焦炭反应性及反应后强度的测定
- 格式:doc
- 大小:20.50 KB
- 文档页数:2
焦炭反应性(CR l )及反应后强度(CSR )和焦炭抗碱性试验研究汪海涛,胡红玲,付利俊,金蝶翔(包头钢铁集团公司焦化厂,内蒙古包头 014010) 摘 要:通过大量的试验研究得知,利用焦炭的反应性及反应后强度可以很好地预测焦炭在高炉内的反应行为,通过对比试验可以得到冷态强度与热态强度之间的关系。
同时对焦炭抗碱性的研究了解了焦炭在高炉内碱富集情况下的反应行为。
关键词:焦炭;反应性;反应后强度;抗碱性 中图分类号:T K 22916 文献标识码:A 文章编号:1007—6921(2004)24—0044—031 前言焦炭在高炉中主要起到热源、还原剂和疏松骨架的作用。
尤其高炉过程都是发生在上升煤气和下降炉料的相向运动和相互作用之中,因此,整个料柱的透气性是高炉操作的关键。
焦炭反应性(CR I )及反应后强度(CSR )是衡量焦炭热反应性能的一个重要指标,焦炭与C 02的反应程度直接反映了其在高炉中的行为。
因此加强对该指标的试验研究可以很好地预测焦炭在高炉中的反应行为,从而生产出合格的焦炭为高炉炼铁做出应有的贡献。
2 焦炭的反应性(CR I )和反应后强度(CSR )的关系2.1 焦炭的反应性(CR I )和反应后强度(CSR )的概念焦炭的反应性是指焦炭与二氧化碳、氧和水蒸气等进行化学反应的能力,焦炭反应后强度是指反应后的焦炭在机械力作用下抵抗碎裂和磨损的能力。
焦炭在高炉炼铁进程中,要与二氧化碳、氧和水蒸气发生化学反应。
由于焦炭与氧和水蒸气的反应有与二氧化碳的反应类似的规律,因此采用焦炭与二氧化碳间的反应特性评定焦炭的反应性。
2.2 数据分析根据国标规定的焦炭反应性和反应后强度测定方法,我们对焦化厂生产的焦炭做了大量的反应性与反应强度指标的测定,积累了大量的试验数据,见别重要的问题,一旦小于此长度就会带来安全隐患。
东部区一栋假期中维修的教学楼,两名工人对墙面凿毛,施工到大梁端部,没凿几下,即造成大梁端部破坏,大梁落下,外墙向外倾覆,两名工人一死一伤。
焦炭反应性及反应后强度机械制样技术规范篇一:焦炭反应性及反应后强度试验操作规程焦炭反应性及反应后强度试验操作规程(一)取样与制样1.取样按GB1997规定的取样方法,按比例取大于25mm焦炭20kg,弃去泡焦和炉头焦。
2.制样方法(1)用颚式破碎机破碎、混匀、缩分出10kg,用Φ25mm、Φ23mm圆孔筛筛分;大于Φ25mm的焦块再破碎、筛分。
(3)取Φ23mm的筛上物,去掉片状焦和条状焦,保留较厚片状焦和和较粗条状焦用手工修整成颗粒状焦片,用Φ23mm圆孔筛筛分后与未经过修整的颗粒状焦块混匀。
缩分得焦块2kg。
(4)分两次(每次1kg)置于I型转鼓中,以20r/min的转速转50r(2分30秒)。
(5)取出后再用Φ23mm圆孔筛筛分。
(6)将筛上物缩分出900g作为试样。
用四分法将试样分成4份,每份不得少于220g.(7)在170-180度的烘箱中,烘干时间不低于2小时;取出焦炭冷却至室温。
取出后再用Φ23mm圆孔筛筛分。
称取200g±0.5g(二)试验过程1. 先将气体减压阀打开。
2. 按以下要求,对试验用焦炭进行称量、并装入反应罐中。
(1)称量200克±0.5g焦炭,记为m0,盖上筛盖,大幅度筛动20下,筛去浮灰。
(2)将反应罐下部先放一个筛板,再放73颗左右高铝球,拨平后再放一个筛板,使H球+筛≈90~100mm。
(5)将称量好的焦炭一半放入反应罐中将筛板压住再将反应罐倾斜,将剩下的的焦炭放入反应罐中,保持反应罐倾斜,将柔性垫和炉盖插入反应罐中扶正。
H焦≈80mm。
(6)称量装完后余下的筛底中的粉焦记为m粉,则m=m0-m 粉。
(7)拧上反应罐法篮的螺钉,以便密封(注意用力均匀)。
3.将反应罐装入炉内,将热电偶插入护管底部,接通进气管和出气管;将热电偶信号线、挂在支架上避免碰到炉体。
