山东大学《高等数学》期末复习参考题 (15)
- 格式:pdf
- 大小:168.79 KB
- 文档页数:18
高等数学试题一、单项选择题(本大题共5小题,每小题2分,共10分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()002lim 1cos tt x x e e dt x -→+-=-⎰( )A .0B .1C .-1D .∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞= 9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC 10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,6a a π==⎰则___________.14.设2cos x z y =则dz= _______. 15.设{}2(,)01,01y D D x y x y xedxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1x y x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x+→18.求不定积分.19.计算定积分I=0.⎰ 20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。
数学高数期末试题及答案第一部分:选择题1. 设函数 $f(x) = e^x + \ln x$,则 $f'(1) =$ ( )A. $e$B. $e+1$C. $1$D. $0$2. 设二元函数 $z=f(x,y)$ 在点 $(1,2)$ 处可微,则 $\frac{\partialz}{\partial x}$ 在该点的值为 ( )A. $f_x(1,2)$B. $f_y(1,2)$C. $0$D. $f(1,2)$3. 设平面$2x+y+z=2$,直线$L$ 过点$(1,1,1)$,且与该平面平行,则直线 $L$ 的方程为 ( )A. $x=y=z$B. $2x+y+z=4$C. $x=y=z=1$D. $x+y+z=3$第二部分: 简答题1. 解释什么是极限?极限是一个函数在某一点或者无穷远处的值或趋近于的值。
对于一个给定的函数,当自变量趋近某一特定值时,函数的值也会趋近于某个特定的值。
2. 什么是导数?导数是函数在某一点的切线斜率。
在数学中,导数表示函数在给定点的变化率。
第三部分: 解答题1. 计算函数 $f(x) = \sin(x) - \cos(x)$ 在区间 $[0, \frac{\pi}{4}]$ 上的最大值和最小值。
首先,我们求解导数 $f'(x)$,然后令其等于零,解得$x=\frac{\pi}{4}$。
此时,我们可以计算得到 $f(\frac{\pi}{4}) =\sqrt{2}-1$。
另外,我们可以计算 $f(0) = 1$ 和 $f(\frac{\pi}{4}) = \sqrt{2}-1$。
所以,函数 $f(x)$ 在区间 $[0, \frac{\pi}{4}]$ 上的最大值为 $1$,最小值为 $\sqrt{2}-1$。
2. 计算二重积分 $\iint_D x^2 y \,dA$,其中 $D$ 是由直线 $x=0$,$y=0$ 和 $x+y=1$ 所围成的区域。
高等数学期末试题(含答案) 高等数学检测试题一。
选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。
3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。
4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。
5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。
二。
填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。
2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。
3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。
4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。
