无底柱分段崩落采矿法
- 格式:doc
- 大小:28.50 KB
- 文档页数:9
小议无底柱分段崩落采矿法拉槽技术无底柱分段崩落采矿法拉槽技术(简称无柱法拉槽技术)是目前最先进的采矿技术之一。
在矿山行业中,安全、高效、环保的采矿方式一直是矿业公司追求的目标。
无柱法拉槽技术的出现,恰好符合了这个目标,成为了矿业界的新宠。
所谓无底柱分段崩落采矿法拉槽技术,是指采用人造沟槽来代替传统的无底柱采矿法。
这种技术的创新之处在于把传统的开采工作分成了三个部分:首先是把土石松动,然后是挖掘,最后是运输。
这三个步骤都是分段进行的。
具体来说,首先采取炸药爆破的方式,使得采矿区域内的土石变得松散。
接着,使用装载机和翻斗车对土石进行挖掘和运输。
最后一步,就是对采出的土石进行回填封闭。
相比传统的无底柱采矿方法,无柱法拉槽技术的优势显而易见。
在安全方面,无柱法拉槽技术采取了分段崩落的方式,大大降低了采矿现场的危险系数。
这种技术需要的人员数量也大大减少,由此减少了人员伤亡的风险。
同时,由于采矿区域内的土石被爆破松散,使得采出的土石处理更加方便快捷,也降低了环境污染的程度。
在采矿效益方面,无柱法拉槽技术可以极大地提高采矿效率,降低成本。
传统无底柱采矿中,必须在采出煤矿之后进行立柱支护,而无柱法拉槽技术中,可以直接使用挖掘机器进行挖掘,减少了支护工作所需要的时间和费用。
然而,无柱法拉槽技术也存在一些缺点。
首先,这种技术需要相当的专业技能和设备,因此采用这种技术必须投入大量的资金。
其次,由于这种技术的采矿率比较快,需要考虑相应的矿产储备和采矿周期的问题。
从长远来看,一些矿产资源不适合采用这种技术。
此外,在采矿过程中需要进行严格的监测和管理,以确保采矿的安全和环保。
总体而言,无柱法拉槽技术是一种十分有前途的采矿技术。
它能够在安全、高效和环保方面取得突出的成果。
我们相信,在不久的将来,无柱法拉槽技术将会得到更加广泛的应用,并且成为矿业界的主流技术。
小议无底柱分段崩落采矿法拉槽技术无底柱分段崩落采矿法是一种目前常见的地下采矿方法,其采用了法拉槽技术,将地下矿体分段采出,不仅保证了地面的安全,并且有利于提高矿物开采率和采矿效率。
在实际生产中,无底柱分段崩落采矿法搭配法拉槽技术是一种高效,可靠,安全的采矿方法。
本文将针对无底柱分段崩落采矿法和法拉槽技术的特点和应用进行详细的分析和探究。
一、无底柱分段崩落采矿法的特点及优点无底柱分段崩落采矿法是一种应用广泛的地下采矿方法。
该方法的主要特点是在地面上设置钢架(顶板支护工程),以支撑地下空腔。
钢架一般采用多点控制三维模拟软件进行计算、优化设计后,采用计算机辅助制造成型而得到的,需要注意的是,该金属构件应对承重性强、抗震性好等方面具有良好的特性。
在采矿期间由钢架支持的区域相当于一个巨大间距的梁,具有很高的强度和稳定性。
采矿期间,充填材料填充区域的空腔,加强空间结构的稳定性,从而保证了地面上的安全。
无底柱分段崩落采矿法的另一个特点是,将地下矿体分段采出。
采取这种采矿方法,与其他地下采矿方法相比,有更多的优点。
首先,无底柱分段崩落采矿法可以更好地保护矿体和环境。
由于矿体在分段采出之后,其余部分坚硬不动,而不是全部掏空,所以避免了大量地表和地下水资源的浪费和损失,同时也是一更好地保护了地下环境,降低了矿山废弃物的堆积量。
其次,这种采矿方法对矿物资源的开采率和采矿效率有着明显的提高。
由于矿体分段采出,矿石中的矿物质量更加集中,方便储存和运输,并且有利于矿石的分类和选矿工作。
二、法拉槽技术的特点及应用法拉槽技术是一种常见的地下采矿方法,也是无底柱分段崩落采矿法中常用的技术之一。
法拉槽技术的特点是将矿体分割成为一定长度的、固定高度和宽度的矿体块,然后将其运往地面进行选矿和精选等工作。
法拉槽技术不仅适合具有较厚矿层的地下矿体,而且适用于处理较难分选、浸出或提取的矿物资源。
