半导体热敏电阻温度测量的设计
- 格式:doc
- 大小:253.00 KB
- 文档页数:24
∞ 半导体热敏电阻的电阻—温度特性实验原理1. 半导体热敏电阻的电阻—温度特性某些金属氧化物半导体(如:Fe3O4、MgCr2O 4 等)的电阻与温度的关系满足式(1):B R = R e T (1) T ∞式中 R T 是温度为T 时的热敏电阻阻值,R ∞ 是T 趋于无穷时热敏电阻的阻值阻的材料常数,T 为热力学温度。
①,B 是热敏电热敏电阻对温度变化反应的灵敏度一般由电阻温度系数α来表示。
根据定义,电阻温 度系数可由式(2)来决定:α = 1 R T dR TdT (2)由于这类热敏电阻的α 值为负,因此被称为负温度系数(NTC )热敏电阻,这也是最 常见的一类热敏电阻。
2. 惠斯通电桥的工作原理半导体热敏电阻的工作阻值范围一般在 1~106Ω,需要较精确测量时常用电桥法,惠斯 通电桥是一种应用很广泛的仪器。
惠斯通电桥的原理如图 1 所示。
四个电阻 R 0 、R 1 、R 2 和 R x 组成一个四边形,其中 R x就是待测电阻。
在四边形的一对对角 A 和 C 之间连接电源;而在另一对对角 B 和D 之间接 入检流计 G 。
当 B 和 D 两点电势相等时,G 中无电流通过,电桥便达到了平衡。
平衡时必CR b 图 1 惠斯通电桥原理图 图 2 惠斯通电桥面板图① 由于(1)式只在某一温度范围内才适用,所以更确切的说 R 仅是公式的一个系数,而并非实际 T 趋于无穷时热敏电阻的阻值。
R R 1 有 R x = R 2 R 1 R 0 , 2 和 R 0 都已知, R x 即可求出。
R 0 为标准可变电阻,由有四个旋钮的电R 阻箱组成,最小改变量为 1Ω。
1 R2 称电桥的比率臂,由一个旋钮调节,它采用十进制固定值,共分 0.001,0.01,0.1,1,10,100,1000 七挡。
半导体热敏电阻特性研究实验报告半导体热敏电阻特性研究实验报告引言:半导体热敏电阻是一种基于半导体材料的温度敏感性元件,其电阻值随温度的变化而变化。
本实验旨在研究半导体热敏电阻的特性,并探索其在温度测量和控制中的应用。
实验一:热敏电阻与温度关系的测量在本实验中,我们选择了一种常见的热敏电阻材料,并使用了恒流源和数字温度计来测量其电阻值与温度之间的关系。
首先,我们将热敏电阻与恒流源相连,并将电流保持在恒定值。
然后,我们使用数字温度计测量不同温度下的电阻值。
通过多次测量,我们得到了一组电阻-温度数据。
根据实验数据,我们绘制了电阻-温度曲线。
结果显示,热敏电阻的电阻值随温度的升高而下降,呈现出明显的负温度系数特性。
这意味着热敏电阻在高温下具有较低的电阻值,在低温下具有较高的电阻值。
实验二:热敏电阻在温度测量中的应用在实验一的基础上,我们进一步探索了热敏电阻在温度测量中的应用。
我们设计了一个简单的温度测量电路,将热敏电阻与电压源和电压测量仪相连。
通过测量电压测量仪的输出电压,我们可以间接地推算出热敏电阻的电阻值,从而得知温度。
实验结果表明,该方法能够较准确地测量温度,且具有较高的灵敏度和稳定性。
实验三:热敏电阻在温度控制中的应用除了温度测量,热敏电阻还可以应用于温度控制。
我们设计了一个简单的温度控制电路,其中包括热敏电阻、比较器和加热元件。
当温度超过设定阈值时,热敏电阻的电阻值会下降,导致比较器输出高电平信号,进而控制加热元件的工作。
当温度降低到设定阈值以下时,热敏电阻的电阻值上升,比较器输出低电平信号,停止加热。
实验结果表明,该温度控制电路能够实现对温度的自动控制,具有较高的精度和稳定性。
这种基于热敏电阻的温度控制方法在实际应用中具有广泛的潜力。
结论:通过本次实验,我们研究了半导体热敏电阻的特性,并探索了其在温度测量和控制中的应用。