………………………………………………密………………………………封………………………………线………………………………………………高等数学 ch5 常微分方程 测试题题号 一 二 三 四 五 六 七 八 九 十 总分 阅卷人得分学院 专业 级 学号 姓名第 1 页 共 3 页一、选择题(每题5分,共25分)1.函数x C y sin -=(其中C 是任意常数)是方程x xysin d d 22=的(A) 通解 (B) 特解 (C) 是解,但既非通解也非特解 (D)不是解2212222|1222(A)(B)(C)(D)1111x x y xy y y xxxy y y y x x x x ='+======+-++2.微分方程满足初始条件的特解为2002221()0|1,|2(A)1(B)1(C)1(D)x x yy y y y y x y x y x y x==''''+====-=+=+=3.微分方程满足初始条件的特解是123e ,2e ,3e (A)0(B)0(C)61160(D)220x x x y y x y y y y y y y y y y y y y y y y y --===''''''''''''--+=+--=''''''''''''-+-=--+=4.具有特解的三阶常系数线性微分方程是12121221122112211221,()()0()()______.(A)()()()()0(B)()()()()0(C)()()()()0(D)()()()()0y y y p x y q x y y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x '''++=''''-=+≠''''+=-≠5.设是二阶常系数线性齐次方程的两个特解,则由与能构成该方程的通解,其充分条件为二、填空题(每题5分,共25分)0()(,())1()d ()____________.xx y f x x f x y f t t f x x >==⎰1.设对任意,曲线上点处的切线在轴上的截距等于,则2.2____________.xy y xy '+=微分方程的通解为 'tan cos ____________.y y x x +=3.微分方程的通解为e 1(,)____________.x y y a b ''-=+4.微分方程的一个特解应具有形式式中为常数2'2''____________y y y x xx -=5.微分方程+的通解为.三、计算、证明题(第1-4题10分,5-6题每题15分,共70分) 1. 求通解(12e )d 2()e d 0x x yyy x x y y +--=12121e 2.(e e )(,)2''2'e x x xx y C C C C x xy y xy -=+++-=证明下列函数为任意常数是方程的通解.得分 阅卷人得分 阅卷人第 2 页 共 3 页3.()'()(1)''()()0'()(1)f x f x f x f x f x f x f x =-+==-证明:若满足方程,则必满足方程,并求方程的解.()sin ()()d ().xf x x x t f t t f f x =--⎰4.设,其中为连续函数,求25.()''3'22e ,(0,1)1x y f x y y y y x x y =-+==-+设函数满足微分方程其图形在处的切线与曲线在该点处的切线重合,求函数的解析表达式.2222212d 36.()(1)()4(1)d ()3()e d 1().2e t u x t t y y f x t t t x y t y t y u t t ϕϕϕϕ-⎧=+=>-=⎨+=⎩==+=⎰设函数由参数方程所确定,且,其中具有二阶导数,曲线与在处相切,求函数。
11-12高数上期末:一、填空题 (共5小题,每题4分,共20分)1. 设0 < a < b , 则()1lim .nnnn ab--→∞+=2. 2232ln (1)d ()d x t t yy y x x y t t=-+⎧==⎨=+⎩设函数由参数方程所确定,则________.3. 100()()d x x x x x ϕϕ=⎰设是到离最近的整数的距离,则.4. 322A y x x x x =-++曲线 与轴所围图形的面积=________.5.3s in (),()d x f x x f x x x'=⎰已知的一个原函数为则_________.一、选择题 (共5小题,每题4分,共20分) 6.下列命题中正确的一个是( )(A) 若0lim ()lim ()0x x x x f x g x δ→→≥⇒∃>,当00x x δ<-<时,有()()f xg x ≥;(B) 若0δ∃>,当00x x δ<-<时有()()f xg x >且0lim(),x x f x →0lim ()x x g x →都存在,则0lim()lim ()x x x x f x g x →→>(C)若0δ∃>,当00x x δ<-<时恒有()()f xg x >,则lim ()lim ()x x x x f x g x →→≥;(D)若0lim ()lim ()0x x x x f x g x δ→→>⇒∃>,当00x x δ<-<时有()()f xg x >7.0000(2)()()lim()2h f x h f x f x x h→--=设在处可导,则0000(A )()(B )()(C )()(D )2()f x f x f x f x ''''--000(3)0()()''()0()0y f x x f x f x fx '===<8.