4.开配电箱内的空气开关,开控制柜总电源开关。
5.开计算机,进入焦炭反应控制系统:(1)调用1100开度制度并发送给下位机;(2)输入文件名;(3)开控制柜上的启动开关;(4)在温度控制画面中选择阀门自动或手动控制,点击启动按钮。
焦炭反应性及反应后强度的测定1主要内容及适用范围规定了测定焦炭反应性及反应后强度的方法提要、实验仪器、设备和材料、试样的采取和制备、实验步骤、试验的结果计算和精密度。
适用高炉炼铁用焦的焦炭反应性及反应后强度的测定,其它用途可参照执行。
2 原理称取一定质量的焦炭试样,置于反应器中,在1100+5℃时与二氧化碳反应2小时后,以焦炭质量损失的百分数表示焦炭反应性(CRI%)。
反应后的焦炭,经I型转鼓试验后,大于lOmm粒级焦炭占反应后焦炭的质量百分数,表示反应后强度(CSR%)。
3 试验仪器、设备和材料电炉、反应器、I型转鼓、转鼓控制器、圆孔筛、干燥箱、架盘天平、红外线灯泡、热电偶、筛板、高铝球、托架、反应器支架、块焦反应监控仪、计算机显示器、二氧化碳供给系统及氮气供给系统中的(转子流量计、洗气瓶、干燥塔、,缓冲瓶)等。
4 技术条件4.1 升温速度:O-1100℃,平均升温速度为8-16℃/min。
4.2 控温精度:1100±5℃,通二氧化碳j言面度在10-25min内恢复到1100±5℃。
4.3 通气温度:400℃时通氢气,1100℃切断氮气通二氧化碳。
4.4 温度显示误差:不大于±5℃。
4.5 时间显示误差:24小时内不大子30s。
4.6 电源电压:220(±10%)V,500HZ。
4.7 最大负载功率:8千瓦。
4.8 使用环境:温度10-35℃,湿度不大于80%,周围无强电磁场及腐蚀性气体的场所。
5 操作程序5.1 试验前试样的采取和制备5.1.1 按GBl997规定的取样方法,按比例取大于25mm焦炭20kg,弃去泡焦和炉头焦。
用颚式破碎机破碎、混匀、缩分出10kg,再用φ25mm、φ21mm圆孔筛筛分,大于φ25mm的焦块再破碎、筛分,取φ21mm筛上物,去掉片状焦和条状焦,缩分得焦块2kg,分两次(每次lkg)置于I型转鼓中,以20r/min的转速,转50r,取出后再用φ21mm圆孔筛筛分,将筛上物缩分出900g作为试样,用四分法将试样分成四份,每份不少于220g。
焦炭反应性及反应后强度试验中注意事项:焦炭反应性及反应后强度是评价焦炭热性质的重要指标,对高炉冶炼影响很大。
近年来随着高炉大型化,该两个指标越来越受到人们的重视,许多国家根据国资源和技术需要制定不同的测试方法,并用相应的指标来控制焦炭的质量,我国于1983年制定了国家标准,但是由于试验条件不易掌握,导致两指标的测定值误差较大,影响了对焦炭质量的评价。
根据几年来的工作经验,提出几个测定中注意的问题仅供大家参考。
1.自测观察其大小是否均匀外,每次试验不仅要保证试样质量符合标准。
同时还要尽量使试样的焦块数目相等。
在反应器底部装100mm后高铝球时要装平,装焦炭块时也要均匀装平。
2.按GB/T4000-2008规定,焦炭在装入反应器前需在烘箱中干燥,温度在170-180度,干燥2小时,去除焦炭外表面吸收的水分,放入干燥器中冷却到室温。
称重(200±0.5g)入炉,为防止试验过程中焦炭丢失影响试验的准确性,试验做完后,要重新数一数焦块数目,检查与装入数目是否一致,还要检查以下反映后的焦块,如果有说明取样不好,数据的代表性和准确性差。
1.严格按照国标制焦炭样使粒度形状尽量接近。
(1).按GB/T4000-2008规定的制样方法,按比例取大于25mm焦炭20kg,弃去泡焦和炉头焦。
用颚式破碎机破碎、混匀、缩分出10kg,再用25mm、23mm圆孔筛筛分,大于25mm焦块再破碎、筛分。