实验结果表明,热敏电阻具有良好的温度敏感性能,可广泛应用于各种温度相关的领域。
半导体温度计的设计和制作实验(非平衡电桥)在温度不太低或不太高(如从-20o C到几百度)的情况下,通常可以用水银温度计来测一定的温度。
由于生产和科学实验的发展,需要精密和快速的温度测量,因而就需要灵敏度较高的温度计。
现在已有各种用途的温度计,半导体温度计就是其中的一种。
本实验的半导体温度计利用热敏电阻为传感器,利用非平衡电桥实现由电学量测量一些变化的非电量,这种思想现在应用范围扩展到很多领域,如长度、位移、应力、应变、温度、光强等转变成电学量,如电阻、电压、电流、电感和电容等,然后用电学仪器来进行测量。
一、实验目的1.理解非平衡电桥的工作原理及其在非电量的电测法中的应用。
2.了解半导体温度计的基本原理并设计制作一台半导体温度计二、实验原理1.热敏电阻伏安特性曲线为测量热敏电阻的阻值,需了解热敏电阻的伏安特性。
由图1可知,在V-I 曲线的起始部分,因电流很太小,温度变化微小,曲线接近线性。
此时其阻值主要与外界温度有关。
图1 热敏电阻伏安特性曲线半导体温度计是利用热敏电阻的阻值随温度变化急剧的特性制作的,通过测量热敏电阻的阻值来确定温度的仪器。
应根据待测温度区间和热敏电阻的阻值选用合适电学元件和测温电路。
2.半导体温度计测温电路的原理非平衡电桥的工作原理图如下:图2 半导体温度计测温电路原理图图中G 是微安表, R T 为热敏电阻,当电桥平衡时,表的指示必为零,此时应满足条件:TR R R R 321= (1) 若取R 1 = R 2,则R 3的数值即为R T 的数值。
平衡后的电桥若其中某一臂的电阻又发生改变,则平衡将受到破坏,微安表中将有电流流过,此为非平衡电桥。
由基尔霍夫方程组求出CD T T G T T G V R R R R R R R R R R R R R R R I 23232121232212+++++-+= (2)由此可见微安表中的电流大小直接反映了热敏电阻的阻值的大小程度。
由于热敏电阻的大小与环境温度是一一对应关系,因此可以利用这种“非平衡电桥”的电路原理来实现对温度的测量。
热敏电阻温度特性试验实验数据处理一、实验目的了解热敏电阻的电阻—温度特性及测温原理,学习惠斯通电桥的原理及使用方法,学习坐标变换、曲线改直的技巧。
二、实验所用仪器及使用方法直流单臂电桥、检流计、待测热敏电阻和温度计、调压器。
三、实验原理半导体热敏电阻的电阻—温度特性热敏电阻的电阻值与温度的关系为:A,B是与半导体材料有关的常数,T为绝对温度,根据定义,电阻温度系数为:R是在温度为t时的电阻值。
惠斯通电桥的工作原理t如图所示:四个电阻R0,R1,R2,Rx组成一个四边形,即电桥的四个臂,其中Rx就是待测电阻。
在四边形的一对对角A和C之间连接电源,而在另一对对角B和D之间接入检流计G。
当B和D两点电位相等时,G中无电流通过,电桥便达到了平衡。
平衡时必有Rx = (R1/R2)·R0,(R1/R2)和R0都已知,Rx即可求出。
电桥灵敏度的定义为:式中ΔRx指的是在电桥平衡后Rx的微小改变量,Δn越大,说明电桥灵敏度越高。
实验仪器四、实验所测数据•不同T所对应的Rt 值R均值,1 / T,及ln R t的值t五、实验结果:1.热敏电阻的R t-t特性曲线数据点连线作图在图上找到T=50所对应的点做切线,可以求得切线的斜率: K=(500-0)/(0-85)=5.88由此计算出:α=-0.031二次拟合的曲线:在图上找到T=50所对应的点做切线,可以求得切线的斜率:K=(495-0)/(0-84)=5.89由由此计算出:α=--0.0312.ln R t -- (1 / T)曲线仿真实验画出图线如下图所示但计算机仿真实验画出的曲线图中A的值计算有误,正确的A=0.0153.将图修正后如下:A=0.0153,B=3047.5383由此写出R0.0153t=六、思考题1.如何提高电桥的灵敏度?2.答:电桥的灵敏度和电源电压,检流计的灵敏度成正比,因此提高电源电压,检流计的灵敏度能提高电桥灵敏度。
