【教学设计】《黄金分割与数学》教案
- 格式:doc
- 大小:377.50 KB
- 文档页数:4
教案北师大版初中数学八年级下册《黄金分割》教案一. 教材分析北师大版初中数学八年级下册《黄金分割》教案旨在让学生理解黄金分割的概念,掌握黄金分割的应用。
通过本节课的学习,学生能够了解黄金分割的历史背景,熟悉黄金分割的基本性质,并能够运用黄金分割解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的知识,具备了一定的观察、分析、解决问题的能力。
但部分学生可能对黄金分割的概念和应用存在理解上的困难,需要教师在教学中给予关注和引导。
三. 教学目标1.知识与技能:让学生掌握黄金分割的概念,了解黄金分割的基本性质,能够运用黄金分割解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生独立思考和合作解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的创新意识和审美观念。
四. 教学重难点1.重点:黄金分割的概念及其应用。
2.难点:黄金分割性质的证明和运用。
五. 教学方法1.情境教学法:通过设置情境,引导学生主动参与学习,提高学生的学习兴趣。
2.启发式教学法:引导学生独立思考,发现问题,解决问题。
3.合作学习法:鼓励学生之间相互讨论、交流,共同提高。
六. 教学准备1.准备相关图片、实例等教学资源。
2.设计好课堂练习题和作业。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中常见的黄金分割实例,如建筑、艺术品等,引导学生观察、思考,引出黄金分割的概念。
2.呈现(10分钟)教师简要介绍黄金分割的历史背景,讲解黄金分割的定义和性质,引导学生通过观察、操作,理解黄金分割的特点。
3.操练(10分钟)学生分组进行实践活动,运用黄金分割的知识解决实际问题。
教师巡回指导,帮助学生克服困难,提高解决问题的能力。
4.巩固(10分钟)教师出示一些练习题,让学生在课堂上完成。
通过练习,巩固所学知识,提高学生的应用能力。
5.拓展(10分钟)教师引导学生思考黄金分割在实际生活中的应用,如设计、建筑等领域。
4.2黄金分割(教案)教学目标:1.知识与技能目标:(1)通过实例了解黄金分割,并能简单应用;(2)在应用中进一步理解线段的比、成比例线段等相关内容.2.过程与方法目标:(1)经历黄金分割概念的建立过程,发展学生归纳概括的能力,逐步养成主动的通过归纳概括发现概念的学习策略;(2)经历黄金分割概念的印证和拓展过程,培养学生演绎推理的能力.3.情感与态度目标(1)通过经历概念的建立、印证和拓展全过程,培养学生良好的数学思维品质;(2)在探索交流的过程中获得成功的体验,增强自信心;(3)感知数学美,体会数学的应用价值.教学重点:建立黄金分割的概念,并体会一般的数学概念的建立过程.教学难点:学生在探究活动之后的对概念本质属性的概括,以及回顾反思环节中对学习策略的概括性的反思.教法:用归纳的方法建立概念,用演工工绎的方法印证并拓展概念.学法:让学生用“概念形成”的方法来学习黄金分割的概念.教学流程:活动一:建立黄金分割的概念(1)以下3张照片,哪张构图最美?(2)芭蕾舞演员做相同的动作,踮脚尖和不踮脚尖,哪个更美?(3)脸型相同,五官基本相同的3张脸,哪个更美?学生观察、讨论,以小组为单位选出得票最多的图片.(学生填表,教师投影所填表格)突出教学重点的第一步:提供有代表性的典型事例,让学生辨别各种刺激模式.美是一种感觉,本应没有什么客观的标准,但在这些问题中,我们对美的认同的确是比较一致的,为什么这些图形会给人以美的感觉呢?这些美的事物是否存在内在的规律呢?