第三章离心式压缩机
- 格式:ppt
- 大小:20.97 MB
- 文档页数:13
第三章 叶轮21thdp h ρΩ=∫222222212121222th u u w w c c h −−−=+−222211()22th hyd c cdp h h ρ=+−+∫§3-1 叶轮典型结构比较 一、反作用度为了评定在叶轮中提高压力能的部分与气体得到的能量的关系,引入反作用度,定义为叶轮中得到的静压能和气体的能量头之比伯努利方程:§3-1 叶轮典型结构比较22222222211221122222th u u u w w u u w w h c u −+−−+−Ω==假定0hyd h =1110,u r c c c ==112r rc c c =≈由速度三角形222111w u c−=2222222()ru w c u c −=−222222122222222222()()22u r uu u c u u c c u u c c u c u +−−−−−Ω==2222222222221111ctg 22222u u u u r u c u c c c u u ϕϕβ−Ω==−=−=+叶片出口角大,叶轮反作用度低流量系数大,叶轮反作用度低反作用度大的级效率高(尽量提高压能,减少动能损失)§3-1 叶轮典型结构比较二、叶轮效率§3-1 叶轮典型结构比较222211()()22th hyd imp c cdp h h ρ=+−+∫122111()11ii m m i pol impi m p dp h RT m p ρ−⎡⎤⎛⎞⎢⎥==−⎜⎟⎢⎥−⎝⎠⎢⎥⎣⎦∫12112222212111()()(1)22ii m m i i pol imp pol imp tot l df th m p RT m p h c c c c h h ηββ−⎡⎤⎛⎞⎢⎥−⎜⎟⎢⎥−⎝⎠⎢⎥⎣⎦==−−−++−()11i i pol imp i m k m k ση==−−0.84-0.92三、叶轮型式1 后弯叶片式2 径向叶片式3 前弯叶片式§3-1 叶轮典型结构比较290A β<�290A β=�290Aβ>�三、叶轮型式1 后弯叶片式2 径向叶片式3 前弯叶片式出口绝对速度和其圆周分速度较小,作功最小§3-1 叶轮典型结构比较290Aβ<�290Aβ=�290Aβ>�出口绝对速度和其圆周分速度较大,作功最大出口绝对速度和其圆周分速度级作功介于前后弯之间§3-1 叶轮典型结构比较前弯叶片式叶轮效率低:(1)反总用度最小,动能在叶片扩压器中损失最大(2)叶道短,弯曲度大-叶道截面积增大快-叶道当量扩张角大-扩压度大-边界层分离-损失大,效率低前弯叶片式叶轮效率低:(3)由于轴向涡流影响和气流通过曲线型通道受离心离作用而形成的速度差相叠 加--叶道中速度分布不均匀度大--边界层分离和二次涡流增大-后面固 定元件进口条件恶化-效率下降(4)叶轮出口绝对速度受Ma c2数限制,圆周速度不能太高,作功能力收到限制前弯叶片式:通风机; 后弯和径向叶片式:鼓风机和压缩机§3-1 叶轮典型结构比较§3-1 叶轮典型结构比较四、强后弯型、后弯型和径向型叶轮1 强后弯型(水泵型)2 后弯型 (压缩机型)3 径向型径向出口叶片式径向直叶片式(前设导风轮)21530A β=−��290A β=�23060A β=−��§3-1 叶轮典型结构比较2222222(1ctg )th u r h u uϕϕβ==−(1)径向型叶轮能量头不随流量系数变化,后弯型叶轮能量头随流量系数增大而减小(2)径向直叶片式叶轮气体所获能量头较后弯型叶轮大20-25%,强后 弯型叶轮大40-50%;故采用径向直叶片式叶轮可减少离心压缩机 级数。