另外,检流计电阻,桥臂总阻值,桥臂电阻比也关系到电桥的灵敏度,因此合适的桥臂总阻值,桥臂电阻比也能提高电桥灵敏度。
热敏电阻和热电偶的温度特性研究(FB203型多档恒流智能控温实验仪)热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,它有负温度系数和正温度系数两种,负温度系数它的电阻率随着温度的升高而急剧下降(一般是按指数规律),而正温度系数电阻率随着温度的升高而急剧升高(一般是按指数规律),金属的电阻率则是随温度的升高而缓慢地上升。
热敏电阻对于温度的反应要比金属电阻灵敏得多,热敏电阻的体积也可以做得很小,用它来制成的半导体温度计,已广泛地使用在自动控制和科学仪器中,并在物理、化学和生物学研究等方面得到了广泛的应用。
【实验目的】1.研究热敏电阻、铜电阻;铂电阻、热电偶的温度特性。
2.掌握利用直流单臂电桥与控温实验仪测量热敏元件在不同温度下电阻值的方法。
【实验原理】温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。
常用的温度传感器的类型、测温范围和特点各不相同,本实验将通过测量几种常用的温度传感器的特征物理量随温度的变化,来了解这些温度传感器的工作原理。
1.热敏电阻温度特性原理:在一定的温度范围内,半导体的电阻率ρ和温度T 之间有如下关系:/1B TAe ρ= (1) 式中1A 和B 是与材料物理性质有关的常数,T 为绝对温度。
对于截面均匀的热敏电阻,其阻值T R 可用下式表示:T lR Sρ= (2) 式中T R 的单位为Ω,ρ的单位为cm Ω,l 为两电极间的距离,单位为cm ,S 为电阻的横截面积,单位为2cm 。
将(1)式代入(2)式,令1l A A S=,于是可得:/B TT R Ae = (3)对一定的电阻而言,A 和B 均为常数。
对(3)式两边取对数,则有:1l n l n T R B A T=+ (4)T R ln 与T1成线性关系,在实验中测得各个温度T 的T R 值后,即可通过作图求出B 和A 值,代入(3)式,即可得到T R 的表达式。
式中T R 为在温度)K (T 时的电阻值)(Ω,A 为在某温度时的电阻值)(Ω,B 为常数)K (,其值与半导体材料的成分和制造方法有关。
热敏电阻温度计的设计与标定一、实验内容与实验要求1.电阻温度计包括金属电阻温度计和半导体温度计,本实验要求利用半导体材料制备的热敏电阻设计出能够测量常温的温度计,测温范围“实验室室温-75℃”2.对温度计进行定标,绘制T-I(温度-电流)定标曲线。
3.用标定后的温度计,测量人体手心的温度,并与标准温度计所测量结果进行比较。
二、实验前应考虑并回答的问题1. 金属、半导体电阻随温度变化大致有怎么样的规律?2. 金属或半导体材料制成的热敏电阻随温度变化是线性的吗?3. 传感器为什么要定标?4. 非平衡电桥有什么用途?三、实验室可以提供的主要仪器1. 负温度系数半导体热敏电阻一支[25℃时电阻约5KΩ,B值3950/℃]2. 可调温压电源、微安表、万用表(不能当电压表用)。
3. 电加热水壶、金属水杯。
4. 玻璃温度计一支(0~100℃,准确度1℃)。
5. 电阻箱3个、塑料清洗瓶1个、开关和导线等。