让我们一起用数学的方法来研究吧.1.在问题1中,三只小鸟的高度是一致的,只是所处的水平位置有所不同,所以我们将图片转化为数学中的线段.将照片的宽度视为线段AB,小鸟所在的位置为点C,就将线段AB分为两条线段AC和BC,请同学们在图1和图2中测量AB、AC、BC,利用计算器计算比值并填表1.(保留2个有效数字)在图3中测量AB、AC、BC,利用计算器计算比值并填表2.(保留2个有效数字)2.请同学们观察表1,找一找:(1)是否有比值为常数;(2)是否存在一个比例式.3.在表2中有这样的关系吗?学生分组活动,测量、计算、填表.板演展示一组.分组讨论,一人板演.第二步:分化出各种刺激模式的属性.用下面4个问题引导学生将实际问题转化为数学模型,概括概念的本质属性,突破本节课的第一个难点.BA C图3BA图C1BAC图2构图不太美的图片ABACACBC表2踮脚尖的演员构图美的图片ACBCABAC表1活动五:运用黄金分割的概念进行计算计算1:如图,点C是线段AB的黄金分割点,AC>BC,如果AB=4,求线段AC的长度.解:根据定义,如果,点C是线段AB的黄金分割点,那么ABAC=215一,∵点C是线段AB的黄金分割点,∴,∴AC=215一AB= .填空,培养解题的规范性.把新概念纳入到已有的概念体系中,同化新概念.让学生体会到黄金分割的定义既是判定又是性质,并熟悉其应用方法.计算2:东方明珠塔,塔高463米.在设计的最初,设计师将塔身设计为直线型,后来,为了使平直单调的塔身变得丰富多彩,更协调、美观,设计师决定在靠近塔尖的黄金分割点处设计一个球体,请你计算这个球体距离地面的高度.(精确到百分位)学生自主练习,过程要规范.在现实情境中应用概念,把新知识纳入已有的知识系统之中,发展学生迁移、演绎的能力.活动六:寻找身边的黄金分割1.你身边有黄金分割的实例吗?如何验证你的猜想呢?操作、交流用概念的属性进行判别2.小实验:下列矩形中,哪个看起来更美?123为什么这个矩形会让同学们感觉到美呢?请同学们测量并计算它的宽与长的比.你的身边有这样的矩形吗?找一找.学生讨论,选出得票较多的矩形分组测量,计算矩形宽与长的比.寻找实例.概念的拓展.这两个寻找实例的问题,有助于学生辨认肯定与否定例证,使新概念与已有认知结构中的相关概念分化.CA B。
黄金分割教案黄金分割教案一、教学目标:1.了解黄金分割的定义和性质;2.学会计算黄金分割点的方法;3.培养学生的分析问题和解决问题的能力;4.增进学生对数学学科的兴趣。
二、教学内容:1.黄金分割的概念介绍;2.黄金分割点的计算方法;3.通过实例让学生进行练习。
三、教学重点和难点:1.黄金分割点的计算方法;2.运用黄金分割点解决实际问题。
四、教学过程:1.导入:通过一段视频演示黄金分割在建筑、艺术等领域的应用,引起学生的兴趣。
2.知识讲解:(1)黄金分割的定义和性质;黄金分割就是指一条线段,将其分割为两部分,使其比例等于整条线段的比例。
黄金分割的比例为:(1+√5)/2,约等于1.618。
黄金分割具有美学上的特点,常用于建筑、艺术等领域。
(2)黄金分割点的计算方法;设线段的长为x,分割点距离起点的长度为a,则黄金分割点满足以下比例:x/a = a/(x-a),解得a^2 - ax + x^2 = 0。
求得a = x(√5 - 1)/2,即黄金分割点距离起点的长度为线段的长乘以(√5 - 1)/2。
3.实例讲解:(1)例一:已知一段线段的长为8cm,求黄金分割点距离起点的长度。
解:根据计算方法,可得a = 8(√5 - 1)/2 ≈ 3.0902cm。
(2)例二:一段线段分割成两部分,其中长部分为20cm,求黄金分割点距离起点的长度。
解:设黄金分割点距离起点的长度为a,则根据计算方法:20/a = a/(20-a),解得a^2 - 20a + 20^2 = 0。