取23mm筛上物,去掉薄片状焦和细条状焦,保留较厚片状焦和较粗条状焦,并将较厚片状焦和较粗条状焦用手工修整成颗粒状焦块,用制样方法一(1)在厚度为8-10mm的钢板上,钻若干个直径为21mm的圆孔钢板,在此钢板砸出110粒焦炭试样。
(2)在170-180度的烘箱中,烘干时间不低于2小时;取出焦炭冷却至室温。
(3)用二分法将试样分成2份,放入干燥瓶中备用。
制样方法二(1)用颚式破碎机破碎、混匀、缩分出10kg。
(2)用Φ25mm、Φ21mm圆孔筛筛分;大于Φ25mm的焦块再破碎、筛分。
焦炭反应性与反应后强度的再探讨摘要:焦炭在高炉内起骨架、还原剂和燃料的作用,对于大高炉来说,骨架作用尤为重要。
随着国内高炉的大型化和喷煤比的不断提高,焦炭的反应性及反应后强度(CRI与CSR)越来越受到炼铁工作者的重视,有些炼铁工作者甚至直接将其理解为焦炭在高炉中的热态性能,将其列为指导高炉操作的原则性指标。
本文就焦炭反应性与反应后强度展开探讨。
关键词:焦炭;反应性;强度;热态性能焦炭反应性(CRI)与反应后强度(CSR)是评价焦炭质量最重要的性能指指标之一,焦炭在高炉炼铁、铸造化铁和固定床气化过程中,均能够与二氧化碳、氧气和水蒸气发生化学反应,其反应性质量直接影响到工业生产效率,为了增强对焦炭性能的了解,从CRI和CSR两项指标出发,为生产合格的焦炭等生产活动提供指导。
1焦炭CRI与CSR测定方法的来源与变革我国焦炭反应性及反应后强度的测定方法是参考新日铁1982年在《燃料协会志》上提出的《高炉用焦炭的CO2反应后强度试验方法》所制定的,该标准在1983年由冶金部鞍山热能研究所首次提出,先后于1996年和2008年进行了修订,修订的内容主要是在制样方面,在焦炭CRI及CSR的测定过程上,与新日铁标准、美国标准和ISO标准仍然具有相似性。
其测定的核心步骤是:将焦炭样破碎成23~25mm的粒状焦块,弃去炉头焦、泡焦、薄片状焦和细条状焦,将厚片状焦和较粗条状焦手工修整成颗粒状焦块,缩取2kg后置于I型转鼓中以20r/min的转速旋转50r,再用23mm圆孔筛筛分,缩取900g筛上物作为试样,用四分法将试样分成4份,每份不少于220g,置于170~180℃烘箱中烘干2h,焦炭冷却至室温后再筛取23mm以上焦炭颗粒200±0.5g作为测试用样品。
将焦炭样品装入反应器,于1100℃下以5L/min的流量通入CO2气体,反应2h,停止加热,通入氮气保护,让反应后的焦粒自然冷却。
冷却的焦炭样称重后全部装入I型转鼓,以20r/min的转速旋转30min,取出后用10mm圆孔筛筛分、称重。
燃料与化工Fuel &Chemical Processes2012年3月第43卷第2期随着高炉生产大型化和喷煤技术的应用,焦炭在高炉中的骨架作用更为重要,焦炭反应性(CRI )及反应后强度(CSR )已经成为评价焦炭质量优劣的重要指标[1-2]。
本文对影响CRI 及CSR 检测方法的各种因素进行分析,以找到测试结果重现性较差的原因,从而使焦炭热性能实验能够真实反应焦炭质量。
1实验部分1.1实验设备电子天平:MP2100型;干燥箱:101型;标准筛:23mm 、25mm 、10mm ;I 型转鼓机:转速20±1.5r/min ;反应器:高温合金钢制成;S 分度热电偶:规格700mm ;氮气:氮含量大于99.99%;CO 2气体:CO 2含量大于99.99%;焦炭反应性装置:KF —100型,鞍山热能研究院制造。
1.2实验方法按GB 1997取样,并按GB/T 4000—2008制取准23~25mm 的样品900g ,缩分出220g 左右,烘干后待用。
称取200g 样品置于反应器中,在1100℃通CO 2气体反应2h ,以焦炭质量损失的百分数表示CRI 。
反应后的焦炭再以20r/min 的转速在I 型转鼓机转30min 后,用大于10mm 粒级的焦炭占反应后焦炭的质量百分数表示CSR 。
2影响因素与结果讨论2.1试样的影响样品的均匀性影响实验结果的重复性。
