数理统计1-4改
- 格式:ppt
- 大小:176.50 KB
- 文档页数:17
第一章3. 解:因为i i x ay c-=所以 i i x a cy =+11nii x x n ==∑()1111ni i ni i a cy n na cy n ===+⎛⎫=+ ⎪⎝⎭∑∑1nii c a y n a c y==+=+∑所以 x a c y =+ 成立因为 ()2211n x i i s x xn ==-∑()()()22122111ni i ini i nii a cy a c y n cy c y n c y y n====+--=-=-∑∑∑又因为 ()2211n y i i s y yn ==-∑所以 222xys c s = 成立 6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=- 2710yx=+= ()2211lyi i i s m y yn ==-∑()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s == 7解:*11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()22*11li i i s m x xn ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦=8解:将子样值重新排列(由小到大) -4,,,,,0,0,,,,,,()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--==== 9解:121211121211n n i j i j n x n x n n x n n ==+=+∑∑112212n x n x n n +=+()12221121n n ii s x x n n +==-+∑()()()1212221122111122121222222111222112212122222211221122112212121222211211122121n n i i n n i ji j x xn n x x n x n x n n n n n s x n sx n x n xn n n n n s n s n x n x n x n x n n n n n n n n n x n n s n sn n +====-++⎛⎫+=- ⎪++⎝⎭+++⎛⎫+=-⎪++⎝⎭⎛⎫+++=+- ⎪+++⎝⎭+++=++∑∑∑()()()()()()22212211222122222112212112212122121222212121122212122n n x n x n x n n n s n s n n x n n x n n x x n n n n n n x x n s n sn n n n +-++++-=+++-+=+++12. 解:()ix P λ i Ex λ= i Dx λ= 1,2,,i n =⋅⋅⋅1122111111n n i i i i nni i i i n E X E x Ex n n n n DX D x Dx n nn n λλλλ============∑∑∑∑13.解:(),ix U a b 2i a b Ex += ()212i b a Dx -= 1,2,,i n =⋅⋅⋅ 在此题中()1,1i x U - 0i Ex = 13i Dx = 1,2,,i n =⋅⋅⋅112111101113n ni i i i nni ii i E X E x Ex n n DX D x Dx n nn ==========∑∑∑∑14.解:因为()2,iXN μσ 0i X Eμσ-= 1i X Dμσ-=所以 ()0,1i X N μσ- 1,2,,in =⋅⋅⋅由2χ分布定义可知()222111nniii i X Y Xμμσσ==-⎛⎫=-= ⎪⎝⎭∑∑服从2χ分布所以 ()2Yn χ15. 解:因为()0,1iX N1,2,,i n =⋅⋅⋅()1230,3X X X N ++0=1=所以()0,1N()221χ同理()221χ由于2χ分布的可加性,故()222123Y χ=+可知 13C =16. 解:(1)因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以 ()22121ni i X Y n χσσ=⎛⎫= ⎪⎝⎭∑(){}11122Y Yy F y P Y y P σσ⎧⎫=≤=≤⎨⎬⎩⎭()220yf x dx σχ=⎰()()211'221Y Y y f y F y f χσσ⎛⎫==⨯ ⎪⎝⎭因为 ()2122202200n x n x e x n f x x χ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≥⎩所以 ()21122202200ny n nY y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(2) 因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以()22221ni i X nY n χσσ=⎛⎫= ⎪⎝⎭∑(){}()22222220nyY