求得a ≈ 12.3614cm。
4.练习:(1)练习一:已知一段线段的长为10cm,求黄金分割点距离终点的长度。
(2)练习二:一段线段分割成两部分,其中短部分为15cm,求黄金分割点距离终点的长度。
5.总结和拓展:总结黄金分割的定义和性质,以及计算黄金分割点距离起点的方法。
拓展黄金分割在其他领域的应用,如绘画、设计等。
六、教学延伸:对于更高年级的学生,可以进一步引导他们进行更复杂的黄金分割问题的求解,培养他们的抽象思维能力和创新能力。
《黄金分割》教案一、教学目标:1. 让学生了解黄金分割的概念和特点。
2. 培养学生运用黄金分割知识解决实际问题的能力。
3. 提高学生对数学美的感知,培养学生的审美情趣。
二、教学内容:1. 黄金分割的定义及历史背景。
2. 黄金分割线的画法及应用。
3. 黄金分割在生活中的实例分析。
三、教学重点与难点:1. 黄金分割的概念及画法。
2. 黄金分割在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解黄金分割的概念、历史背景及应用。
2. 采用案例分析法,分析生活中的黄金分割实例。
3. 采用实践操作法,让学生动手画黄金分割线,提高实际应用能力。
五、教学过程:1. 导入新课:通过展示著名的黄金分割作品,引发学生对黄金分割的好奇心,激发学习兴趣。
2. 知识讲解:讲解黄金分割的定义、历史背景及画法,让学生掌握基本知识。
3. 案例分析:分析生活中的黄金分割实例,让学生了解黄金分割在现实生活中的应用。
4. 实践操作:让学生动手画黄金分割线,提高实际应用能力。
6. 板书设计:黄金分割1. 定义:线段分割的比例,使较长线段与整体线段的比等于较短线段与较长线段的比。
2. 画法:通过特定方法画出黄金分割线。
3. 应用:生活中的黄金分割实例分析。
六、教学评价:1. 课后作业:要求学生绘制一幅包含黄金分割的画作,并写一篇短文阐述黄金分割在作品中的运用及其美感。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
3. 同伴评价:学生之间互相评价对方的作品,从黄金分割的应用和创意等方面进行评价。
七、课后作业:1. 绘制一幅包含黄金分割的画作,并写一篇短文阐述黄金分割在作品中的运用及其美感。
2. 收集生活中的黄金分割实例,下节课分享。
八、教学反思:1. 课堂节奏是否适中,学生是否能跟上教学进度。
2. 教学方法是否有效,学生是否能更好地理解和掌握黄金分割的知识。
3. 学生参与度如何,是否都能积极投入到课堂活动中。
黄金分割教学教案一、教学目标1. 让学生了解黄金分割的概念和特点。
2. 培养学生运用黄金分割知识解决实际问题的能力。
3. 提高学生对数学美的感受,培养审美情趣。
二、教学内容1. 黄金分割的定义和比例计算。
2. 黄金分割在自然界和生活中的应用。
3. 黄金分割在艺术创作中的意义。
三、教学重点与难点1. 黄金分割的概念和计算方法。
2. 黄金分割在实际应用中的理解。
四、教学方法1. 采用讲授法,讲解黄金分割的定义、计算和应用。
2. 运用案例分析法,分析黄金分割在自然界和生活中的实例。
3. 启发式教学,引导学生发现黄金分割的美学价值。
五、教学准备1. 课件、图片和实物道具。
2. 练习题和案例分析材料。
六、教学过程1. 引入黄金分割的概念,讲解黄金分割的计算方法。
2. 分析黄金分割在自然界中的实例,如植物、动物的身体比例。
3. 探讨黄金分割在生活中的应用,如建筑、设计、时尚等领域。
4. 引导学生发现黄金分割在艺术创作中的美学价值,如绘画、雕塑、音乐等。
5. 布置练习题,巩固所学知识。
七、课堂互动1. 提问环节:让学生回答黄金分割的概念和计算方法。
2. 小组讨论:分组讨论黄金分割在自然界和生活中的实例。