设在点的某邻域内具有连续的三阶导数,若,且,则()''00000(A )()()(B )()()(C )()()(D )(,())()f x f x f x f x f x f x x f x y f x =是的极大值是的极大值是的极小值为曲线的拐点9. 设2s in ()es in d ,x txf x t t π+=⎰则()F x ______.(A )为正常数 (B )为负常数 (C )恒为零 (D )不为常数10. 若连续函数()f x 满足关系式20()()d ln 2,2xt f x f t =+⎰则()f x =______(A )e ln 2x2(B )eln 2x()e ln 2xC + 2(D )eln 2x+三、解答题(共6道小题,4个学分的同学选作5道小题,每题12分,共60分;5个学分的同学6道题全做,每题10分,共60分)11. 求极限201(1)lim s inx x x→10(2)l i m,,,0.3xxx xx ab c a b c →⎛⎫++> ⎪⎝⎭其中(),012.(),()0(0)0,,0(0)(0)0,(),()0g x x f x g x x g x x g g f x f x x ⎧≠⎪''==⎨⎪=⎩'''===设函数其中可导,且在处二阶导数存在,且试求并讨论在处的连续性.[]110()0,1(0,1)(1)=e()d xk f x f k x f x x-⎰13.已知函数在上连续,在内可导,且满足(1).k >其中 1(0,1),()(1)().f f ξξξξ-'∈=-证明:至少存在一点使得14.()()d xf tg x t t -⎰求(0),x ≥0x ≥其中当时,(),f x x =s in ,02.0,2x x x x ππ⎧≤<⎪⎪⎨⎪≥⎪⎩而g ()=15. 求微分方程243(1)22x y x y x y '++=满足初始条件 01|2x y ==的特解2s in s in s in 16.(1)lim 1112n n nn n n n πππ→∞⎛⎫⎪+++ ⎪+ ⎪++⎝⎭.计算 (2).()[0,1]1()2,f x f x ≤≤设函数在连续,且 证明:1119()d d .()8f x x x f x ≤⎰⎰一.填空题1.1a2.(65)(1)t t t++ 3. 25 4.37125. 22ln ln x x C -+二.选择题6. D7. A8. D9. A 10. B 三.解答题 11. 21(1)lim s inx x x→2211s in1,lim 0lim s in0x x xx xx→→≤=∴=有界10(2)l i m,,,0.3xxx xx ab c a b c →⎛⎫++> ⎪⎝⎭其中()()0013131(1)(1)(1)1ln 1lim 1limln ln ln 33333lim eeeex x xx x x x x xx x a b c a b c a b c a b c x x xx a b c →→⎛⎫⎛⎫++-++--+-+-⋅+ ⎪ ⎪++ ⎪ ⎪⎝⎭⎝⎭→=====原极限2222()(0)()()1()(0)1(0)limlimlimlim(0)222()(),0()1(0),02()()()(0)(lim ()limlimlim(0)l x x x x x x x x f x f g x g x g x g f g xxxxx g x g x x xf xg x x g x g x g x g g x f x xxxg →→→→→→→→'''--'''====='-⎧≠⎪⎪'=⎨⎪''=⎪⎩'''--'==-''=-12.解:)0()1im(0)(0)22()0x g x g f xf x x →''''=='∴=在处连续1-11-1111113.[0,],(1)e().11, 1.(0,1).()e (),()[0,](0,)(1)=(1)e ()().(0,)()e()e()e()0,e0,xf f kk kF x x f x F x F f f F F f f f f ηηξξξξηηηηηηηηηηξξξξξξξ-----∃∈=><∈===''=-+=>由积分中值定理,使得得则令由题意知在上连续,内可导且由罗尔中值定理,在内存在一点,使得得-1()()()0()(1-)().