法拉槽技术与其他矿山技术相比,有如下优点和应用:1. 法拉槽技术的分段采矿方法适用于矿体较长的地下矿体。
地下采矿方法学——无底柱分段崩落采矿法(二)主要内容有底柱分段崩落采矿法回采工作5方法评价6经典案例7改进发展8(1)崩矿参数:扇形孔排面倾角是指扇形孔排面与崩落侧水平面的夹角,这角有前倾(75°-80°)和垂直之分。
前倾时,上部细废石渗入时间晚,装药方便,进路楣线稳定性好;垂直时,孔方向易于掌握,但装药条件差。
(1)崩矿参数:扇形孔布置(a)边孔角为5-15°; (b)45-50°; (c)大于70°边孔处于放矿流动带内放矿槽扇形孔边孔角放体很快伸入上部废石中,这废石提前渗入,正面矿石损失增大(图b )放矿体很快伸入正面废石中,废石提前渗入,上部矿石损失增大(图a)步距过小步距过大崩矿步距:指一次爆破数排炮孔的矿石层厚度。
图崩矿步距与损失贫化关系(a )崩矿步距小(b )崩矿步距大1—崩落矿石;2—崩落岩石;3—损失矿石(1)崩矿参数:(2)凿岩:大、中型矿山近年使用安有YGZ-90型凿岩机的CTC/400-2型双机台车,其台班效率可达90-100m,有效凿深可达20m;中、小型矿山常用YGZ-90型导轨式凿岩机及带FJY-24型圆盘台架的YG-80型凿岩机凿岩。
(3)爆破:为了避免孔口装药过于集中,可用图7-11所示的方法装药,即除边孔和中孔装得较多外,其余各孔均交错增加填塞长度。
扇形孔装药图a—孔底距(4)出矿:用装(铲)运机从进路端部出矿,为了保证矿流均匀、面积大,要求铲斗从进路一侧向另一侧往复循环全断面均匀装矿。
(5)通风:回采工作为独头,无法形成贯穿风流,采用局扇通风方式。
回采工作面局部通风图(a)局扇安在回风水平的通风方式;(b)局扇安在分段水平的通风方式1-通风天井;2-分段联络平巷;3-进路;4-回风巷道;5-阶段运输平巷;6-溜井;7-局扇;8-风筒;9-密闭墙;10-隔风板(6)回采顺序:➢一般说,在走向上,同一分段上的各矿块可从中央向两翼、从两翼向中央或从一翼向另一翼回采;➢每个(或相邻)矿块同分段内的各进路,应尽量同时回采,以缩小废石接触面,降低矿石的损失与贫化,增加进路的稳固性;➢在垂直走向上,同分段的各进路应向设备井和分段联络巷道方向后退回采;➢在铅垂方向上,上分段回采应超前下分段,超距大小,须保证下分段出矿时矿岩的移动范围和坍落过程不影响上分段的回采。
无底柱分段崩落法采矿设计无底柱分段崩落法是一种常用的采矿方法,广泛应用于矿山开采中。
它的特点是在矿体上部分段段开采,通过崩落来实现矿石的自然下落和采出。
本文将详细介绍无底柱分段崩落法的设计原理和操作流程。
一、设计原理无底柱分段崩落法采矿是基于以下原理:在矿体上部分段段开采,通过崩落来实现矿石的自然下落和采出。
该方法的关键是选取合适的段段长度和崩落周期,以确保矿石能够顺利下落到矿井底部,并通过提升设备将其运出矿井。
二、操作流程无底柱分段崩落法采矿的操作流程主要包括以下几个步骤:1. 安全措施:在进行采矿作业前,必须确保矿井通风正常、支护设施完好,并采取必要的安全措施,如设置警示标志、安装安全网等。
2. 矿体分段:根据矿体的性质和采矿条件,将矿体分为若干个段段,每个段段的长度一般在10-20米左右。
分段时需要考虑矿体的稳定性和采矿效果,避免过长或过短的段段。
3. 预处理:对每个段段进行预处理,包括爆破、支护等工作。
爆破是将矿石破碎为适当大小的块体,以便于后续的崩落和运输。
支护是为了确保矿体的稳定,防止崩落过程中发生事故。
4. 崩落操作:在预处理完成后,可以进行崩落操作。
一般采用控制爆破的方式,通过合理的装药和引爆顺序,使矿石以适当速度下落。
崩落过程需要密切监控,及时处理可能出现的异常情况。
5. 运输和处理:崩落完成后,矿石将自然下落到矿井底部,然后通过提升设备将其运出矿井。