3. 分享环节:各小组代表分享讨论成果。
八、教学评价1. 课堂问答:评估学生对黄金分割知识的掌握。
2. 练习题:检验学生运用黄金分割解决实际问题的能力。
3. 课后作业:布置相关课题的绘画或设计作品,展示学生对黄金分割的理解和应用。
九、教学拓展1. 引导学生进一步研究黄金分割在数学、物理学、生物学等领域的应用。
2. 组织参观展览或艺术家工作室,深入了解黄金分割在艺术创作中的应用。
十、教学反思2. 根据学生反馈,调整教学内容和方法,提高教学质量。
3. 探索更多黄金分割在各个领域的应用,丰富教学资源。
六、教学活动1. 引入黄金分割的概念,讲解黄金分割的计算方法。
通过展示相关图片和实物道具,引导学生直观地理解黄金分割的概念。
黄金分割教案教案题目:黄金分割教案目标:1.了解黄金分割的定义和原理;2.掌握黄金分割的计算方法;3.培养学生的审美能力和艺术鉴赏能力。
教学重点:1.黄金分割的概念和原理;2.黄金分割的计算方法。
教学难点:1.培养学生的审美能力和艺术鉴赏能力;2.理解黄金分割的原理。
教学准备:1.计算器;2.黄金分割的相关教学图片。
教学过程:Step 1:导入新知识(5分钟)通过展示一张黄金分割的例图,提问学生是否觉得该图看起来很美观,引导学生思考美学与黄金分割的关系。
Step 2:讲解黄金分割的原理(15分钟)1.向学生介绍黄金分割的概念,即将一段线段分为两部分,使整段线段与其中一部分的比例等于其中一部分与另一部分的比例,这个比例约为1:0.618。
2.解释黄金分割的原理,即黄金分割点的位置是一种具有视觉和美学上的平衡和和谐感。
Step 3:计算黄金分割(15分钟)1.向学生演示如何计算黄金分割,即将一段线段的长度乘以0.618,得到黄金分割点的位置。
2.让学生自己计算一些线段的黄金分割点。
Step 4:艺术鉴赏(15分钟)通过展示一些著名艺术作品,引导学生分析其中是否存在黄金分割,并让学生讨论这些作品是否看起来很美观。
Step 5:总结与拓展(5分钟)总结黄金分割的概念、原理和计算方法,并鼓励学生在日常生活中观察和欣赏黄金分割的存在。
教学方法:1.讲解法:通过向学生讲解黄金分割的概念、原理和计算方法;2.示范法:向学生演示如何计算黄金分割;3.讨论法:引导学生讨论艺术作品中的黄金分割。
教学评估:1.课堂讨论:根据学生的回答和讨论情况,评估学生对黄金分割的理解程度;2.作业检查:布置相关作业,检查学生对黄金分割的计算方法的掌握情况。
板书设计:黄金分割教案黄金分割的定义和原理:- 将一段线段分为两部分,使整段线段与其中一部分的比例等于其中一部分与另一部分的比例;- 黄金分割点位置具有视觉和美学上的平衡和和谐感。
《黄金分割》教案一、教学目标1、知识与技能目标(1)理解黄金分割的定义,能准确找出黄金分割点。
(2)掌握黄金分割比的数值,并能进行简单的计算。
(3)了解黄金分割在生活中的应用,提高学生的数学应用意识。
2、过程与方法目标(1)通过观察、计算、推理等活动,培养学生的探究能力和逻辑思维能力。
(2)经历黄金分割的发现和探究过程,体会从特殊到一般的数学思想方法。
3、情感态度与价值观目标(1)感受黄金分割的美,激发学生对数学的兴趣和热爱。
(2)通过了解黄金分割在生活中的广泛应用,体会数学与生活的紧密联系,增强学生的应用意识和创新意识。
二、教学重难点1、教学重点(1)黄金分割的定义及黄金分割比的计算。
(2)黄金分割在实际生活中的应用。
2、教学难点(1)理解黄金分割的本质,能准确找出黄金分割点。
(2)灵活运用黄金分割解决实际问题。
三、教学方法讲授法、探究法、讨论法、演示法四、教学过程1、导入新课(1)展示一些具有美感的图片,如建筑、艺术作品等,引导学生观察并思考这些图片中美的共同特点。
