组合图形中圆的周长与面积
- 格式:doc
- 大小:110.00 KB
- 文档页数:6
六年级数学上册组合图形的周长和面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
专题01 圆的周长和面积(组合图形)答案解析一.计算题(共20小题)1.计算下面图形阴影部分的周长和面积。
(单位:厘米)【分析】根据题意,圆的直径为(4×3)厘米,阴影部分的周长等于圆的周长的一半加上5条4厘米长的线段之和,利用圆的周长公式:C=πd,代入数据即可求出阴影部分的周长;阴影部分的面积等于圆的面积的一半减去边长为4厘米的正方形面积,分别利用圆的面积和正方形的面积公式求出这两个图形的面积,再相减即可得解。
××÷+×【解答】3.14(43)245×÷+=3.1412220+=18.8420=38.84(厘米)2××÷÷−×3.14(432)244=2×÷−3.146216×÷−=3.1436216−=56.5216=40.52(平方厘米)即阴影部分的周长是38.84厘米,面积是40.52平方厘米。
2.如图中,大圆的半径等于小圆的直径。
请计算阴影部分的周长。
【分析】观察图形可知,阴影部分的周长=大圆的周长+小圆的周长,再根据圆的周长公式:C=πd或C =2πr,据此进行计算即可。
【解答】3.14×2×4+3.14×4=6.28×4+3.14×4=25.12+12.56=37.68(cm)则阴影部分的周长为37.68cm。
3.计算下面图形的周长与面积。
【分析】周长等于大圆周长的一半加上两个半圆的周长(即一个小圆的周长);面积等于大圆面积的一半减去两个小圆面积的一半(即一个小圆的面积),据此解答。
【解答】周长:3.14×40÷2+3.14×(40÷2)=125.6÷2+3.14×20=62.8+62.8=125.6(cm)面积:3.14×(40÷2) 2÷2-3.14×(40÷4) 2=3.14×202÷2-3.14×10 2=3.14×400÷2-3.14×100=1256÷2-314=628-314=314(cm2)4.计算下边图形的周长和面积。
六年级圆的周长奥数题一、基础题型1. 一个圆的半径是3厘米,它的周长是多少厘米?- 解析:根据圆的周长公式C = 2π r(其中C表示周长,π通常取3.14,r为半径)。
当r = 3厘米时,C=2×3.14×3 = 18.84厘米。
2. 已知圆的直径是8分米,求这个圆的周长。
- 解析:因为圆的周长C=π d(d是直径),当d = 8分米时,C = 3.14×8=25.12分米。
3. 一个圆的半径扩大到原来的2倍,它的周长扩大到原来的几倍?- 解析:设原来圆的半径为r,则原来的周长C_1 = 2π r。
半径扩大2倍后变为2r,此时周长C_2=2π×(2r) = 4π r。
C_2div C_1=(4π r)div(2π r)=2,所以它的周长扩大到原来的2倍。
4. 有一个圆形花坛,半径是5米,在它的周围铺一条宽1米的小路,求小路的外沿周长是多少米?- 解析:小路的外沿半径为5 + 1=6米。
根据圆的周长公式C = 2π r,当r = 6米时,C=2×3.14×6 = 37.68米。
5. 一个半圆的直径是10厘米,求这个半圆的弧长(周长的一半)。
- 解析:圆的周长C=π d,半圆的弧长为(1)/(2)π d。
当d = 10厘米时,弧长=(1)/(2)×3.14×10 = 15.7厘米。
二、组合图形中的圆周长问题6. 正方形的边长为10厘米,在正方形内画一个最大的圆,求这个圆的周长。
- 解析:正方形内最大的圆的直径等于正方形的边长,即d = 10厘米。
根据圆的周长公式C=π d,C = 3.14×10 = 30.4厘米。
7. 长方形的长是12厘米,宽是8厘米,在长方形内画一个最大的半圆,求这个半圆的弧长。
- 解析:因为长方形的长是12厘米,宽是8厘米,所以这个半圆的直径最大为12厘米。
半圆的弧长=(1)/(2)π d=(1)/(2)×3.14×12 = 18.84厘米。
组合图形中圆的周长与面积一、学习目标:1.巩固加深对圆的周长与面积的理解与计算,掌握在组合图形中求圆的周长及面积的方法。
2.提高自己思维的灵活性。
二、知识基础:1.什么叫圆的周长?围成圆的曲线的长叫圆的周长。
什么叫圆的面积?圆所占平面的大小叫圆的面积?2.怎样求圆的周长和面积?圆的周长:c=πd 或c=2πr 。