(0,1).f f f f ξξξξξξξξξ''-+=⇒=∈其中20014.,d d .()()d ()()d ()()d ;()()d =()s in d s in ;2()()d ()s in d 0 1.2s in 2()()d =12xxxx x xxu x t u t f t g x t t f x u g u u f x u g u u x f x u g u u x u u u x x x f x u g u u x u u u x x x x f t g x t t x x πππππ=-=--=--=-≤<--=-≥-=-+=--≤<--≥⎰⎰⎰⎰⎰⎰⎰⎰令则于是当0时,当时,,0所以,⎧⎪⎪⎨⎪⎪⎩4322342222222d 2215.,d 3(1)3(1)d d ,3d d 1d 22d 22-,--(1)3d 3(1)3(1)d 11d 2-0,(1)z (1)(d 1y x x yyxx x z y z y yxxz xx zxx z z xx x x xxzxz z C x x u x x ----+=++==-+==++++==+=++讲方程改写为:这是贝努里方程.令则,代入上述方程得:即, 这是一阶线性非齐次方程,它对应的齐次方程为它的通解为,令22222222203321)d d (1)2(),(1)d d d 22d 2(1)2()(1)()-,-,d 11d 11,(1)1(1),1111(1).|81,7.2(78).x x z u x x u x xxu x x u x x x u x x u x xxxxxu C z C x xC x y C C yy x =--=++++-+==+++=+=+++=++==+==+则将其代入得即积分得即的通解为从而原方程的通解为由初始条件,有故所求的特解为11112s ins ins in 12116.(1)(s ins ins in )s in111212lims ins in ()d .2s ins ins in 121(s ins ins in )s in111112limni nn i ni n i n nn nnnnnn n ni x x nnn i n nn n nnn nnn n nnn πππππππππππππππππ=→∞==→∞+++<+++=+++==+++>+++=++++++∑∑⎰∑而另一方面且1112s in=s in ()d .12.ni i x x nnππππ===∑⎰所以由夹逼准则知原式111011100(2)1()2(()1)(()2)0,(()1)(()2)10()d 2d 3()()1d 3()19()d d .()8f x f x f x f x f x f x x x f x f x xx f x f x xx f x ≤≤∴--≤--≤+≤≤≤⎰⎰⎰⎰⎰⎰得,即,得到从而整理得:。
大一高等数学期末考试试卷及复习资料详解大一高等数学期末考试试卷(一)一、选择题(共12分)1.(3分)若/3= 2XXV0,为连续函数,则d的值为().a+ x,x>0(A)I (B) 2 (C)3 (D)-I2.(3分)已知厂⑶=2,则Ii y "7⑶的值为().λ→0 2hOOl (B) 3 (C)-I (D)I23.(3分)定积分∫>Λ∕1-COS23Xdx的值为()•■⑷ 0 (B)-2 (C)I (D) 24.(3分)若/⑴在“勺处不连续,则/3在该点处()・(A)必不可导(B)—定可导(C)可能可导(D)必无极限二、填空题(共12分)1.(3分)平面上过点(0,1),且在任意一点(Λ∙,y)处的切线斜率为3疋的曲线方程为_________________________ .2.( 3 分)∫ ι(x2+x4 Sin XyIX = _______ 1-3.(3 分)IilnX2 Sin丄= ・.r→υX4.(3分)y = 2√ -3√的极大值为________________ —2 (6分)设尸冕,求*JT + 1三、计算题(共42分)1.(6 分)求Iim史S.∙*→υ Sin 3x^3.(6分)求不定积分JXIn(I+十)厶.x .v<ι4.(6 分)求J /(X-1)JΛ∖其中/(x)= < l + cosχ,e' +l,x> 1.5.(6分)设函数y = f(x)由方程JO e,M + [cos∕d∕ = 0所确定,求dy.6.( 6 分)设 f f{x)dx = Sin + C,求j + 3)dx.7.(6 分)求极限IinJI÷-Γn→30k 2/7 7四、解答题(共28分)1.(7 分)设,Γ(lnx) = l+x,且/(0) = 1,求32.(7分)求由曲线y = cosx[-^-<x<^及X轴所围成图形绕着X轴旋I 2 2)转一周所得旋转体的体积.3.(7分)求曲线y = x3-3√÷24x-19在拐点处的切线方程•4.