(2)提出问题:为什么这些图片会给人一种美的感受?是否存在某种数学规律在其中?2、讲授新课(1)黄金分割的定义通过一个简单的几何图形,如线段,引入黄金分割的概念。
在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC,如果AC/AB = BC/AC,那么称线段 AB 被点 C 黄金分割,点 C 叫做线段AB 的黄金分割点,AC 与 AB 的比值约为 0618,这个比值称为黄金分割比。
(2)黄金分割比的计算设线段 AB 的长度为 1,点 C 为黄金分割点,AC 的长度为 x,则BC 的长度为 1 x。
根据黄金分割的定义可得:x/1 =(1 x)/x解方程可得:x =(√5 1)/2 ≈ 0618(3)黄金分割在几何图形中的应用①展示一些常见的几何图形,如矩形、三角形等,引导学生找出其中的黄金分割点和黄金分割比。
②以矩形为例,讲解如何通过黄金分割比来绘制一个具有美感的黄金矩形。
初中数学《黄金分割》教案第四章相似图形2.黄金分割一、学生知识状况分析学生的知识技能基础:学生在学习了基本作图之后,懂得了作图的方法。
又在学习本章第一节后,掌握了线段的比、成比例线段的概念,比例的基本性质,会比和比例尺的计算,坚实了基础。
学生的活动经验基础:学生的作图学习,强化了学生动手的能力;比的计算、比例尺的计算,感受了数学在现实生活中的作用,增强了学生学习数学的信心。
通过变换的鱼来推导成比例线段、比例性质推导、变换发展了的逻辑推理能力。
本章第一节例题的讲解,培养了学生灵活运用的能力。
二、教学任务分析学习《黄金分割》不仅实现线段比例的要求,更是体现数学的文化价值,0.618的意义,体现数学与建筑、艺术等学科必然联系的纽带。
教学中,通过国旗上的图案五角星引入黄金分割,使学生真正体会到其中的文化价值,同时,在建筑、艺术上实例欣赏,应用中进一步强化线段的比、成比例线段、黄金分割等相关内容。
为此,本节课的教学目标是:1、知道黄金分割的定义;会找一条线段的黄金分割点;会判断某一点是否为一条线段的黄金分割点;2、通过找一条线段的黄金分割点,培养学生理解与动手能力。
3、理解黄金分割的意义,并能动手找到和制作黄金分割点和图形,让学生认识教学与人类生活的密切联系对人类历史发展的作用。
教学重点:了解黄金分割的意义并能运用教学难点:找出黄金分割点和黄金矩形三、教学过程分析本节课设计了七个环节:第一个环节:情境引入;第二个环节:图片欣赏;第三个环节:操作感知;第四个环节:联系实际,丰富想象;第五个环节:巩固练习;第六个环节:课堂小结;第七个环节:布置作业。
第一环节情境导入活动内容:展示课件,提出问题:问题⒈ 从国旗中找出共同的图案问题⒉ 度量点C到A、B的距离,相等吗?教师操作课件,提出问题与共同学交流、观察回答问题⒈ 五角星回答问题⒉ 相等展示课件,导入新知在线段AB上,点C把线段分成两条线段AC和BC,如果,那么称线段AB被点C 分割,点C叫做线段AB的黄金分割点,AC与AB 的比叫黄金比。
《黄金分割与数学》教学设计
教学目标:
1.从数学课的角度:(1)使学生了解黄金分割、黄金比、黄金矩形的意义。
(2)使学生会确定一条线段的黄金分割点,明确黄金分割的尺规作图方法,体会数形结合的思想。
2.从美学的角度:通过对大自然中美的事物鉴赏,培养学生发现美、创造美的能力,同时陶冶学生情操。
3.从史学的角度:通过对黄金分割数学史料和“斐波拉契数列”的大致介绍,让学生对学习内容的意义有清晰的定位。
教学重难点:认识黄金分割的美学价值,确定一条线段的黄金分割点。
学生学具:直尺,圆规,量角器,学生用计算器。
活动流程设计
课前交流:课前、课中猜一猜老师的专业,随时告诉大家,如:
“老师,我发现你是美术老师!”“我发现你不是数学老师”等等,
看谁猜得最准!