圆的面积:2r S π=3.一个边长2分米的正方形剪下一个最大的圆,圆的周长为(6.28)分米。
面积为(3.14)平方分米。
4.在一个正方形内做一个最大的圆,圆的面积是正方形面积的(4π) 正方形的边长就是圆的直径,设圆的直径为2r ,半径为r ,圆面积为2r π正方形边长就为2r ,正方形面积为24)2()2(r r r =⨯ 所以4422ππ==÷r r 正方形面积圆面积三、方法例谈例1:将半径分别为3厘米和2厘米的两个半圆如图放置,求阴影部分周长。
请认真看图:阴影部分周长是由哪些组合起来的?怎样分别求出这几部分的长度?厘米31=B O厘米1231212=-=-=O O A O A OAC=2—1=1厘米112r C O π=; 1121r C O π= 2221r C O π= cm r r C C O O 7.15214.3314.321212121=⨯+⨯=+=+ππ 阴影部分周长:厘米两个半圆7.197.15131=++=++AC B O答:阴影部分周长为19.7厘米例2:如图:从点A 到点B 沿大圆周长和沿着中、小圆的周长走,路程相同吗?①认真看图:大圆周是由哪几部分组成?中、小圆周是由哪几部分组成?②这题是要我们求什么?求大圆的半周长,求中、小圆的半周长,然后进行比较大小③怎样进行计算呢?设中圆直径为D ,小圆直径为d ,则:大圆直径为D+d ,所以d D d D C πππ2121)(21+=+=大 D C π21=中 d C π21=小 d D C C ππ2121+=+小中 所以:小中大C C C +=这就是说两种求法经过的路程是相同的。
圆旳组合图形面积姓名:【知识与措施】要解决与圆有关旳题目,需要注意如下几点:1、纯熟掌握有关圆旳概念和面试公式:圆旳面积= 圆旳周长=扇形旳面积= 扇形旳弧长=(n是圆心角旳度数)2、掌握解题技巧和解题措施:加减法、分割重组法、旋转平移法、对折法、抵消法、等积变形法、等量代换法、添辅助线法。
例1.求阴影部分旳面积。
(单位:厘米)解:这是最基本旳措施:圆面积减去等腰直角三角形旳面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分旳面积。
(单位:厘米)解:这也是一种最基本旳措施用正方形旳面积减去圆旳面积。
设圆旳半径为r,由于正方形旳面积为7平方厘米,因此=7,因此阴影部分旳面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分旳面积。
(单位:厘米)解:最基本旳措施之一。
用四个圆构成一种圆,用正方形旳面积减去圆旳面积,因此阴影部分旳面积:2×2-π=0.86平方厘米。
例4.求阴影部分旳面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分旳面积。
(单位:厘米)解:这是一种用最常用旳措施解最常用旳题,为以便起见,我们把阴影部分旳每一种小部分称为“叶形”,是用两个圆减去一种正方形,π()×2-16=8π-16=9.12平方厘米此外:此题还可以当作是1题中阴影部分旳8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆旳3倍,问:空白部分甲比乙旳面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆与否相交、交旳状况如何无关)例7.求阴影部分旳面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5。
圆、组合图形的面积第一部分 知识梳理字母意义:O 圆心,r 半径,d 直径,π 圆周率,C 周长,S 面积 特征:同一圆内,所有的半径、直径都分别相等,直径等于半径的2倍 对称性:圆是轴对称图形,圆的直径所在的直线是圆的对称轴1.圆 圆的周长计算公式:C=πd=2πr ,半圆周长计算公式:C 半圆=πr+2r=(π+2)r 圆的面积计算公式推导过程:将圆沿着直径等分成若干个扇形(偶数份),再拼成一 个近似的长方形(分成的扇形越多,越接近长方形),长方形的长相当于圆的周 长一半(πr ),宽相当与圆的半径,圆的面积等于长方形的面积。
所以:S 圆=S 长方形=πr ×r=πr 2概念:两个半径不等的同心圆之间的部分称之为圆环。
各部分名称:①外圆:圆环中较大的圆叫做外圆,其半径通常用R 表示。