nYny F y P Y y P f x dx σχσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()222'22Y Y ny nf y F y f χσσ⎛⎫== ⎪⎝⎭故 ()221222202200n nny n n Y n y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(3)因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()10,1ni N =所以()22311n i Y n χσ=⎛= ⎝(){}()()22333210yn Y Y F y P Y y P y f x dx n σχσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()()233'2211Y Y y f y F y f n n χσσ⎛⎫== ⎪⎝⎭()()221000x x f x x χ-⎧>=≤⎩故 ()232000y n Y y f y y σ-⎧>=≤⎩ (4)因为()20,iX N σ 1,2,,i n =⋅⋅⋅所以()()1224210,11ni ni N Y χσ==⎛= ⎝(){}()()()()()224224442210'2211yY Y Y y F y P Y y P f x dxy f y F y f σχχχσσσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎛⎫== ⎪⎝⎭⎰ 故()242000yY y f y y σ-⎧>=≤⎩17.解:因为 ()Xt n存在相互独立的U ,V()0,1UN ()2Vn χ 使X = ()221Uχ则 221U X V n=由定义可知 ()21,F n χ18解:因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()10,1ni N =()221n mi i n X m χσ+=+⎛⎫ ⎪⎝⎭∑所以()1nniX Yt m ==(2)因为()0,1iX N σ1,2,,i n m =⋅⋅⋅+()()221221ni i n mi i n X n X m χσχσ=+=+⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎝⎭∑∑所以 ()221122211,ni n i ii n mn mi ii n i n X m X n Y F n m X n X mσσ==++=+=+⎛⎫⎪⎝⎭==⎛⎫ ⎪⎝⎭∑∑∑∑19.解:用公式计算()20.010.019090χ=查表得 0.01 2.33U =代入上式计算可得()20.01909031.26121.26χ=+=20.解:因为()2Xn χ 2E n χ= 22D n χ=由2χ分布的性质3可知()0,1N{}P X c P ≤=≤22lim t n P dt -→∞-∞≤==Φ 故 {}PX c ≤≈Φ第 二 章 1.,0()0,0()()1()111x x x x xe xf x x E x f x xdx xe dxxe e d x e xλλλλλλλλλλλλ-+∞+∞--∞+∞+∞--+∞-⎧≥=⎨<⎩=⋅==-+=-==⎰⎰⎰令从而有1x λ∧= 2.()111121).()(1)(1)1111k k x x E x k p p p k p ppp ∞∞--===-=-==⎡⎤--⎣⎦∑∑令1p =X所以有1p X ∧=2).其似然函数为1`11()(1)(1)ni x i i nX nni L P P p p p -=-=∑=-=-∏1ln ()ln ()ln(1)ni i L P n p X n p ==+--∑1ln 1()01ni i d L n X n dp p p ==--=-∑解之得11nii np X X∧===∑3. 解:因为总体X服从U(a ,b )所以()2122!2!!()12ni i a b n E X r n r X X X X a b S X b X =∧∧+=--⎧=⎪⎪⎨-⎪=⎪⎩⎧=⎪⎨⎪=⎩∑222(a-b )() D (X )=12令E (X )= D (X )=S ,1S =n a+b 2()a 4. 解:(1)设12,,n x x x 为样本观察值则似然函数为:111()(),01,1,2,,ln ()ln ln ln ln 0nni i i nii in i i L x x i nL n x d L nx d θθθθθθθθ-====<<==+=+=∏∑∑(-1)解之得:11ln ln nii nii nxnxθθ=∧==-==∑∑(2)母体X 的期望1()()1E x xf x dx x dx θθθθ+∞-∞===+⎰⎰而样本均值为:11()1nii X x n E x X X Xθ=∧===-∑令得5.。
第4章数据汇总这一章,我们介绍数据的描述和汇总方法•这些方法大部分以图形的方式展示数据,也可以用其揭示数据结构•在不使用随机模型的情况下,这些方法可以达到描述性分析的目的•如果考虑随机模型,那获得的数据%,X2,…,X n,在一些情形下将它们视为独立同分布的n个随机变量X i,X2, ,X n的实现.我们首先讨论经验累积分布函数等,这些方法可以用于展示数据值的分布。