(7分)求函数y = x + √∏7在[-5,1]上的最小值和最大值.五、证明题(6分)设厂(X)在区间[“]上连续,证明i a f^dx = ¥ [/(“) + f(b)]+1 [(X - a)(x - b)fj)dx.(二)一、填空题(每小题3分,共18分)1.设函数/(χ)= 2χ2~1 ,则"1是心)的第_________ 类间断点.X -3x + 23.=∙v→∞V X)4・ 曲线 V 在点(扣)处的切线方程 为 ・5 .函数J = 2X 3-3X 2在[-1,4]上的最大值 _________________ ,最小值 __________ .二、 单项选择题(每小题4分,共20分)1.数列&”}有界是它收敛的( )•(A)必要但非充分条件; (C)充分必要条件; 2.下列各式正确的是((B)充分但非必要条件; (D)无关条件.)・(A) je-χdx=e"x+C i(B) J In X(IX = _ + C ; (C)JI 2∕x=2hl (l 2x)+C ;(D) f —5—JX = Inlllx+ C ・' ,J XInX3-设/(x)在RM 上,广(x)>O 且厂(x)>0,则曲线y = f(x)在[“问上•6.∣∙arctanx J l +x 2(IX(小沿X轴正向上升且为凹(B)沿兀轴正向下降且为凹的;的;(D)沿X轴正向下降且为凸(C)沿兀轴正向上升且为凸的;的.则/(x)在兀=0处的导? :( )•4. 设/(*)=XInX ’⑷等于1;(C)等于O ;(D)不存在•5.已知Ihn/(x)= 2,以下结论正确的是()•G)函数在工=1处有定义且/(1)=2 ; (B)函数在;V = I处的某去心邻域内有定义;(C)函数在2 1处的左侧某邻域内有定义;(D)函数在21处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:HlnX2 sinx→0X2.已知y = ln(l + χ2),求几3.求函数J = >0)的导数.5.J X COS XdX ・丄 16.方程y x =X y确定函数y = f(x)f求八四、(H)分)已知/为/(X)的一个原函数,求∫x2∕(x}∕x.五、(6分)求曲线,=壮7的拐点及凹凸区间.六、(10 分)设J广(√∑)/X = X(e、' +1)+C ,求/(X)・(三)填空题(本题共5小题,每小题4分,共20分)・±J_(1)⅛(COSX)r = ________ 石________ .(2)曲线A = Xlnx上及直线X-y + l= °平行的切线方程为y =x-∖(3 )已知f f(e x) = xe~x,且/(D = O ,则大一高等数学期末考试试卷及复习资料详解/(X)= _________ /Cv)= 2(In X)________ .X 211(4)曲线V =3777的斜渐近线方程为 _______ V= 3Λ^9,二、选择题(本题共5小题,每小题4分,共20分)・(1)下列积分结果正确的是(D )(2)函数/W 在[恥]内有定义,其导数广⑴的图形如图1-1所示, 则(D ) •(A)刁宀都是极值点.⑻ g ,/3)),(£,/(£))都是拐点.(C) F 是极值点.,U 是拐点. (D) WJy))是拐点,勺是极值点.(3) 函数y = qe v ÷C 2e-÷A -e'满足的一个微分方程是(D ).(A) /-y-2>∙ = 3xe t . (B) /-y-2y = 3e v . (C) / + y-2y = 3Λ∙e c .(D) / + y~2y = 3e r .lim∕(⅞)-∕(⅞~z0 (4) 设/W 在%处可导,则I h 为(A ) •⑷ 广仇). (B) -f ,M.(C) O. (D)不存在.(5)下列等式中正确的结果是((A) (J* /(x)"∙χ)'Z=/W-(C) 町 /(χ)"χ]=/W -) 微分方程= (V+1)-的通解为三、计算J (本 共4小题,每小题6分,共24分).y =3 _5 "3 O(或令 √Γ+χ = r)四、解答题(本题共4小题,共29分)•1. (本题6分)解微分方程r-5∕÷6j = xe -.解:特征方程r 2-5r + 6 = 0 ------------- 1分 特征解斤=2,r 2 =3. ------------ 1分 3x大一高等数学期末考试试卷及复习资料详解 恤(丄—丄)1∙求极限j X-I In —X 11. xlnx-x+1Iim (—— _ ——)IIm ---------In XIUn I XTl x-1 I---- + In xh ∖x Iim x →,X -1 + xln1.1 + In X 1 IUn -------- =— j 1 + In X +1 2Λ = In Sin t2.