6.1 平方根(第三课时)学案
【学习目标】
1.掌握平方根的概念,明确平方根与算术平方根的联系与区别. 能用符号正 确地表示一个数的平方根 2.理解开平方与平方间的互逆关系.根据这种互逆关系求一个数的平方根.
.
【重点难点】
重点:平方根的概念; 求一个数的平方根. 难点:平方根的概念; 求一个数的平方根.
9
数学活动二:数学活动二:求一个数的平方根
把求一个数a的平方根的运算,叫做开平方,而平方运算与开平方运算互 为逆运算.根据这种运算关系,可以求一个数的平方根. 例如当 2 时,x=±1; 当 2 时,则x=±4,
x = 16 x =1 2 2 当x = 36 时,x=±6; 当 x = 49 时,x=±7; 2 4 4 2 当x = ,则 ± 为 的平方根,它们的对应关系如图所示. 25 5 25
【当堂达标】
1. 169 的平方根是多少?
2.
16 的值为多少?16的平方根为多少? 16 的平方根呢?
3.若 35 的整数部分为a,小数部分为b,求a、b的值.
4. 有一长方形花坛,长是宽的4倍,其面积为 25m2 ,求长和宽
平方 开平方
数学活动三:应用
1 (2) (3)0 36
2. 121的平方根是多少?
(4)0.01
3.
49
的算术平方根是多少?
【学习体会】
1.本节课你独立思考了那些知识?参与讨论了哪些知识?还 有那些疑惑? 2.本节课你最成功的地方是什么?说给你小组成员听听.
创设情景
1.如果一个数的平方等于9,则这个数是________;
2.填表
【课中探究】
数学活动一:阅读教材,理解平方根的概念:
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根, 即若 x 2 = a ,则x为a的平方根,记为 x = 为±3 是9的平方根,表示为 ? 3