离心式压缩机原理
离心式压缩机是一种常用的空气压缩机,它利用离心力将空气压缩,从而提高空气的压力和温度。
其工作原理如下:
1. 空气吸入:离心式压缩机通过一个入气口将空气吸入,空气随着转子的旋转进入离心式压缩机的轮盘。
2. 加速:空气被转子迅速旋转,离心力使得空气被从中心向外部推进,从而加速了空气的流动速度。
3. 压缩:随着空气流动速度的增加,空气被推至离心式压缩机的外围。
在外围,由于叶轮的不断压缩,空气的压力逐渐上升。
4. 出气:当空气达到所需的压力时,压缩后的空气通过排气管道被释放出来,并被送入用途。
需要注意的是,离心式压缩机的压缩过程是连续不断的。
通过不断的旋转和压缩,离心式压缩机可以提供持续的高压空气。
离心式压缩机的主要优点是结构简单、体积小、重量轻、维护方便,并且具有较高的压缩比和较小的功率损失。
因此,离心式压缩机被广泛应用于空气压缩、空调、制冷等各个领域。
离心式压缩机原理pdf
离心式压缩机是一种广泛应用于各种工业领域的压缩设备。
它的
原理是通过离心力将气体加速到高速旋转的离心鼓中,然后通过叶轮
将气体压缩,最终达到所需的压缩效果。
离心式压缩机的结构包括离心鼓、进气口、出气口、叶轮、电机等。
离心鼓通常由多个离心筒组成,在高速旋转时通过离心力将气体
加速到鼓内,然后被叶轮旋转,快速压缩。
气体经过压缩后通过出气
口排出系统。
离心式压缩机有很多优点,例如占地面积小、噪音低、运作稳定等。
它适用于空气压缩、空气分离、低温制冷、饮料制造行业、氧气
生产等领域。
在空调系统中,离心式压缩机也是常见的压缩设备之一,它能够有效提高空调系统的制冷效果。
离心式压缩机的使用需要注意以下几点:
1. 离心式压缩机的运转必须保证平稳,避免剧烈震荡和突然停机,这有可能损害设备或者危及安全。
2. 在设备的安装和使用过程中,必须要严格按照相关规定和操作
手册进行操作,以免因操作不当导致设备出现故障和损坏。
3. 各种易燃易爆物品应该放置在离心式压缩机的远离位置,避免
因意外事故而引起火灾等危险。
4. 定期检查和清洁离心式压缩机设备,及时更换需要更换的零部件和进行维护保养。
这可以有效地延长设备的使用寿命,提高使用效率。
总之,离心式压缩机作为常见的压缩设备之一,可以为各种行业的生产和制造提供帮助和支持。
但是,在使用过程中需要遵守相关规定和操作手册,以确保设备的安全、有效运转。
同时,进行定期检查和维护保养,可以大大延长设备的使用寿命和提高工作效率。
《化工过程流体机械》总结、思考、公式、习题(第三章)2009.10.15(内容总结及思考题)第三章叶片式压缩机§ 3.1 离心压缩机的结构类型3.1.1 离心压缩机的基本结构3.1.2 主要零部件3.1.3 典型结构小结:1.基本结构级、段、缸、列;首级、中间级、末级;叶轮、扩压器、弯道、回流器、吸气室、蜗壳;2.主要零部件叶轮(后弯型,相对宽度b2/D2,直径比D1/D2);扩压器(叶片、无叶片);3.典型结构单级、多级,水平中开型、高压筒型等。
思考题:[2] 3-1.何谓离心压缩机的级?它由哪些部分组成?各部件有何作用?§ 3.2 离心压缩机的工作原理3.2.1 工作原理3.2.2 基本方程3.2.3 压缩过程3.2.4 实际气体小结:1.工作原理离心压缩机特点(优缺点);关键截面参数(s、0、1、2、3、4、5、0');2.基本方程连续性、欧拉方程,焓值方程(热焓形式)、伯努利方程(压损形式);3.压缩过程等温压缩、绝热压缩、多变压缩过程(过程指数m、绝热指数k);4.实际气体压缩性系数Z、混合气体(ρ、R、c p或c v、k)。