方程尸COSWSinf 确定V 为X 的函数,dy y ,(f)-=-一 =∕sm∕, 解 JX 十⑴求dx 及Jx 2 .(3分) (6分)arctan JX3. 4.计算不定积分J石(1+『. arctanA∕√7—— (i + χ)=21 arctan √7t∕ arctan y ∕x ——解 Hatan 仇=2 J √x(l + x)=(arctan2+C ——「一 dx4.计算定积分如+曲.'3χ(l -VTTX) 0解 分)oT7⅛7_ V dx = 一J(:(I-、/i+x)〃X(6分)LL i∖l4/1 «\ ? r V 八2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为乙计算桶的一端面上所受的压力.解:建立坐标系如图3.(本题8分)设/B在S】上有连续的导数,f(u) = f(b) = θ9且∫O∕2(X)JΛ =1^试求∫>∕ω∕解:J:Xf(X)f∖x)dx = £ Xf(X)df(x) 2 分= -∫n^^W ------------ 2 分=IV 2(Λ-)⅛-|£72(X)厶一一2 分4.(本题8分)过坐标原点作曲线>, = h^的切线,该切线及曲线y =lnx及X轴围成平面图形D.⑴(3) 求D的面积A;⑵(4) 求D绕直线X = e旋转一周所得旋转体的体积V.解:(1)设切点的横坐标为",则曲线y = In Λ在点(⅞Jn ⅞)处的切线方程y = Inx0 + —(X-X0).氐__I分由该切线过原点知山心-1 = 0,从而心=匕所以该切线的方程为1y = -X.平面图形D的面积1V = -X(2)切线"及X轴及直线Xe所围成的三角形绕直线Xe旋转V I = -7te1所得的圆锥体积为,3 2分曲线尸IZ及X轴及直线所围成的图形绕直线Xe旋转所得的旋转体体积为V2=(oπ(e-e>)2dy9】分因此所求旋转体的体积为V=V l-V2=-^2-e y)2dy = -(5e2-∖2e + 3).五、证明题(本题共1小题,共7分)•1.证明对于任意的实数Y , eJl + x.e x = l + x + —Λ2≥l + x2解法二设fM = e x-x~^则/(0) = 0.因为f f M = e x-∖. 1 分当Xno时,f,M≥o.f(χ)单调增加,/(χ)≥∕(θ)=o.当x≤0时,∕,ω≤0.∕(Λ∙)单调增加,/(X)≥/(0) =0. 所以对于任意的实数X, ∕3≥°∙即e'≥l + I 解法三:由微分中值定理得,R -1 = “ -60 =^(X-O) = ^Xt 其中§位于0 到X 之一1分2分A = V -ey)dy = ~e~^∙解法一:2分2分1分2分间。
山东大学(南新区、软件学院)高等数学(本科) 课程试卷一、填空题(每小题4分,共20分)2018sin cos (1)lim_____.3ln(1)x x x x x →+=+sin 1(2)e sin ,'______x y y x=⋅=设则2120e e sin (3)lim[]_____.||e 1x xx xk xk x →+-=+设存在,则常数 22()22(4)()()3()d 2,()_____.()e e ln 2009d 1,_____.d f y y f x f x x f x x f x y y x x f yf x=--==='≠=⎰设是连续函数,且满足则(5)设函数由方程确定,其中具有二阶导数,且则二、选择题(每小题4分,共20分)(6)(,)()tan (A)0(B)1(C)2(D)3xy xππ-=在内函数的可去间断点的个数为2(7)ln(1)()(A)(1)(B)(1,0)(C)(0,1)(D)(1,)y x =+-∞--+∞函数单调增加且其图形为凹的区间是,00000000000000000000000(8)(,)(,),'(,)()(2,)(,)(,)(,)(A)lim(B)lim(,)(,)(,)(,)(C)lim(D)limx x x x x x z f x y x y x y f x y f x x y f x y f x y f x x y xxf x x y y f x y f x y f x y x x x ∆→∆→∆→→==-∆---∆∆∆+∆+∆--∆-设函数在点处存在对的偏导数,则sin 2(9)(0,1)()cos (A)210(B)210(C)210(D)220ttx ty ty x y x y x y x ⎧=⎪⎨=⎪⎩+-=--=++=+-=e 曲线在点处的法线方程为e1(10)ln(1)()(A)0(B)1(C)2(D)3x y x =++曲线e 渐近线的条数为三、计算、证明题(每小题10分,共60分)120...