一、创设问题情境,激发学生兴趣
1.计算几组算式(结果精确到0.001):
0.618∶1= (1-0.618)∶0.618= 1∶(1+0.618)=
问:你发现什么有趣的现象了吗?
有人说,0.618为宇宙的钥匙,真有那么神奇吗?
2. 你觉得哪张照片的构图最合理?更能体现小松鼠若
有所思地在凝视前方?
3.多媒体展示三幅图片:
芭蕾舞演员在跳舞时,频繁的掂起脚尖,为练就这项本领,演员不知要付出多少艰辛与努力,目的是什么?
中华人民共和国国旗上镶着五颗五角星,给我们庄重肃穆之感;上海东方明珠, 塔身显得非常协调、美观;春天的气温在23度左右时,我们感觉到比较舒服,这些都给人以和谐、平衡、舒适、美的感觉。
你想过这些问题吗?
(美是一种感觉,本来没有什么标准,但物体形状的比例提供了在匀称和协调上的一种美感
参考,这些都与0.618有关。
)
二、动态探究,导出定义。
1、动态探究:
1.1、媒体演示图片4,教师提出问题:舞台上,主持人站的位置有什么特点?(发现不是在舞台中间,而是在中间靠一侧点.主持人站在舞台中间很别扭,如果靠一侧,则会给观众很舒服、美观的感觉,声音传播的效果也较好).
1.2、 把刚才的问题抽象成数学模型,研究主持人位置的特殊性.(课件展示)
(1)舞台抽象成一条线段AB ,主持人是线段上点 C.点C 将AB 分成三条线段AC 、CB 、AB.如果点C 在中点处,满足
,如果点C 向右侧运动,
则AC 、CB 、AB 关系变为:CB
<
AC <AB.
(2)以短、长、全命名它们。
在点C 由中点向右侧移动过程中,请观察下面两个比值的变化情况(几何画板演示).让学生发现:
1.3、揭示定义:
随着点C 的移动,两个比值逐渐接近,某一瞬间它们相等,即
=0.618.这时我们称
线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割
点,AC 与AB 的比值(0.618)叫做黄金比. 对于一条线段,其黄金分割点的位置很特殊,如
果把舞台看成一条线段,主持人站在这条线段黄金分割点的位置主持节目,给观众舒服、美观的感觉,同时其声音的传播效果也达到最好.
三、师生互动、探究作法。
1
、分组探究、自主体验
五角星给人以庄重的美感,在图案中,是否也存在黄金分割呢,分四
人一组,用刻度尺分别度量课本P108页的五角星点C 到点A 、B 的距离,
量出线段AB
的长度,然后计算与
,它们的值接近一个什么样的
数?
(几何画板演示:随着正五角星大小的改变,AB 、AC 、CB 的长发生改变,但
与
始
终保持不变。
)
结论1:点C 是线段AB 的黄金分割点。
启发:图中好像还有线段AB 的黄金分割点,你发现了吗?能验证吗?
结论2:点D 也是线段AB 的黄金分割点。
一般地,一条线段有两个黄金分割点,这两点关于线段的中点对称。
B
全 A
C
长
短
D
启发:你还发现图中其它类型的黄金分割现象了吗?
结论3:点C 是线段DB 的黄金分割点;点D 是线段AC 的黄金分割点。
这叫做黄金分割点的再生性。
归纳与过渡:刚才的过程体现了从形到数的的转化,用数解释形的特点;现在我们由数回归到形,创造黄金分割。
3、独立探究:你能找到任一线段的黄金分割点吗?