思考题:[2] 3-2.离心压缩机与活塞压缩机相比,它有何特点?[2] 3-3.何谓连续方程?试写出叶轮出口的连续方程表达式,并说明式中b2/D2和φr2的数值应在何范围之内?[2] 3-4.何谓欧拉方程?试写出它的理论表达式与实用表达式,并说明该方程的物理意义。
[2] 3-5.何谓能量方程?试写出级的能量方程表达式,并说明能量方程的物理意义。
[2] 3-6.何谓伯努利方程?试写出叶轮的伯努利方程表达式,并说明该式的物理意义。
[2] 3-14.如何计算确定实际气体的压缩性系数Z?[2] 3-15.简述混合气体的几种混合法则及其作用。
§ 3.3 离心压缩机的工作性能3.3.1 能量损失3.3.2 性能参数3.3.3 单级特性3.3.4 多级特性3.3.5 性能换算小结:1.能量损失流动(摩阻、分离、冲击、二次流、尾迹、M)、轮阻、内漏气损失;2.性能参数能头、功率、效率,级中气体状态参数(温度、压比、比容);3.单级特性能头(压比)、功率、效率特性,喘振和堵塞工况、稳定工况区;4.多级特性特性(曲线陡、喘振限大、堵塞限小、稳定区窄)、影响(u2、μ);M、k)、完全相似和近似相似(k=k')换算。
离心式压缩机工作原理
离心式压缩机是一种常见的压缩机类型,其工作原理主要基于离心力的作用。
它通过转子的旋转产生离心力,将气体吸入轴向进口处,随后气体沿着进口通道流入转子,并在离心力作用下被压缩。
压缩后的气体沿着离心力方向排出,经过排气通道被释放出去。
具体来说,离心式压缩机主要由以下几个部件组成:
1. 轴:提供转子旋转的动力源。
2. 转子:位于压缩机的核心部分,通过旋转产生离心力。
3. 进口通道:气体通过此通道进入转子。
4. 排气通道:压缩后的气体通过此通道被排出。
5. 外壳:包围整个压缩机,起到保护和密封的作用。
整个工作过程如下:
1. 当轴开始旋转时,转子也开始转动。
转子的旋转速度非常高,通常达到数千转每分钟。
2. 进口通道使进入压缩机的气体朝向转子的轴线方向流动。
由于转子的旋转,气体被迫转向,形成一个旋涡。
3. 当气体进入旋涡中时,由于离心力的作用,气体被迅速压缩。
离心力的作用使气体的分子更加密集,从而提高了气体的压力。
4. 压缩后的气体沿着离心力方向通过排气通道排出压缩机。
压缩机可以根据需要设计多级压缩,每个级别都会进一步增加气体的压缩。
5. 通过不断循环上述步骤,离心式压缩机可以将气体压缩到所需的压力。
需要注意的是,离心式压缩机适用于处理大量气体,但输出的压缩气体通常具有较低的质量流量。
此外,离心式压缩机相对来说比较复杂,需要较高的维护和操作要求。
离心式压缩机组成离心式压缩机组成是一种常见的压缩机类型,它在工业生产中广泛应用。
离心式压缩机组成由入口部分、压缩部分和出口部分组成,它通过旋转叶轮的离心力将气体压缩并排出。
本文将介绍离心式压缩机组成的原理和工作过程。
入口部分是离心式压缩机的第一个部分,它负责将气体引入压缩机。
入口部分通常包括进气道和进气滤清器。
进气道是气体进入压缩机的通道,而进气滤清器则起到过滤空气中杂质的作用,保护压缩机内部的部件不受损坏。
压缩部分是离心式压缩机的核心部分,它由旋转叶轮、静止叶轮和机壳组成。
旋转叶轮由驱动装置带动高速旋转,而静止叶轮则位于旋转叶轮的前方,起到引导气体流动的作用。