(11)lim(),.x x nx x x n n→+++e e e 求极限其中是给定的正整数32ln(1)0arcsin ()60e 1sin 4()00().ax ax x x x f x x x ax x x x a f x x a x f x ⎧⎪+<⎪-⎪⎪==⎨⎪+--⎪>⎪⎪⎩==,(12)设函数,,问为何值时,在连续;为何值时,是的可去间断点?333(0).z axy x y a =-->(13)求函数的极值[]32261871,4y x x x =---(14)求函数在上的最大值和最小值.12121221()(0,)()1'(1)4,0,0()()().()(0,)'().f x f x x f x x f x x x f x x f x f x f x +∞==>>=++∞(15)设在上有定义,在处可导且若对所有的有试证:在上可导,并求[]22(16),().(),()()0.(),,() 2.y x Bx C x x a x b a b f x a b f a f b y f x y x Bx C a b a b f ξξ=-++==<====-++''=-设抛物线与轴有两个交点又在上有二阶导数,且若曲线与在()内有一个交点,求证:在()内存在一点,使答案一、填空题(每小题4分,共20分)83(1) sin sin 2111(2)'cos e sin e cos ,x x y x x x x =⋅⋅- 2k =(3)210(4)33x - 223''()(1'()).(1'())f y f y x f y ---(5)二、选择题(每小题4分,共20分)(6)(D)(7)(C)(8)(B)(9)(A)(10)(D)三、计算、证明题(每小题10分,共60分)122()............................................................................21ln ln().........................................................................x x nx x x x nxy ny x n+++=+++=e e e (11)令,分e e e 则20022012...41lim ln lim ln()2121lim ..................................................82............................................x x nx x x x x nx x xnx x n y x n n n n n→→→+⎡⎤+++=⎢⎥⎣⎦+++++++===+++=分e e e e e e 分e e e 所以原极限e..................................................10分3200022200003lim ()lim lim 6 (31)arcsin 112lim ()4lim 4lim 2 4............................62lim (x x x ax ax x x x x ax ax f x a x x x ax a x a f x a x xf ---++++→→→→→→→===---+--+-===+(12)分e e 分令()222)lim ()2461 2.1lim ()6(0)()0.2lim ()12(0)0()...........................10330330x x x x f x a a a a a f x f f x x a f x f x f x z ay x xa z ax y y-→→→=+=-=-=-=-====-=≠=∂⎧=-=⎪∂⎪⎨∂⎪=-=∂⎪⎩,有,解得或当时,,即在处连续当时,,则是的可去间断点分(13)解方程组,得驻点:0,0,(),......................................3a 分()()()222222222636..........................................................................603090.,636270.z z zx a y x x y y A B a C AC B a a a A a B a C a AC B a ∂∂∂=-==-∂∂∂∂===-=-<=-==--=>又,,分于是在点0,0处有,,,故0,0不是函数的极值点.