在运输过程中需要注意矿石的稳定性和运输效率,确保矿石能够安全地运出矿井。
三、优缺点分析无底柱分段崩落法采矿具有以下优点:1. 采矿效率高:通过分段崩落的方式,可以快速采出大量矿石,提高采矿效率。
2. 成本低:相比其他采矿方法,无底柱分段崩落法的设备投资和运营成本较低。
3. 适应性强:无底柱分段崩落法适用于不同类型的矿体,具有较强的适应性。
但是,无底柱分段崩落法采矿也存在一些缺点:1. 安全风险:无底柱分段崩落法采矿过程中存在一定的安全风险,如崩落不均匀、矿石堆积等。
无底柱分段崩落采矿技术无底柱分段崩落法的特点:将阶段矿体划分分段,自上而下回采分段,在分段巷道内崩矿和出矿,在崩落的岩石覆盖下出矿,以崩落围岩处理空区并控制地区.分段崩落法根据底部结构分为无底柱分段崩落与有地底柱分段崩落.同下节的有底柱分段崩落相比,无底柱分段崩落法在分段上不设带有受矿巷道的底部结构.无底柱分段崩落法如图4-3-1所示,先掘进设备井、溜井、通风天井、分段联络道和进路等,然后在矿块分段前端形成切槽。
用自进路钻凿的上向扇形深孔崩矿,崩下矿石在崩落岩石覆盖下用无轨设备从进路端部装运至溜井,紧随矿石下井的覆盖岩石便充填空区。
采准、凿岩和出矿分别在不同阶段进行,互不干扰。
该法目前在我国地下铁矿山的比重约达70%。
一、结构参数块度高度一般为50-70m,若矿岩稳固,矿体倾角陡急,形态规整,高天井掘进有一定把握,高度可取大值。
有的矿山将矿块高度增大到80-90m,国外有的高达100-150m.矿块长度等于相邻溜井的间距(以一个溜井的负担范围划分矿块),矿块宽度等于矿体厚度:若矿体厚度超过40-50m,则超厚部分按溜井负担范围再划分矿块。
溜井间距根据出矿设备运距取定,适当考虑我溜井承受磨损能力。
使用装运机时,进路垂直走向布置时,溜井间距为40-60m;沿走向布置时,溜井间距为60-80m。
使用铲运机时,溜井间距增至150-200m。
分段高度主要根据凿岩技术和矿体赋存条件确定。
在矿体形态不太复杂、含夹石不多而不需选别回采时,当采用重型凿岩机(有效孔深15-18m)时,分段高度为10-12m;采用中型凿岩机时,分段高度为7-8m。
分段高度取大值,可降低采切比。
但过大,不仅凿岩速度低、深空质量差,而且大菱形面积不能适应矿体和夹石形态的变化,使矿石的损失与贫化增大。
近年来,有些黑色金属矿山采用15-24m的高分段。
进路间距对矿石的损失与贫化、采准工作量和进路本身稳定性均有一定影响。
进路间距多用8-10m。
无底柱分段崩落采矿法一、无底柱分段崩落采矿法的特点:1、将矿块划分为分段,在分段进路中进行落矿、出矿等回采作业,不需要开掘专用的出矿底部结构。
2、崩落矿石在崩落围岩覆盖下放出。
二、无底柱分段崩落采矿法的主要布置:1、常用的分段高度为12~15m,通过斜坡道、设备井、电梯井与各分段的联络巷道相联系。
2、分段联络巷道一般位于矿体下盘,通常每隔20m左右掘进一条回采进路,上下分段的回采进路采用菱形布置。
3、在进路的端部开切割槽,以切割槽为自由面用中深孔或深孔挤压爆破,后退回采,每次爆破1~2排炮孔,崩落矿石在崩落的覆盖岩石下,从进路的端部用铲运机、装岩机等出矿设备运到放矿溜井。
4、在上一分段退采到一定距离后,便可开始进行下一分段的回采。
5、此方法掘进回采进路、钻凿炮孔、出矿可以在同一矿块的不同分段同时进行。
三、矿块结构参数:1、阶段高度:阶段高度一般为50~70m,无底柱分段崩落法与阶段高度的制约关系不太大,在实际开采中可按一般的开采原则选择阶段高度。
2、分段高度:分段高度主要受设备能力的限制,目前国内的分段高度一般采用12~15m,为了减少采准工程量,在凿岩设备能力允许的条件下,可适当加大分段高度。
3、进路间距:在分段高度确定后,便可根据放矿理论,使其损失、贫化指标最佳的原则来确定进路间距。