四、实验设计报告和实验报告的要求(1). 实验设计报告的要求:1.实验目的;2.实验仪器[含仪器参数];3.实验原理[热敏电阻、非平衡电桥测温原理,有电流-电阻关系公式,实验设计思路解释];4. 电路中仪器的可调物理量数值预先选定和计算[电桥上三个电阻阻值、电源总电压等],5. 实验步骤[结合预先选择和计算的的数据,准确写出“把电阻箱阻值调到xxΩ,电源电压调到x.xxV”],6. 数据表[结合测量量和自变量,此外,电路中所用仪器的数值量都要记录;7. 实验注意事项。
(2) 实验报告的要求:在实验设计报告的基础上,增加实验中测量到的数据,完成数据处理和分析,实验总结和感受。
五、实验原理:1. 半导体热敏电阻半导体热敏电阻随温度变化典型特性可分为三种类型:负温度系数热敏电阻(NTC );正温度系数热敏电阻(PTC )和特定温度下电阻值发生突变电阻器(CTR )。
具有负温度系数的热敏电阻,电阻值随温度升高而迅速下降,这是因为热敏电阻由一些金属氧化物如Fe 3O 4、MgCr 2O 4等半导体制成,在这些半导体内部,自由电子数目随温度的升高增加得很快,导电能力很快增强;虽然原子振动也会加剧并阻碍电子的运动,但这种作用对导电性能的影响远小于电子被释放而改变导电性能的作用,所以温度上升会使电阻值迅速下降。
实验题目:用热敏电阻测量温度实验目的:了解热敏电阻的电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法,学习坐标、曲线改直的技巧和用异号法消除零点误差等方法。
实验原理:1、半导体热敏电阻的电阻-温度特性某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与 温度关系满足式(1):TBT e R R ∞= (1) 金属的电阻与温度的关系满足(2):)](1[1212t t a R R t t -+= (2)根据定义,电阻的温度系数可由式(3)来决定:dtdR R a tt 1=(3)两种情况的电阻温度曲线如又图(1)图(2)所示。
热敏电阻的电阻-温度特性与金属的电阻-温度特性比较,有 三个特点:(1) 热敏电阻的电阻-温度特性是非线性的(呈指数下降),而金属的电阻-温度特性是线性的。
(2) 热敏电阻的阻值随温度的增加而减小,因此温度系数是负的(2TB a ∝)。
金属的温度系数是正的(dt dR a /∝)。
(3) 半导体电阻对温度变化的反应比金属电阻灵敏得多。
这些差异的产生是因为当温度升高时,原子运动加剧,对金属中自由电子的运动有阻碍作用,故金属的电阻随温度的升高而呈线性缓慢增加;而在半导体中是靠空穴导电,当温度升高时,电子运动更频繁,产生更多的空穴,从而促进导电。
2、惠斯通电桥的工作原理原理图如右图所示:若G 中检流为0,则B 和D 等势,故此时021R R R R x =,在检流计的灵敏度范围内得到R x 的值。
当B 和D 两点电位相等时,G 中无电流通过,电桥便达到了平衡。
平衡时必有021R R R R x =,R 1/R 2和R 0都已知,R x 即可求出。
R 1/R 2称电桥的比例臂。
021R R R R x =是在电桥平衡的条件下推导出来的。
电桥是否平衡是由检流计有无偏转来判断的,而检流计的灵敏度总是有限的。
引入电桥灵敏度S ,定义为:xx R R nS /∆∆=(4)式中ΔR x 指的是在电桥平衡后R x 的微小改变量(实际上待测电阻R x 若不能改变,可通过改变标准电阻R 0来测电桥灵敏度),Δn 越大,说明电桥灵敏度越高,带来的测量误差就越小。
半导体热敏电阻的电阻—温度特性实验原理 1. 半导体热敏电阻的电阻—温度特性:某些金属氧化物半导体(如:Fe3O4、MgCr2O4 等)的电阻与温度的关系满足式(1)RT = R∞ eB T(1)式中 RT 是温度为 T 时的热敏电阻阻值,R∞ 是 T 趋于无穷时热敏电阻的阻值①,B 是热敏电阻的材料常数, T 为热力学温度。