又在点处有,,,()3max 60,.......................................10A a a a z a =-<=又,故所给函数在处有极大值分[][][]21212()14.................................2'61218,'01,3,.............................................................6143()14m y x M m y x x y x x x x y x M =--===(14)由于在,上连续,因此必要最大值和最小值分令得=-分因为不在区间,内,所以是在,上的极值疑点,于是={}{}{}ax (1),(3),(4)max 29,61,4729min (1),(3),(4)61..............................................................................10f f f m f f f =---=-==-分12121221(15)1,()()()(1)1(1)1(1)2(1)(1)0..............................................20,0()()1(1)()x x f x x x f x x f x f f f f f x x x f x x f x x f x f x x x x ===+=⋅+⋅==>+∆>+∆-⎧∆⎫⎡⎤=+-⎨⎬⎢⎥∆∆⎣⎦⎩⎭=解令由条件知,即有分在时考虑函数平均变化率的表示式,利用题设条件有001(1)()(1)()(1)(1)1()()(1)..................60'(1)4,(1)(1)()()()()()lim lim '(1)x x x x f x xf f x x x x xf f x x f x x f x xf x x x x x xx f xf f f x x f x f x f x f x x f x x x x xx∆→∆→∆∆⎡⎤+++-⎢⎥∆⎣⎦∆+-∆∆⎡⎤=++=+⎢⎥∆∆⎣⎦∆→=∆+-+∆-=+=+=+∆∆分对上式取时的极限,并利用有4.()()0'() 4.............................10f x f x x f x x>=+由导数定义知在处可导且有分[]2121112(16)()()().....................................................................5(),()()()0.(,)(,)'()'()20'()'x f x x Bx C x a b a c b a c c b f B f ϕϕϕϕϕξξϕξξξϕξ=--++===∈∈=+-=令辅助函数,分由题设条件可知在上也有二阶导数且由罗尔定理知,存在,,使和=[]22121212()20..............................8'(),(,)''()''()20,''() 2.................................10B x f a b f ξξϕξξξξξϕξξξξξξ+-=∈=+=<<<<=-分将函数在上应用罗尔定理,知存在,使,即分。
高数三期末考试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x)=x^3-3x,求f'(x)的值。
A. 3x^2-3B. 3x^2+3C. x^3-3D. x^3+3答案:A2. 计算定积分∫(0,1) x^2 dx。
A. 1/3B. 1/2C. 2/3D. 1答案:B3. 判断下列级数是否收敛。
∑(1, 2, 3, 4, ...)A. 收敛B. 发散答案:B4. 求解微分方程dy/dx+y=x的通解。
A. y = e^(-x)∫x dx + CB. y = e^(x)∫x dx + CC. y = e^(-x)∫e^x dx + CD. y = e^(x)∫e^(-x) dx + C答案:A二、填空题(每题5分,共20分)1. 函数f(x)=sinx的二阶导数是______。
答案:-cosx2. 求极限lim(x→0) (sinx/x)。
答案:13. 已知函数f(x)=x^2-4x+4,求其顶点坐标。
答案:(2, 0)4. 计算二重积分∬D xy dA,其中D为x^2+y^2≤1的闭区域。
答案:π/2三、解答题(每题10分,共30分)1. 求函数y=x^3-6x^2+9x+1的极值点。
解:首先求导数y'=3x^2-12x+9,令y'=0,解得x=1或x=3。
然后检查二阶导数y''=6x-12,发现x=1时y''<0,x=3时y''>0,因此x=1为极大值点,x=3为极小值点。
2. 计算定积分∫(0,2) (x^2-4x+4) dx。
解:首先进行积分运算,得到∫(x^2-4x+4) dx = (1/3)x^3-2x^2+4x。
然后将积分上限2和下限0代入,计算得到(1/3)(2)^3-2(2)^2+4(2)- [(1/3)(0)^3-2(0)^2+4(0)] = 8/3 - 8 + 8 = 8/3。
3. 求解微分方程dy/dx-2y=e^(2x)。