学生可能会想到度量线段长
计算它的0.618倍 找点的方法。
过渡:能用作图方法直接作出这条线段的一个黄金分割点吗?引出下一议题。
4、自主学习,理解作法
(几何画板展示作一条线段的黄金分割点的方法与过程。
) (1)如右图:已知线段AB ,作图寻找右侧黄金分割点C : 作法:①取线段的中点D,将BD 绕点B 顺时针
旋转90°,即BD ⊥AB ;
②连接AD ,在DA 上截取DE=DB ;
③在AB 上截取AC=AE ,则点C 为线段AB 的右侧黄金分割点. (2)运用定义,通过计算说明点C 是线段AB 的黄金分割点. 如果设AB=2,则BD=1,AD=,AC=-1,BC=3-
, ,
∴点C 为线段AB 的黄金分割点. 或者可计算出
也能得到点C 为线段AB 的黄金分割点.
归纳:两种方法有什么区别吗?
前者是近似地找到线段的黄金分割点,后者是较准确地用尺规直接作出任一线段的黄金分割点。
3、实际运用,伸延概念
想一想:古希腊时期的巴台农神庙,把它的正面放在一个矩形ABCD 中,以矩形ABCD 的宽AD 为边在其内部作正方形AEFD ,那么我们可以惊奇地发现 ,那
点E 是AB 的黄金分割点吗?矩形ABCD 的宽与长的比是黄金比吗?这样的矩形称为黄金矩形。
四、及时巩固,初步应用
1.如图,C 、D 是线段AB 的两个黄金分割点,且AB=1㎝,则AD ≈cm,AC ≈cm,CD ≈㎝(均精确到0.001);AC ∶AD ≈(结果保留3个有效数字)。
五、开阔眼界
1.黄金分割与人的关系相当密切: 地球表面的纬度范围是0—90°,对其进行黄金分割,则34.38°—55.62°正是地球的黄金地带。
无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。
人为什么在环境22至24℃时感觉最舒适?因为人的体温为37℃,与0.618的乘积为22.8℃,这一温度中肌体的新陈代谢、生理节奏和生理功能均处于最佳状态。
人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。
A B
对应练习:小颖身高为169cm ,下肢长98.9cm,演出时为了使身材更匀称优美,应穿多高的高跟鞋最为合适?
有些植茎上,两张相邻叶柄的夹角是137°28',这恰好是把圆周分成1:0.618的两条半径的夹角。
据研究发现,这种角度对植物通风和采光效果最佳。
在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合适的配方或工艺条件。
优选法由美国数学家基弗于1953年首先提出的,70年代由数学家华罗庚提倡在中国推广。
建筑师们对数学0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618…有关的数据。
人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618…处。
艺术家们认为弦乐器的琴马放在琴弦的0.618…处,能使琴声更加柔和甜美。
2.与黄金分割有关的数学史料:
关于黄金分割比例的起源大多认为是公元前六世纪古希腊数学家毕达哥拉斯所发现,。
中世纪后,黄金分割被披上神秘的外衣,意大利数学家帕乔利将中末比为神圣比例,并专门为此著书立说。
在相当一段时期里,人们非常崇拜黄金分割,比如古希腊的许多矩形建筑中,宽与长的比都等于黄金比。
"斐波那契数列":1、1、2、3、5、8、13、21、34、55、89、144、…这些数被称为"斐波那契数"。
特点是除前两个数(数值为1)之外,每个数都是它前面两个数之和。
斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契。
斐波那契数列与黄金分割有什么关系呢?经研究
发现,相邻两个斐波那契数的比值是随序号的增加而逐渐趋于黄金比的。
不仅如此,随便选两个整数,
然后按照斐波那契数的规律排下去,两数之比也是会逐渐逼近黄金比的。
大多数植物的花,其花瓣数都恰是斐波那契数。
六、归纳总结,
(
1)课堂小结:师生共同归纳本节课的收获。
数学化
回归
生活。