4、进路的规格和形状:回采进路的规格和形状对出矿工作有很大影响,在保证巷道顶板和眉线稳固的条件下,需从以下方面加以考虑:a.进路宽度应尽可能大,以增大放出体的宽度,提高矿石回收率和便于出矿设备运行。
b.进路的高度在满足凿岩设备及通风管道布置的要求时,应尽可能低,以减少残留在进路正面的矿石损失。
c.进路的顶板以平顶为好,以便矿石能均匀地在全宽上放出,若顶板呈拱形,矿石将集中在拱顶部放出,容易造成废石提前流出。
d.国内常用的进路宽度为3~4m, 高度为3m。
四、采准与切割(一)采准工作1、矿块的划分与放矿溜井的布置a.无底柱分段崩落法矿块的划分,一般以一个放矿溜井所服务的范围划分为一个矿块。
b.放矿溜井的布置一般根据设备的性能而定。
其间距为:使用汽动装运机时,间距一般为40~60m;使用柴油驱动的铲运机时,其间距一般为100~200m 。
2、分段联络道的布置a.分段联络道一般布置在下盘脉外10~15m处。
b.个别矿山根据其具体条件,将联络道布置在矿体的上盘。
c.联络道布置在脉内,虽可以减少采准工程量,但当回采到交叉口时,要将交叉口处的炮孔同时进行爆破,造成崩矿步距太大,增大了矿石损失,因而一般不采用。
3、进路的布置各分段进路均采用菱形交错布置,其布置方法一般根据矿体的厚度来布置进路:a.矿体的厚度小于15~20m时,一般沿矿体走向布置进路。
b.矿体厚度大于15~20m时,采用垂直矿体走向布置进路,便于较好地控制矿体,并且可提高矿石回收率。
4、采准比:是指每千吨采出矿量与所进行的采准工程量进米的比值。
其计算单位m/kt无底柱分段崩落法采准比一般为6~8m/kt左右。
由于进路断面大,采准副产矿石所占比重达10~20%。
(二)切割工作切割工作的主要任务就是为矿石的回采创造爆破自由面。
其切割方法一般采用如下拉槽法:1、多进路联合拉槽法:是采用多条进路以一个切割天井为自由面,在切割巷道中钻凿上向平行深孔,逐次爆破扩大后形成切割槽。
该法的优点是:可少掘切割天井,减少了采准工程量。
缺点是:随着拉槽范围的扩大,切割槽形成的质量将逐渐降低,因此,一个切割天井的服务范围不能过大。
2、单进路切割天井、切割巷道拉槽法:在单进路中以切割天井为自由面,从切割巷道中钻凿上向平行深孔,逐次爆破后形成切割槽。
3、单进路深孔爆破拉槽法:这种方法不开掘切割天井和切割巷道,以进路为自由面,用逐渐增大扇形孔前倾角的方法拉槽。
五、回采1、落矿1)采用单机或双机采矿钻车及潜孔钻机,钻凿中深孔。
2)提高炮孔钻凿质量,控制炮孔深度,防止炮孔偏斜。
a.孔深误差应小于±0.5m。
b.炮孔偏斜角误差应小于±2о。
c.孔底距误差不超过±0.5m。
d.要建立和健全炮孔验收制度,不合格的炮孔要及时补孔,补孔后仍然需要再次进行验收。
3)炮孔一般采用扇形布置,分段高度为12~15m时,扇形孔的深度一般为12~25m。
孔深与分段高度和进路间距有关,二者数值越大,则孔深越大。
4)设定炮孔边孔角一般为50○~60○,边孔角过小,部分崩落矿岩因不能流动而得不到松散,影响以后步距的爆破效果。
5)最小抵抗线的确定:a.孔径为50~65㎜时,最小抵抗线为1.4~2.0m;b.孔径为80~105㎜时,最小抵抗2.0~3.0m。
6)每次爆破1~2排炮孔,合理的崩矿步距应当是使损失贫化指标最佳。
7)炮孔密集系数m值的合理选取,对爆破的破碎效果起到重要作用。
选取m值偏小时,炮孔之间容易贯通,形成预裂面而使爆破能量过早释放,影响破碎质量;m值偏大可使爆破作用时间加长,充分利用爆破能量,提高破碎质量。
8)炸药消耗量根据矿石的性质而定,正常选择范围为:一次炸药消耗量为 0.3~0.4kg/t二次炸药消耗量为0.02~0.15kg/t9)装药普遍采用气动装药器。
a.在装药过程中要控制好孔口部分的装药量,以免破坏眉线,影响放矿时的矿石质量。