样品的粒度变化造成焦粒表面积的差异,使实验过程中反应界面不同,从而造成实验结果的差异。
GB/T4000—2008中已经将样品的粒度范围由准21~25mm 修订为准23~25mm ,实验过程中样品的粒度和粒数趋于一致。
取制样的人为因素也影响实验结果的重复性。
保留泡焦和焦头的热性能实验结果表明,CRI 极差为6.1%,CSR 极差为9.0%,大大超出实验重复性要求[3]。
虽然GB/T 4000—2008中明确要求弃去泡焦,但泡焦的区分和判断上的人为差异仍会造成样品的差异。
收稿日期:2006-06-07申晓瑗(1962~ ),工程师;650211 云南省昆明市。
焦炭反应性及反应后强度试验中应注意的几个问题申晓瑗 董旭滨(昆明焦化制气厂检测试验中心)Several problems of measuring coke reactivity and post 2reaction strengthShen Xiaoyuan Dong Xubin (Kunming Coking and gas making factory ) 焦炭反应性及反应后强度,是评价焦炭热性质的重要指标,对高炉冶炼影响很大。
近年来随着高炉大型化,这两指标越来越受到人们的重视,许多国家根据本国资源和技术需要制定了不同的测试方法,并用相应指标控制焦炭质量。
我国于1983年就制定了国家标准,并于1996年进行了修定,随着钢产量的飞速发展G B4000几乎已被所有企业接受,焦炭反应性及反应后强度测定已成为企业的日常工作。
但是由于试验条件掌握不好,两指标的测定值相差较大,影响了对焦炭质量的评价。
根据几年来的工作经验,提出几个测定中应注意的问题,供大家参考。
1 在取样和制样的过程中除了严格按照国家标准去做以外,还应使焦样的粒度和形状尽量接近 G B/T4000-1996修订了G B4000-83中的制样方法,改人工调制焦球为机械制样,焦样粒度由 19~21改为 21~25,不但范围有所扩大,焦块形状也不如老标准严格。
由于焦块粒度和形状对反应性有一定影响,粒度范围宽,形状变化大,必然会使试验数据分散。
因此在最后选取试样时一定要选择粒度相近的焦块,焦块粒度尽可能在 23左右。
最简单的办法除了目测看大小是否均匀外,每次试验不但要保证试样重量符合标准,还一定要使试样的焦块数目相等。
一般情况下普通冶金焦可取42块,捣固焦可取39块,每次试验都要如此。
装100mm 厚高铝球时要装平,装焦块时也要装均匀装平。
为防止试验过程中焦样丢失,影响试验的准确性,试验做完后,要重新数一数焦块数目,看与装入数目是否一致。
焦炭反应性及反应后强度测定中应注意的问题【摘要】焦炭反应性和反应后强度是指导高炉生产的重要指标,但焦炭反应性及反应后强度测定中测定结果受试样加工、反应温度及保护气体流量等因素的影响都很大。
所以,如何控制好这些因素,使测定结果能正确指导生产,是人们一直关心的问题。
本文通过大量实验数据,总结出焦炭反应性及反应后强度测定中应注意的事项。
【关键词】反应性和反应后强度;样品形状;升温速度;反应温度;气体流量焦炭反应性和反应后强度是指导高炉生产的重要指标,近年来,高炉炼铁越来越大型化,此项指标可较好的反映焦炭的热性能情况以及在高炉中的骨架作用,指导焦炭的生产和高炉使用焦炭[1]。
在钢铁产量快速发展的今天,焦炭反应性及反应后强度测定已成为钢铁企业分析检验部门的日常工作。
随着钢铁企业之间竞争的日益加强,GB/T4000-2008[2]已被许多企业采用,但由于不同的操作人员对实验条件的掌握不尽相同,影响了对焦炭质量的评价。
本文通过丰富的实验数据,总结出焦炭反应性和反应后强度测试中需要注意的问题。
1.在制样过程中,应尽量选取接近球形的样品来试验GB/T4000-2008修定了GB/T4000-1996中的制样方法,焦样粒度由φ21 25改为φ23 25,焦炭样品的粒度范围缩小了,使所取焦炭样品粒度更接近,使试验结果更准确。