当气体被旋转叶轮吸入后,离心力使气体获得了动能,气体的压力也随之增加。
随着旋转叶轮的高速旋转,气体逐渐被压缩,并向离心力的方向排出。
出口部分是离心式压缩机的最后一个部分,它将压缩后的气体排出压缩机。
出口部分通常包括出气道和排气阀。
出气道是气体排出压缩机的通道,而排气阀则控制气体的流动,以保证压缩机的正常运行。
离心式压缩机组成的工作过程如下:当压缩机启动后,驱动装置带动旋转叶轮高速旋转。
气体通过进气道进入压缩机,并经过进气滤清器过滤杂质。
随着旋转叶轮的旋转,气体被吸入并受到离心力的作用,压缩过程中气体的温度和压力逐渐增加。
最后,压缩后的气体通过出气道排出压缩机。
离心式压缩机组成在工业生产中有着广泛的应用。
它可以将气体压缩成高压气体,供给工业生产中的各种设备使用。
离心式压缩机组成的结构简单,运行稳定可靠,且具有较高的效率。
在一些需要大量气体供应的场合,离心式压缩机组成可以满足生产需求。
离心式压缩机组成是一种常见的压缩机类型,它由入口部分、压缩部分和出口部分组成。
通过旋转叶轮的离心力将气体压缩并排出。
离心式压缩机组成在工业生产中应用广泛,具有结构简单、运行稳定可靠的特点。
它能够满足工业生产对气体供应的需求,提高生产效率。
离心式压缩机专题(三)离心式压缩机的叶轮3 离心式压缩机的转动部件在第一部分内容里,学习离心式压缩机的主要构成时,我们知道离心式压缩机主要由本体部分和辅助系统构成。
而离心式压缩机的本体主要包括转动部件和静止部件两个部分。
通过第三部分内容,将重点对离心式压缩机的主要转动部件进行介绍,包括叶轮、主轴、平衡盘、推力盘和轴套等。
3.1 离心式压缩机的叶轮叶轮是离心式压缩机中对气体做功的元件,气体流经叶轮时,压力和速度得到提高,实现将离心式压缩机的动能转换为气体的压力能和动能,是非常重要的元件,而且是高速旋转元件,所以对叶轮的设计、材料、制造和装配都有很高的要求。
①提供较大的能量头,能量头指的是单位质量气体经过压缩后所获得的能量,能够提供较大的能量头可以理解为,叶轮在旋转的过程中,能够对单位质量气体提供较多的能量。
②叶轮以及与之相配套的级的效率要高,指的是从设计、材料和制造工艺上要使得每一级叶轮与之相配套构成的级的能量损失要小,从而实现比较高的级效率。
③叶轮形式能使级及整机的性能稳定,后面的内容里将会介绍到,叶轮形式的不同会对流经叶轮的气流状态产生明显不同的影响,从而会对级的性能稳定性及整机性能的稳定性产生明显影响,因此,叶轮的形式要能使级及整机的性能稳定。
④强度和质量符合要求,不仅因为叶轮需要受力和做功,而且对于高速旋转的叶轮,如果强度和质量不符合要求,是比较危险的,因此不仅需要在设计、材料、制造和装配上确保叶轮的强度和质量,而且在压缩机的运行过程中,一定要确保各种工艺参数满足设计要求,避免对叶轮状态产生不良影响。
3.1.1 叶轮的分类①按照叶轮的结构形式可以分为开式叶轮、半开式叶轮和闭式叶轮;②按照叶片的弯曲形式可以分为前弯叶片式叶轮、后弯叶片式叶轮和径向叶片式叶轮;③按照加工工艺可以分为铆接式叶轮、焊接式叶轮和整体式叶轮。
三种不同结构的叶轮3.1.2 开式叶轮开式叶轮结构最简单,仅由轮毂和叶片组成。
第三章 离心压缩机的工作原理1 速度三角形因为叶轮对气体作功, 叶轮的进出口截面气体运动速度就有变化。
要研究叶轮作功大小,只需讨论叶轮进出口的气体速度。
气体在叶轮中的运动速度有三种相对速度 园周速度 绝对速度气体在叶轮中的实际流动不完全沿着叶片,会有一个与叶轮旋向相反的轴向旋涡。
