第四章 机器人的驱动与传动装置
- 格式:ppt
- 大小:17.48 MB
- 文档页数:15
机器人传动原理
机器人传动原理是指机器人的所有动作都是通过一些特定的驱动装置来实现的,这些
驱动装置一般是电机、气动装置或者液压装置等。
机器人传动装置的种类有很多,常用的有以下几种:
1.电机驱动
电机驱动是机器人最常用的一种传动方式,其使用电机作为驱动装置,通过变速箱、
减速器、传动链等结构直接传递力量和动能。
电机驱动方式可以分为交流电机驱动和直流
电机驱动两种。
交流电机驱动:交流电机驱动具有速度稳定、转矩大、噪音小等特点,适合于高精度、高速度的机器人应用。
2.气动驱动
气动驱动是指通过气压控制运动的一种机构,一般采用空气压缩机将气体压缩储存,
然后经过气路系统将气体引入到机器人的各个部位,控制执行器完成各种动作。
气动驱动的优点是速度快、响应速度快、重复精度高,但其噪音很大,能耗较大,需
要专门的空压站维护。
3.液压驱动
液压驱动是指通过液体流动的方式传递驱动力量,实现机器人的各种运动。
液压驱动
常用的液体是液压油,通过液压泵将液体压缩,然后通过压力管路将压缩后的液体传送到
机器人的执行机构完成运动。
液压驱动的特点是响应速度快、动力大、调整方便,但其运动惯量大,精度低,维护
困难且成本高昂。
以上几种机器人传动原理方式各有优缺点,可以根据机器人的应用需求选择其中一种
或多种传动方式。
不同的应用场景需要不同的传动方式和控制方法,才能实现机器人的高
效运动和精确控制。
机器人四大系统组成部分机器人由驱动系统、机械系统、感知系统和控制系统等组成。
1、驱动系统驱动系统是驱使机械系统运动的机构,一般由驱动装置和传动机构两个部分组成。
它按照控制系统发出的指令信号,借助动力元件使机器人执行动作。
因驱动方式的不同,驱动装置可以分成电动、液动和气动三种类型。
驱动装置中的电动机、液压缸、气缸可以与操作机直接相连,也可以通过传动机构与执行机构相连。
传动机构通常有齿轮传动、链传动、谐波齿轮传动、螺旋传动、带传动等几种类型。
2、机械系统机器人的机械系统是机器人赖以完成作业任务的执行机构,即指机器人本体,一般是一台机械手,也称操作器或操作手。
它可以在确定的环境中执行控制系统指定的操作。
其臂部一般采用空间开链连杆机构,其中的运动副(转动副或移动副)常称为关节,关节个数通常为机器人的自由度数根据关节配置形式和运动坐标形式的不同,机器人执行机构可分为直角坐标式、圆柱坐标式、极坐标式和关节坐标式等类型。
出于拟人化的考虑,机器人本体的有关部位分别被称为基座、腰部、臂部、腕部、手部(夹持器或末端执行器)和行走部(对于移动机器人)等。
3、感知系统感知系统又称传感器,相当于人的感觉器官,能实时检测机器人的运动及工作情况,并根据需要反馈给控制系统,与设定信息进行比狡后,调整执行机构,以保证机器人的动作符合预定的要求。
传感器大致可以分为两类:内部传感器和外部传感器。
内部传感器主要用来检测机器人本身的状态,为机器人的运动控制提供必要的本体状态信息,如各关节的位置、速度、加速度等,并将所测得的信息作为反馈信号送至控制器,形成闭环控制,主要有位置传感器、速度传感器等;外部传感器则用来感知机器人所处的工作环境或工作状况信息,使机器人的动作适应外界情况的变化,达到更高层次的自动化,提高机器人的工作精度,常见的有力觉传感器、触觉传感器、接近觉传感器、视觉传感器等。
4、控制系统控制系统是机器人的指挥中枢,负责处理作业指令信息、内外环境信息,并依据预定的本体模型、环境模型和控制程序做出决策,产生相应的控制信号,通过驱动器驱动执行机构的各个关节按所需的顺序、确定的轨迹运动,完成特定的作业。
机械装置的精密驱动与传动控制技术1. 引言机械装置的精密驱动与传动控制技术在现代工业领域中扮演着重要的角色。