但对试样的具体形状,没做严格要求,这样一来,不同的试验者选取试样的标准不一样,导致试验结果相差较大。
通过大量实验发现,如果在筛子上的样品试验者不认真挑选,所取的片状焦过多,就会使测得的反应性偏高,反应后强度偏低。
片状焦越多,焦炭反应性偏高越多,焦炭反应后强度偏低得越多。
而所选的焦炭越接近球形,所测得的反应性及反应后强度值越接近真实值。
2.升温速度要按要求进行,反应温度要严格控制通过试验发现,升温速度太快或太慢都会影响反应结果,一般升温时间在100min附近最好,升温速度过快,就会在保护气对焦炭没保护好之前,焦炭由于温度过高而与氧气发生反应,使测得的反应性严重偏高,反应后强度结果严重偏低。
块焦炭反应性和反应后强度检验稳定性的探讨目前焦炭的质量对高炉生产的稳定性、炼铁的成本、物料量大影响都比较大。
特别是在1350m2以上的大高炉对焦炭的各项指标要求比较高,随着燃料的紧缺,焦炭的各项指标波动越来越大,检验工作的难度越来高,要求也越来越严。
因此焦炭的热强度已经成为衡量焦炭质量指标的基准。
焦炭反应性(CRI)和反应后强度(CSR)是表征焦炭热态强度的重要指标,焦炭与CO2的反应程度直接反映了焦炭在高炉中的行为,因此焦炭热态检验的稳定性为高炉生产提供强有力的保障。
标签:焦炭反应性;影响因素;制样粒度;温度控制1 试验原理、定义、试验技术条件(1)试验原理是焦炭在1100℃高温下与CO2发生反应,测定反应后焦炭失重率及其机械强度,即焦炭反应性及反应后强度。
(2)焦炭反应性指块度为φ23mm-φ25mm焦炭在1100±5℃时与CO2反应2h后,焦炭重量损失的百分数。
(3)反应后强度指反应后焦炭,经I型转鼓试验后,大于10mm粒级焦炭占反应后焦炭的重量百分数。
(4)试验技术条件。
a.控温范围:0~1100℃。
b.控温精度:1100±5℃。
c. CO2和N2的气体控制流量及精度:入口气体压力允许范围为0.2~0.3MPa,最大流量为20L/min,控制精度不大于±2%。
d.温度显示误差:不大于±5℃。
e.时间显示误差:24小时内不大于30S。
f.电源电压:220(±10%)V,50Hz。
g.最大负载功率:8千瓦。
h.使用环境:温度10~35℃,湿度不大于80%,周围无强电磁场及腐蚀性气体的场所。
i.升温时N2为0.8L/min,反应时CO2为4L/min,冷却时N2为2.0L/min。
2 试验的采取制备按GB1997规定的取样方法,按比例取不小于25mm焦炭20kg,弃去泡焦和炉头焦。
用颚式破碎机破碎、混匀、缩分出10kg,再用φ25mm、φ23mm圆孔筛筛分,大于φ25mm的焦块再破碎筛分,取φ23mm筛上物,去掉片状焦,缩分得焦块2kg,分两次(每次1kg)置于I型转鼓中,以20r/min的转速,转50r,取出后再用φ23mm圆孔筛筛分,将筛上物缩分出900g作为试样,用四分法将试样分成四份,每份不少于220g。
探究焦炭反应性及反应后强度测定中应注意问题邝宏春【摘要】Based on mass literature information,starting from aspects of thermocouple,CO 2 airflow,constant temperature section,temperature, parameters determination of automatic temperature controlling system,and strict airing system,the article summarizes coke reactivity and post-re-action strength measurement matters,with a view to improve measurement accuracy of the above-mentioned two indexes.%通过查阅大量的文献资料,从热电偶、CO 2气体流量、恒温段、温度、自动控温系统中参数的设定、供气系统的严密性等方面,总结了焦炭反应性及反应后强度测定中应注意的问题,以期提高这两个指标测定结果的准确性。