叶轮出口的速度三角形如下:叶轮对气体所作的功:h = +-g u u 22122+-g w w 22221gc c 22122- (前两项为静压能,第三项为动压能)2 通流元件中参数的变化3 效率的概念压缩机消耗的轴功率 ( N ) 应尽可能用于提高气体压力,因此, 静压能是有用的,其它为无用的损失。
用效率来评价有用的部分。
相应有以下效率:等温效率η i s = N i s / N绝热效率η a d = N a d / N多变效率η p o l = N p o l / N一般地,η a d < η p o l <η i s不同过程下耗功计算:等温功N i s = 1.634 × P s × V × lnsd P P (KW)绝热功 压力温度速度曲线 压力曲线 温度曲线 速度曲线 进气室 叶轮 扩压器 蜗壳 压比N a d = 1.634 × P s × V × 1-k k × ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11k k s d p p (KW) 多变功N p o l = 1.634 × P s × V × 1-m m × ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11m m s d p p (K W) 式中 P d 排气压力 kgf/cm 2 (A) P s 进气压力 kgf/cm 2 (A) V容积流量 m 3 / min K绝热指数 m多变指数。
离心式压缩机组成离心式压缩机是一种常见的动力机械,广泛应用于空调、冷冻、制冷等领域。
它通过离心力将气体压缩,提高气体的压力和温度,使其适用于各种工业和商业应用。
离心式压缩机由以下几个主要部件组成:压缩机本体、电机、冷却器和控制系统。
压缩机本体是离心式压缩机的核心部分,它由压缩机壳体、压缩机叶轮和压缩机轴组成。
压缩机壳体是一个密封的容器,用于容纳压缩机叶轮和压缩机轴。
压缩机叶轮是一个旋转的轮盘,由多个叶片组成。
当电机带动叶轮旋转时,气体被吸入叶轮的中心,并随着叶轮的旋转而获得离心力的作用,最终被压缩。
电机是离心式压缩机的驱动装置,它将电能转化为机械能,带动压缩机叶轮的旋转。
电机需要具备足够的功率和转速,以满足压缩机的运行要求。
通常,离心式压缩机的电机采用交流电机或直流电机,具体选择取决于应用的需求。
冷却器是离心式压缩机的重要组成部分,它用于冷却压缩机产生的热量。
在离心式压缩机运行过程中,气体被压缩后会产生大量的热量,如果不及时散热,将会影响压缩机的性能和寿命。
因此,冷却器通常采用散热片或冷却水循环系统,将压缩机产生的热量散发到周围环境中。
控制系统是离心式压缩机的智能化管理系统,它用于监测和控制压缩机的运行状态。
控制系统通常包括传感器、控制器和显示器。
传感器用于感知压缩机的运行参数,如温度、压力和流量等。
控制器根据传感器的反馈信号,对压缩机进行自动调节和控制,以保证其正常运行。
显示器则用于显示压缩机的运行状态和参数,方便操作人员进行监测和调整。
离心式压缩机的工作原理是利用离心力将气体压缩,提高气体的压力和温度。
当电机带动叶轮旋转时,气体被吸入叶轮的中心,并随着叶轮的旋转而获得离心力的作用。
离心力将气体推向叶轮的出口,同时压缩气体的压力和温度也随之增加。
最终,压缩后的气体被排出压缩机,供应给下游设备进行工业生产或商业应用。
离心式压缩机具有结构简单、体积小、重量轻、噪音低等优点,因此被广泛应用于空调、冷冻、制冷等领域。