接着,我们讨论直方图和相关的图形,它们扮演着随机变量的概率密度的角色,从另一角度展示数据值的分布•我们还将介绍数据的简单汇总,比如用以代表数据中心的样本均值、中位数等,用以量化数据分散程度的样本标准差等,这些统计量比直方图等图形提供了更加浓缩的汇总信息•接着将介绍箱线图,它通过一种简单的图形方式将中心值、散度和分布形状等信息汇总起来•最后介绍散点图,用以揭示变量相关性的信息.§ 4.1基于累积分布函数的方法经验累积分布函数设x1,x2/,x!是一组数据,经验累积分布函数(empirical cumulative distributen function,ecdf)定义为1F n(X)= —#{X 兰X}n显然F n(x)是阶梯形的右连续的函数例 4.1 (见P261)如果要进一步讨论经验累积分布函数的统计性质,那必须置于随机模型下去讨论.数据x1,x2/ ,x n视为简单随机样本X1,X2/ ,X n的实现, 它们公共的分布函数为F(x)( —般假定F(x)是连续型分布).样本X i,X2,…,X n的经验累积分布函数定义为1F n(x) #{X i 沁}n对于任意给定的实数x , F n(x)是一个随机变量,并且n F n(x) ~B(n,F(x)),从而1E(F n(x)) E(V n(x)) =F(x),nVar(F n(x))二Var(V n(x)) = F(x)(1-F(x)).n n可见,F n(x)是F(x)的无偏估计,且n「:时Var(F n(x)) > 0,从而知F n(x) 是F(x)的相合估计.关于F n(x)还有更强的结论:定理(格里汶科)对于任意的自然数n,设X i,X2,…,X n是来自总体分布函数F(x)的一个样本,F n(x)为其经验分布函数,记D n = sup |F n(X)-F(x)|,则有x ■■■:::P(lim D n=0) =1n )::该定理表明,经验分布函数F n(x)会一致地强收敛于总体分布函数F(x). 这也说明用经验分布函数F n(x)推断总体分布函数F(x),用样本各阶矩(即F n(x)的矩)去推断总体的矩等是合理的,是有理论依据的 .生存函数随机变量T的生存函数定义为S(t)=P(T t)设随机变量T的分布函数为F(t),那么生存函数S(t)=1-F(t),两者给出的信息是等价的•在应用中,对于寿命数据(一般是非负的),通常分析生存函数而不是分布函数•若样本的经验分布函数为&(t),那么经验生存 函数为S n (t)=1-F n (t)例 4.2(见 P262)生存函数与危险函数有联系.危险函数定义为其中f(t),F(t)分别为T 的密度函数和分布函数也即为了看清危险函数的统计意义,我们考查元件在使用了 t 时间还未失效 的条件下,在接下来的时间段(t,r .]内失效的条件概率P(t :::T I :|t t)假设密度f(t)在t 处连续,那么有F(t :)- F(t)丄 f(t) 1-F(t)S(t) 因此h(tp P(t ::T -^ A l T t)或P(t T <t -qT t)MtTm 。
X,23π+=X Y5.设随机变量1X ,2X ,3X 相互独立,1X 在)5,1(-服从均匀分布,)2,0(~22N X,)2(~3Exp X (指数分布),记32132X X X Y +-=,则)(Y E )(Y D6. 设二维正态分布的随机变量)0,3,4,2,1( ),(22-N ~Y X ,且知8413.0)1(=Φ,则-<+)4(Y X P7. 已知随机变量X 的概率密度201()0 a bx x f x⎧+<<=⎨⎩其他, 且41)(=X E ,则a b )(X D 8. 设4.0,36)(,25)(===XY Y D X D ρ,则=+)(Y X D =-)(Y X D 二. (10分) 某车间有甲乙两台机床加工同一种零件,甲机床加工的零件数量比乙机床多一倍,甲乙机床加工零件的废品率分别为0.03,0.02. 两机床加工出的零件放在一起. 试求 (1)任取一个零件是合格品的概率;(2)任取一个零件经检验是废品,试求它是由乙机床生产的概率.解:设“从放在一起的零件中任取一件发现是甲/乙机床加工的”分别记为事件,A .A再记“从放在一起的零件中任取一件发现是废品”为事件.B 由已知得.02.0)(,03.0)(;31)(,32)(====A B P A B P A P A P …… 3’(1)由全概率公式知027.075202.03103.032)()()()()(≈=⨯+⨯=+=A B P A P A B P A P B P . …… 3’ 故任取一个零件是合格品的概率73()1()0.973.75P B P B =-=≈ …… 1’ (2)由贝叶斯公式知.4102.03103.03202.031)()()()()()()(=⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P …… 3’三. (10分)设某型号的电子元件的寿命X (单位: 小时)的分布密度为⎪⎩⎪⎨⎧>=其它,01000,1000)(2x x x f各元件在使用中损坏与否相互独立,现在从一大批这种元件中任取5只,求其中至少有一只元件的寿命大于1500小时的概率。