2.圆环 ②内圆:圆环中较小的圆叫做内圆,其半径通常用r 表示。
③环宽:外圆到内圆的距离叫做环宽 环宽=R —r圆环的面积计算方法:外圆的面积与内圆的面积之差是圆环的面积。
即:S 圆环=S 外圆—S 内圆 ,S 圆环=π(R 2 — r 2)弧:圆上任意两点间的部分叫做弧3.扇形 圆心角:弧的两个端点与圆心连结,所得两条半径的夹角叫圆心角 扇形:由圆心角的两条半径和圆心角所对的弧组成的图形叫扇形割补(平移)法 组合图形的面积 加减法计算策略1 旋转、对称法4.组合图形的 要求阴影先求空白 面积计算 包含与排除组合图形的面积 总面积=两部分面积和-重叠部分面积 计算策略2 巧添辅助线 等积转化(代换)第二部分精讲点拨例1判断下列各题是否正确:(1)圆的周长是直径的3.14倍。
()(2)圆是轴对称图形,直径是圆的对称轴。
()(3)世界上第一位把圆周率精确到七位小数的人物是祖冲之。
()举一反三:1.填空题:(1)经过圆心并且两端都在圆上的线段叫做圆的(),圆有()条直径。
(2)圆的面积推导公式是:将圆分成若干个扇形,再拼成一个近似的长方形,长方形的长相当于圆的(),长方形的宽相当于圆的(),所以圆的面积公式为()。
圆的周长和面积公式1、(1)在同一个圆内或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的接近长方形。
长方形的长相当于圆的周长的一半,长方形的宽相当于圆的半径。
(2)拼出的图形与圆的周长和半径的关系。
圆的半径=长方形的宽圆的周长的一半=长方形的长2、圆面积的计算方法:因为长方形面积=长×宽,所以圆的面积=圆周长的一半×圆的半径。
即S圆=C÷2×r=πr×r=πr2圆的面积公式:S圆=πr2→r2=S圆÷π3、环形的面积:一个环形,外圆的半径用字母R表示,内圆的半径用字母r表示。
(R=r+环的宽度)S环=πR2-πr2或环形的面积公式:S环=π(R2-r2)(建议用这个公式)。
4、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小的倍数是这倍数的平方倍。
5、两个圆:半径比=直径比=周长比;而面积比等于这比的平方。
6、任意一个正方形与它内切圆的面积之比都是一个固定值,即4 :π。
7、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。
反之,面积相同时,长方形的周长最长,正方形居中,圆的周长最短。
8、常用各π值结果:π= 3.14;2π= 6.28;5π=15.79、外方内圆(内切圆)公式S=0.86r2推导过程:S=S正-S圆=d2-πr2=2r×2r-πr2=4r2-πr2=r2×(4-π)=0.86r210、外圆内方(外切圆)公式S=1.14r2推导过程:S=S圆-S正=πr2-2r2=r2×(π-2)=1.14r2(把正方形看成两个面积相等的三角形,三角形的底就是直径,高是半径)11、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
顶点在圆心的角叫做圆心角。
扇形的面积与圆心角大小和半径长短有关。
12、S扇=S圆×n/360°;S扇环=S环×n/360°13、扇形也是轴对称图形,有一条对称轴。
蓝星教育内部专用导学案 蓝星教育内部专用导学案 蓝星教育内部专用导学案学员姓名:有关圆的周长和面积计算往往同长方形、平行四边形、三角形、梯形等平面几何图形组合在一起,再计算这些组合图形的面积和周长时除需要灵活运用公式外,还要用到一些特殊的方法求解,如:割补法、转化法、平移法、重叠法、代换法等等。
【例1】图1中五个相同的圆的圆心连线构成一个边长为10厘米的正五边形。
求五边形内阴影部分的面积。
【例2】图2中,阴影部分的周长是 厘米(π取3.14)【例3】如图3,OA ,OB 分别是小半圆的直径,且OA=OB=6厘米,∠BOA=90º, 阴影部分的面积为多少平方厘米?【例4】如图4,两个41圆扇形AOB 与A ´O ´B ´叠放在一起,POQO ´是面积为5平方厘米的正方形, 那么叠合后的图形中阴影部分的面积为多少平方厘米? (π取3.14) 圆的周长和面积(一)图1图2图3图4【例5】如图5,一头羊被7米长的绳子拴在正五边形建筑物的一个顶点上,建筑物边长3米,周围都是草地,这头羊能吃到草地面积可达多少平方米?(π≈3)图5【例6】图6中的两块阴影部分的面积相等,三角形ABC是直角三角形,BC是直径,长40厘米,计算AB的长度。
