体的温度越高,气体分子无规则运动的平均动能越大30.被活塞封闭在气缸中的一定质量的理想气体温度升高,压强保持不变,则:()(A)气缸中每个气体分子的速率都增大(B)气缸中单位体积内气体分子数减少(C)气缸中的气体吸收的热量等于气体内能的增加量(D)气缸中的气体吸收的热量大于气体内能的增加量三、计算题:31、如图所示,重G1的活塞a和重G2的活塞b,将长为L的气室分成体积比为1﹕2的A、B两部分,温度是127℃,系统处于平衡状态,当温度缓慢地降到27℃时系统达到新的平衡,求活塞a、b移动的距离。
热 学 测 试 题 答 题 卷二、计算题:每题6分,共18分31解:如图所示,设b 向上移动y ,a 向上移动 x , 因为两个气室都做等压变化 所以由盖.吕萨克定律有:对于A 室系统: 300)(4003131S x L LS -= (4分) 对于B 室系统: 300)(4003232S x y L LS +-= (4分) 解得:x=L/12 (2分) y=L/4 (2分)姓名_________班级________学号______。