热敏电阻对温度变化反应的灵敏度一般由电阻温度系数α来表示。
根据定义,电阻温度系数可由式(2)来决定:α=1 dRT RT dT(2)由于这类热敏电阻的α值为负,因此被称为负温度系数(NTC)热敏电阻,这也是最常见的一类热敏电阻。
2. 惠斯通电桥的工作原理半导体热敏电阻的工作阻值范围一般在 1~106Ω,需要较精确测量时常用电桥法,惠斯通电桥是一种应用很广泛的仪器。
惠斯通电桥的原理如图 1 所示。
四个电阻 R0 、 R1 、R2 和 R x 组成一个四边形,其中 R x 就是待测电阻。
在四边形的一对对角 A 和C 之间连接电源;而在另一对对角 B 和 D 之间接入检流计 G。
当 B 和 D 两点电势相等时,G 中无电流通过,电桥便达到了平衡。
平衡时必D R1 RxSGAGCR2 R B ER0Sb图 1 惠斯通电桥原理图图 2 惠斯通电桥面板图①由于(1)式只在某一温度范围内才适用,所以更确切的说R∞ 仅是公式的一个系数,而并非实际 T 趋于无穷时热敏电阻的阻值。
有 Rx =R1 R R0 , 1 和 R0 都已知, R x 即可求出。
R0 为标准可变电阻,由有四个旋钮的电 R2 R2阻箱组成,最小改变量为 1Ω。
R1 称电桥的比率臂,由一个旋钮调节,它采用十进制固定 R2值,共分 0.001,0.01,0.1,1,10,100,1000 七挡。
测量时应选择合适的挡位,保证测量值有 4 位有效数。
电桥一般自带检流计,如图 2 所示,如果有特殊的精度要求也可外接检流计,本实验采用外接的检流计来判断电桥的平衡。
实验17 半导体热敏电阻的温度特性研究一、【实验目的】1.研究半导体热敏电阻的温度特性。
2.了解半导体热敏电阻的结构和使用方法。
3.学习用最小二乘法或作图法处理数据的方法二、【实验仪器】DHT -1型多功能恒温控制仪、DHQJ -1型两用非平衡电桥、NTC 半导体热敏电阻三、[实验原理]物体的电阻与温度有关。
在通常温度下,多数纯金属的电阻与温度成线性关系:R=R 0(1+αt ) (17-1)式中:R 是温度为t ℃时的电阻;R 0为0℃时的电阻;α称为电阻温度系数,单位为1/℃。
由半导体材料制成的热敏电阻,根据自身的特性可分为负温度系数(NTC )和正温度系数(PTC )两种,它的导电机理取决于材料的特性。
对于负温度系数的热敏电阻,其阻值随着温度的升高而按指数规律减小。
NTC 热敏电阻和金属的阻值随温度变化的曲线如图 17-1 所示。
图 17-1 NTC 热敏电阻和金属的阻值随温度变化的曲线实验表明,在一定的温度范围内,NTC 热敏电阻的阻值T R 和热力学温度T 之间的关系为T B T Ae R /= (17-2)其中A ,B 为常数,由材料的物理性质决定,常数A ,B 可用实验的方法求得,对(17-2)两边取对数得T B A R T /ln ln += (17-3)由(17-3)式可看出, lnR T 与1/T 成线形关系。
通过实验测得的n 组数据(T R , T ),然后用最小二乘法(或用作图法)得出A 、B , 得出所研究的半导体的电阻随温度变化规律关系式。
四、实验内容1.将热敏电阻和多功能恒温控制仪(见附录5)按图17-2连接好,热敏电阻接到惠斯登电桥被测电阻二接线柱上。
恒温控制仪(左) 热敏电阻(右)图17-2 实验线路连接图2.温度由常温开始,测t(=27℃,28℃,29℃,30℃,31℃,32℃,33℃,34℃)下R。
测量时,取工作电压E=3伏,电桥倍率(×1)。
的热敏电阻阻值T表17-13.将测量的数据记录在表17-1中,用计算器作两个变量(ln ,1/T)统计运算,用最小二乘法或作图法求出A,B,得出关系式。