【期刊名称】《山西建筑》【年(卷),期】2016(042)032【总页数】3页(P99-100,101)【关键词】焦炭;热电偶;控温系统;供气系统【作者】邝宏春【作者单位】山西省地质勘查局二一三地质队,山西临汾 041000【正文语种】中文【中图分类】TF526.1作为高炉冶炼作业中评价焦炭热性质的关键参数,焦炭反应性及反应后强度在很大程度上影响着高炉冶炼。
并且随着高炉逐渐向着大型化发展,人们对上述2个指标的关注程度越来越高。
大多数国家都依据自己的技术、资源情况,研发了不同的测定方法,同时运用这两种指标来提高焦炭质量。
我们国家在1983年的时候也有了自己的标准,1999年,2008年这两年又对其做出了修订。
焦炭反应性及反应后强度的测定
1主要内容及适用范围
规定了测定焦炭反应性及反应后强度的方法提要、实验仪器、设备和材料、试样的采取和制备、实验步骤、试验的结果计算和精密度。
适用高炉炼铁用焦的焦炭反应性及反应后强度的测定,其它用途可参照执行。
2 原理
称取一定质量的焦炭试样,置于反应器中,在1100+5℃时与二氧化碳反应2小时后,以焦炭质量损失的百分数表示焦炭反应性(CRI%)。
反应后的焦炭,经I型转鼓试验后,大于lOmm粒级焦炭占反应后焦炭的质量百
分数,表示反应后强度(CSR%)。
3 试验仪器、设备和材料
电炉、反应器、I型转鼓、转鼓控制器、圆孔筛、干燥箱、架盘天平、红外线灯泡、热电偶、筛板、高铝球、托架、反应器支架、块焦反应监控仪、计算机显示器、二氧化碳供给系统及氮气供给系统中的(转子流量计、
洗气瓶、干燥塔、,缓冲瓶)等。
4 技术条件
4.1 升温速度:O-1100℃,平均升温速度为8-16℃/min。
4.2 控温精度:1100±5℃,通二氧化碳j言面度在10-25min内恢复到1100±5℃。
4.3 通气温度:400℃时通氢气,1100℃切断氮气通二氧化碳。
4.4 温度显示误差:不大于±5℃。
4.5 时间显示误差:24小时内不大子30s。
4.6 电源电压:220(±10%)V,500HZ。
4.7 最大负载功率:8千瓦。
4.8 使用环境:温度10-35℃,湿度不大于80%,周围无强电磁场及腐蚀性气体的场所。
5 操作程序
5.1 试验前试样的采取和制备
5.1.1 按GBl997规定的取样方法,按比例取大于25mm焦炭20kg,弃去泡焦和炉头焦。
用颚式破碎机破碎、混匀、缩分出10kg,再用φ25mm、φ21mm圆孔筛筛分,大于φ25mm的焦块再破碎、筛分,取φ21mm筛上物,去掉片状焦和条状焦,缩分得焦块2kg,分两次(每次lkg)置于I型转鼓中,以20r/min的转速,转50r,取出后再用φ21mm圆孔筛筛分,将筛上物缩分出900g作为试样,用四分法将试样分成四份,每份不少于220g。
5.1.2 试验焦炉的焦炭可用40mm-60mm粒级的焦炭进行制样。
5.1.3 将制好的试样放入干燥箱中,在170—180℃温度下烘干2小时,取出焦炭冷却至室温,称取200±5g待用。
5.2 试验前烘炉
5.2.1 检查电源电压是否正常,炉温控制仪上“手动/自动”开关是否在自动位置,控制电缆插头是否插好。
5.2.2 将反应器盖置子炉顶的托架上吊放在电炉内,热电偶插入热电偶套管内,托架与电炉盖问放置石棉板隔热。
打开计算机电源开关,启动计算机进入Windows98操作系统。
当计算机启动完成后,用鼠标双击桌面上的“块焦反应性控制系统”图标,即可进入操作,同时按下炉温控制仪电源开关。
5.2.3用鼠标单击“运行”单击“试验条件”将反应温度1100℃改成500℃即可,时间2小时,烘炉完成将反应温度500℃改为1100℃。