b.炮孔容易发生变形的地段,可采用预先装药的方法。
c.炮破后出现立槽、悬顶及隔墙等现象是无底柱分段崩落法常见的现象。
因此,要根据具体的条件选择合理的凿岩、爆破参数,在排间、孔间采用微差爆破,严格执行炮孔验收及补孔管理制度,提高凿岩和装药质量。
2、出矿1)常用气动装运机、柴油驱动及电动铲运机出矿。
国内还有一些中小型矿山采用轨道装岩机出矿。
2)每台出矿设备一般服务3~5条进路。
3)无底柱分段崩落法因矿石与废石多面接触,每爆破一次都要发生一次贫化,因此贫化率较大。
为此,需加强如下出矿管理工作:a.当回收率达到一定程度后,继续放矿则回收率增长很慢,而贫化率却增长较快,故此及时截止放矿是十分重要的。
b.出矿时要注意全断面均匀铲装矿石,及时处理各种故障保证矿石流动畅通,以提高矿石回收率,降低贫化率。
3、通风1)无底柱分段崩落法的工作面是独头巷道,无法采用贯穿风流通风,随着柴油驱动设备的大量使用,废气的污染使工作面通风问题更为突出。
2)当工作面靠近地表时,塌陷区往往与地表贯通,使通风管理更为复杂,为此,通风问题是无底柱分段崩落法存在的一个尚未彻底解决的问题。
六、覆盖岩层1、无底柱分段崩落法中的覆盖岩层,不但起着缓冲围岩冒落时冲击气浪的危害作用,而且也提供挤压爆破条件防止矿石抛散在采空区,保证正常出矿。
2、无底柱分段崩落法要求覆盖岩层及时充满采空区。
3、覆盖岩层的形成可利用自然崩落或强制崩落。
在国外需要强制放顶的矿山,一般先用其它的采矿方法开采,如强制崩落法、阶段矿房法等,然后转为无底柱分段崩落法,此时采用一般的空区处理方法就可以形成覆盖岩层。
4、有些矿山在开采围岩不能及时冒落的盲矿体时,投产初期就直接采用无底柱分段崩落法开采,其形成覆盖岩层的主要方法有两种:a.一种是集中放顶,此法按无底柱分段崩落法的布置,开采1~2个分段,但此时由于没有覆盖岩层而在空场下出矿,一部分抛在空区的矿石暂时不能运出,当顶板达到一定的暴露面积,空场内又有足够的补偿空间时,便可以集中放顶。
b.另一种放顶方法是边采边放,此法是开掘一系列与回采进路相平行的放顶巷道,在放顶巷道中钻凿上向扇形放顶深孔,与回采炮孔分次逐排爆破形成覆盖岩层。
c.开采倾斜矿体时,已形成的覆盖岩层会丢失在下盘,因而在上盘部位要进行补充放顶,其方法是将进路延伸到上盘,用正常回采的方法崩落围岩进行补充放顶。
七、无底柱分段崩落法的适用条件和评价1、适用条件无底柱分段崩落法的适用条件,除崩落法的一般适用条件外还须考虑下列条件:a.矿石要有一定的稳固性,进路一般不需要大量维护,爆破后眉线不易冒落,炮孔不易变形,能保证正常的装药爆破工作。
b.围岩最好能成大块自然崩落,也可以采用强制崩落。
c.此法适用于急倾斜中厚以上的矿体,以及倾斜的、缓倾斜的极厚矿体。
由于分段之间进路采用菱形布置,上分段进路之间的一部分矿石要在下分段回收,如果矿体厚度在垂直方向不能重合地布置3~5个分段,因而会造成矿石损失量太大故不宜采用此法。
d.矿石不太贵重,围岩含品位,可选性好有利于使用本法。
2、评价1)优点a.无底柱分段崩落法,没有复杂的底部结构,采准和回采工艺简单,便于采用大型无轨设备,实现高度机械化。
此方法的各回采步骤几乎可以标准化重复进行,有利于作业的专业化和机械化。
b.回采工作以进路为单位,掘进回采进路、钻凿深孔、出矿等作业可以在同一矿块上下分段的不同进路中同时进行,作业集中互不干扰,易于管理,具有较大的灵活性,并能较快地投入生产。
c.生产能力大,劳动生产率高。
d.工人在断面不大的进路中作业,安全性好。
此外,在进路端部出矿,没有狭窄的放矿口,不以堵塞,发生堵塞时处理也比较方便。
e.在进路中以小步距后退回采,有利于分采分运、剔除夹石。
2)缺点A.在覆盖岩石下放矿,且每次崩矿的矿石都是在多个废石接触面下放出,故矿石贫化率大。
b.回采工作在独头巷道中进行,通风条件差。