随着科技的不断进步,人们对于机械装置的要求也越来越高,既要求其能够精确地执行指令,又要求其能够高效地传递和转换能量,因此,精密驱动与传动控制技术的研究与应用显得尤为重要。
2. 精密驱动技术精密驱动技术是指通过各种方法实现对机械装置进行精确控制的技术。
在过去,人们通常采用传统的机械驱动方式,如齿轮传动、链传动等,但是这些方式往往存在传动误差较大的问题。
而随着数控技术的快速发展,人们开始采用电子驱动技术,如伺服驱动、步进驱动等,这些电子驱动技术可以使机械装置的运动更加稳定和精确。
3. 精密传动控制技术精密传动控制技术是指在机械传动过程中,通过各种控制手段对传动过程进行精确控制的技术。
传统的机械传动系统往往存在传动误差较大的问题,特别是在长时间使用后,传动误差会越来越大,这对于一些需要精密控制的机械装置来说是不可接受的。
因此,精密传动控制技术的研究与应用对于实现高精度的机械装置非常重要。
4. 常见的精密驱动与传动控制技术4.1 伺服驱动技术伺服驱动技术是一种通过电子装置控制机械装置运动的技术。
它通过将电子信号转换成机械运动,从而实现对机械装置的高精度驱动。
伺服驱动技术具有响应速度快、定位精度高等优点,因此被广泛应用于需要高精度控制的机械装置中。
4.2 步进驱动技术步进驱动技术是一种通过控制电流来实现机械装置驱动的技术。
与伺服驱动技术相比,步进驱动技术具有成本低、简单、可靠等优点。
但是由于步进驱动技术存在固有的步进角度,因此其应用范围相对有限。
4.3 液压驱动技术液压驱动技术是一种通过液体的力来实现机械装置驱动的技术。
液压驱动技术具有传递功率大、响应速度快等优点,并且可以在大功率密度条件下工作,因此被广泛应用于工程机械等领域。
5. 精密驱动与传动控制技术在工业生产中的应用5.1 机器人技术机器人技术是一种将精密驱动与传动控制技术应用于自动化生产中的技术。
国家开放大学《机器人技术及应用》章节测试参考答案第一章机器人技术与应用一、判断1.机器人是在科研或工业生产中用来代替人工作的机械装置。
(√)2.19世纪60年代和20世纪70年代是机器人发展最快、最好的时期,这期间的各项研究发明有效地推动了机器人技术的发展和推广。
(×)3.对于机器人如何分类,国际上没有制定统一的标准,有的按负载量分,有的按控制方式分,有的按自由度分,有的按结构分,有的按应用领域分。
(√)4.所谓特种机器人就是面向工业领域的多关节机械手或多自由度机器人。
(×)5.机器人机械本体结构的动作是依靠关节机器人的关节驱动,而大多数机器人是基于开环控制原理进行的。
(×)6.机器人各关节伺服驱动的指令值由主计算机计算后,在各采样周期给出,由主计算机根据示教点参考坐标的空间位置、方位及速度,通过运动学逆运算把数据转变为关节的指令值。
(√)7.为了与周边系统及相应操作进行联系与应答,机器人还应有各种通信接口和人机通信装置。
(√)8.轮式机器人对于沟壑、台阶等障碍的通过能力较高。
(×)9.为提高轮式移动机器人的移动能力,研究者设计出了可实现原地转的全向轮。
(√)10.履带式机器人是在轮式机器人的基础上发展起来的,是一类具有良好越障能力的移动机构,对于野外环境中的复杂地形具有很强的适应能力。
(√)11.腿式(也称步行或者足式)机构的研究最早可以追溯到中国春秋时期鲁班设计的木车马。
(√)12.机器人定义的标准是统一的,不同国家、不同领域的学者给出的机器人定义都是相同的。
(×)13.球形机器人是一种具有球形或近似球形的外壳,通过其内部的驱动装置实现整体滚动的特殊移动机器人。
(√)14.可编程机器人可以根据操作员所编的程序,完成一些简单的重复性操作,目前在工业界已不再应用。
(×)15.感知机器人,即自适应机器人,它是在第一代机器人的基础上发展起来的,具有不同程度的“感知”能力。