5.3 试验步骤
5.3.1 称取200±0.5g焦炭试样(大约38-42个之间),在反应器底部铺一层高约100mm的高铅球(40个),上面平放筛板。
然后装入已各好的焦炭试样,注意装样前调整好高铝球高度,使反应器内焦炭层处于电炉恒温区内,将与上盖相连的热电偶套管插入料层中心位置,用螺丝将盖与反应器简体固定,将反应器置于炉顶的托架上吊放在电炉内,托架与电炉盖间放置石棉板隔热。
5.3.2 将反应器进气管、排气管分别与供气系统,排气系统连接。
将测温热电偶插入反应器热电偶套管内,检查气路,保证严密。
5.3.3 用鼠标单击“运行”用炉温控制仪调节电炉加热。
先用手动调节,电流由小到大,在15min之内逐渐调至最大值,然后将按钮拨到自动位置,升温速度为8-16℃/min。
5.3.4 当料层中心温度达到400℃时,以转子流量计上O.05L的流量通氮气,保护焦炭防止其烧损(通氮气前用夹子将二氧化碳供给系统夹住,以免造成硫酸溶液倒流入缓冲瓶中)。
5.3.5 当料层中心温度达到1050℃时,开红外线灯,预热二氧化碳气瓶出口处,当料层中心温度达到1100℃时,切断氮气,改通二氧化碳,流量为0.3L(在转子流量计上控制)。
通二氧化碳后料层中心温度在10-25min内恢复到1100±5℃(切断氮气时必须将夹子取下把氮气供给系统夹住,以免造成焦性没食子酸的碱性溶液倒流入缓冲瓶中)。
5.3.6 反应2小时,停止加热,切断二氧化碳气路,改通氮气,流量控制在O.12L(在转子流量计上控制)。
拔掉排气管,迅速将反应器从电炉内取出,放在支架上继续通氮气,时间半小时,当焦炭冷却到100℃以下,打开反应器盖,倒出焦炭,称重,记录。
5.3.7 将反应后的焦炭全部装入I型转鼓内,以20r/min的转速共转30min,总转数为600r,然后取出焦炭用大于lOmm筛子进行筛分,称重,记录。
5.3.8 用鼠标单击“停止运行”单击“计算”进入块焦反应性控制系统试验数据处理,将所做试验的有关数据输入对应的空格中后单击“开始计算”单击“生成报表”单击“确定“后试验完成。
5.3.9试验结束后,先按下监控仪电源开关,关闭电源,然后退出“块焦反应性控制系统”并关闭计算机。
6计算
6.1 焦炭反应性指标以损失的焦炭质量占反应前焦炭样总质量的百分数表示。
焦炭反应性CRI%计算为:100(%)1×−=mmmCRI 式中:m—表示焦炭试样质量g ml—表示反应后残余焦炭质量g
6.2 反应后强度指标以转鼓后大于10mm粒级焦炭占反应后残余焦炭的质量百分数表示,反应后强度CSR%计算为:100(%)12×=mmCSR 式中:m2—表示转鼓后大于10mm粒级焦炭质量g
7 平行测定允许差值
7.1 焦炭反应性CRI及反应后强度CSR的重复性r不得超过下列数值:CRI:r≤2.4%CSR:r≤3.2%
7.2 焦炭反应性及反应后强度的试验结果均取平行试验的算术平均值。
8 冶金焦的反应性,反应后强度的具体标准:
反应性(CRI)%:一级≤30
二级≤35
三级不做要求
反应后强度(CSR)%:
一级≥55
二级≥50
三级不做要求
9 疑难问题解答
9.1 主回路无电压输出:
9.1.1检查电源电压是否正常。
9.1.2检查炉温控制“手动/自动”开关是否在自动位置。
9.1.3检查控制电缆插头是否插好。
9.2 温度控制失效
9.2.1检查热电偶及补偿导线正负极性是否接错。
9.2.2 检查控制参数设置是否合理。
9.3 温度显示不稳定及温度曲线有毛刺
9.3.1 关闭Windows其它程序。
9.3.2 禁止屏幕保护程序。
9.3.3 检查反应器是否碰到电炉炉膛内壁。
9.3.4检查电炉外壳是否接地良好。
9.4气路控制失效
9.4.1检查气路控制“手动/自动”开关是否在自动位置。
9.4.2检查气路控制开关是否在“开”位置。
9.4.3检查控制电缆插头是否插好。
9.4.4检查电磁阀接线是否接好。