图6【例7】如图7所示,等边三角形ABC的每边长2厘米,再将三角形ABC沿水平方向沿一条直线翻滚2003次,求A点所经过的总路程是多少厘米?(π取3计算)图7【例8】如图8所示,ABCD是平行四边形,AD=8㎝,AB=10㎝,∠DAB=30º,高CH=4㎝,弧BE,DF分别以AB,CD为半径,弧DM,BN分别以AD,CB为半径,阴影部分的面积为。
(精确到0.01)图8基础夯实图91、如图9所示,大圆半径为6,则其阴影部分的面积为。
2、已知正方形ABCD的边长为10㎝,过它的四个顶点作一个大圆,过它的各边中点作一个小圆,再将对边中点用直线连接起来,得到图10.那么图中阴影部分的面积为平方厘米(π取3.14)。
一、选择题1. 下图中正方形部分是一个水池,其余部分是草坪,已知正方形的面积是300平方米,草坪的面积是()平方米。
A.B.C.D.不能确定2. 观察图形,对于两个图中阴影部分的叙述,()是正确的。
A.周长、面积都不相等B.周长、面积都相等C.周长相等,面积不相等D.周长不相等,面积相等3. 如图,在长方形中有三个大小相等的圆,下列说法错误的是()。
A.长方形的宽是4cmB.圆的半径是12cm的C.阴影部分的面积等于长方形的面积减去三个圆的面积4. 如图中阴影部分的面积是9平方厘米,图中圆环的面积是()平方厘米。
A.18.84 B.56.52 C.81 D.28.265. 下面两个图中,关于涂色部分的描述正确的是()。
A.周长和面积都不相等B.周长相等,但面积不相等C.周长不相等,但面积相等二、填空题6. 等腰直角三角形的一腰长是8厘米,以它的两腰为直径分别画两个半圆,那么,阴影部分的面积共有________平方厘米。
7. 如图:已知正方形的面积是10平方分米,那么阴影部分的面积是_____平方分米。
8. 如图,外侧大正方形的边长是10厘米,图中阴影部分的面积是27.5平方厘米,那么圆内大正方形面积是小正方形面积的________倍。
9. 如图,一个正方形边长为10cm,一个直径为2cm的圆在正方形内部沿正方形四条边滚动一周,它所扫过的面积为( )cm2。
10. 下图有( )条对称轴,如果圆的直径是20dm,那么阴影部分的面积是( )。
三、解答题11. 如图,O是圆心,OD=4,C是OB的中点,阴影部分面积是14π,求三角形OAB的面积。
12. 沈阳方圆大厦是一座古钱币造型的建筑。
小新模仿它设计了一个模型,模型的正面是铜钱的形状,其圆的直径是24cm,中间正方形的边长是0.8dm。
这个模型正面的面积是多少平方厘米?13. 求阴影部分的面积.(单位:厘米)14. 下图是一面我国唐代外圆内方的铜镜。
组合图形中圆的周长与面积
戴龙
一、学习目标:
1.巩固加深对圆的周长与面积的理解与计算,掌握在组合图形中求圆的周长及面积的方法。
2.提高自己思维的灵活性。
二、知识基础:
1.什么叫圆的周长?围成圆的曲线的长叫圆的周长。
什么叫圆的面积?圆所占平面的大小叫圆的面积? 2.怎样求圆的周长和面积? 圆的周长:c=πd 或c=2πr 。
圆的面积:2
r S π=
3.一个边长2分米的正方形剪下一个最大的圆,圆的周长为(6.28)分米。
面积为(3.14)平方分米。
4.在一个正方形内做一个最大的圆,圆的面积是正方形面积的(
4
π) 正方形的边长就是圆的直径,设圆的直径为2r ,半径为r ,圆面积为2r π 正方形边长就为2r ,正方形面积为24)2()2(r r r =⨯
所以4
42
2
π
π=
=
÷r
r 正方形面积圆面积
三、方法例谈
例1:将半径分别为3厘米和2厘米的两个半圆如图放置,求阴影部分周长。
请认真看图:阴影部分周长是由哪些组合起来的?
怎样分别求出这几部分的长度?
厘米31=B O
厘米1231212=-=-=O O A O A O
AC=2—1=1厘米
112r C O π=;
1121r C O π= 222
1
r C O π= cm r r C C O O 7.15214.3314.32
1
212121=⨯+⨯=+=+ππ 阴影部分周长:厘米两个半圆7.197.15131=++=++AC B O
答:阴影部分周长为19.7厘米
例2:如图:从点A 到点B 沿大圆周长和沿着中、小圆的周长走,路程相同吗?
①认真看图:大圆周是由哪几部分组成?中、小圆周是由哪几部分组成? ②这题是要我们求什么?
求大圆的半周长,求中、小圆的半周长,然后进行比较大小 ③怎样进行计算呢?
设中圆直径为D ,小圆直径为d ,则:大圆直径为D+d ,所以
d D d D C πππ2121)(21+=+=大
D C π21=中 d C π21=小 d D C C ππ2
121+=+小中
所以:小中大C C C +=
这就是说两种求法经过的路程是相同的。
小结:求组合图形的周长时要首先认真看图,认真观察看所求周长是由哪几部分组成的,最后确定解答方法。
尝试练习:一个圆的周长增加了10厘米,这个圆的半径增加了多少? 解:这个题可以看作现在的圆周长与原来圆周长组合而成的复合图形。
设现在圆周长为
1C ,原来为2C ,现在圆的半径为R ,原来圆的半径为r 。
1021=-C C 即2πR-2πr=10
2π(R-r )=10
cm r R 59.114
.3210
210≈⨯==
-π。
答:这个圆的半径增加了1.59cm.
例3.在下列各图中,正方形边长为a ,求阴影部分面积 (1) (2)
师:首先进行观察(1)(2)两图中阴影均为不规则图形,不能直接求出其面积。
(1)中可用正方形面积减扇形面积。
(1)正方形面积为:2
a a a =⨯ 扇形面积为:2
4
1a π 阴影面积:2222
215.0)14.34
1
1(41a a a a =⨯-=-
π (2)先求扇形面积,再减去空白三角形的面积:
扇形面积241a π=
;221a =空白三角形面积 阴影面积2
222285.0)2
141(2141a a a a =-=-=ππ。
师:在组合图形中,有些图形面积不易直接计算,可以先求出一个比它更大的图形的面
积,再减去比原图形多的那个图形的面积。
简单说,先多算一点,再把多算的部分减去。
例4.在下图中,圆的半径为r ,求阴影部分的面积。
解法I :认真观察,会发现
圆的水平直径将这个图形分为上、下两层,显然有如下关系:
上面阴影面积:222
57.02
1r r r =-=
-π三角形半圆 下面阴影面积:因为圆的水平直径将圆分为上、下两部分,底为4r
2243.12
1
)42(21r r r r r =-⨯+π 整个图形中阴影面积为:2
2
2
243.157.0r r r =+
小结:当某些图形面积不易直接计算时,可以把这个图形分成几个部分,计算各部分的面积,然后相加简单地说就是化整为零。
解法Ⅱ:将原图的上半部分以水平直径为轴顺时针旋转,使阴影部分进行拼和而成为两个三角形:
由此可看出所求面积是梯形面积与三角形面积的差。
如果将左图中右边带阴影三角形逆时针旋即可成为如下图:
显然这个大三角形的两条直角边都等于2r,所以:
2
2
2
2
2r
r
r
S=
÷
⨯
=
小结:当某些图形的面积不易直接计算时,可以把这个图形的各个部分适当地拼接成一个易于直接计算的图形,也就是说化零为整。
四、解决问题:
①如图,已知半圆的面积是78.5平方厘米,求阴影部分面积
认真观察会发现:阴影面积是先求出长方形面积,再用长方形减去半圆面积。
即先多求一点。
再减去多余部分。
半圆面积:
5.
78
2
1
2=
r
π
平方厘米
50
14
.3
157
2
5.
78
2=
÷
=
÷
⨯
=π
r
长方形面积:
平方厘米
100
2
22=
=
⨯r
r
r
阴影面积:100-78.5=21.5平方厘米
②正方形ABCD中,BD为20厘米,另外C又在以A为圆心的圆周上,求阴影部分面积
以BD 为底三角形BDC 的高为
cm BD 102
1
= 所以△BDC 面积为2
10021020cm =÷⨯= 正方形面积为2
2002100cm =⨯ 大扇形面积为22
31440014.34
1
4
1cm r =⨯⨯=
π 阴影面积为:2
114200314cm =-
五、知识结构:
⎪
⎪
⎩
⎪
⎪
⎨⎧⎪⎩⎪
⎨⎧化零为整化整为零部分多求一点,再减去多余面积周长:由哪几部组成圆
六、结束语:
组合图形,构图不是单一的,大家要认真观各部分之间关系,或求差,或化整为零,或化零为整。
有时还要综合运用,才能透过复杂现象,寻求到解决问题的办法。
同学们,这节课就上到这里,再见。