集中式与组串式逆变器的优缺点比较
- 格式:doc
- 大小:17.89 KB
- 文档页数:3
微型、组件、集中式、组串式并网逆变器种类及优缺点分析随着应用场合的不同,光伏并网逆变器的拓扑也出现多种变化,从小功率的单相并网到大功率的三相多电平并网逆变器技术,其选用的半导体器件及控制算法的要求也趋于严格。
目前,各种规模的光伏并网逆变器已经研制成功并开始批量生产。
从能量等级上,主要分成以下几种:微型/组件逆变器、集中式光伏并网逆变器(电站型);组串式光伏并网逆变器(模组型);多组串式光伏并网逆变器(微型)。
1. 微型/组件逆变器微型/组件逆变器主要用在组件数量较少或者BIPV中,将单一的组件输出逆变为适合并网的交流电。
其优点是,各个组件都工作在自己的最大功率点处,并且组件之间不互相影响,一旦某个组件被遮挡或出现问题,其他组件仍然正常工作,极大地提高了系统的安全性。
当然成本也相对较高。
如图5-19所示。
(a)微型/组件逆变器 (b)集中式光伏并网逆变器 (c)组串式逆变器图5-19 并网逆变器2.集中式光伏并网逆变器集中式光伏并网逆变器主要用于大型光伏电站,负责将太阳能转换成电能传输到低压侧电网或中压电网,光伏电池组需进行串并联以达到足够的电压和功率供给逆变器,其结构如图5-19所示。
该拓扑的优点是功率转换损耗小,维护方便。
缺点是:①在电池组件不匹配及阴影遮挡的多峰值条件下,该拓扑的MPPT策略比较难以达到最大功率点;②光伏电池模组串并联导致的高电压、大电流会导致损耗及安全问题;③柔性不足,当需要对光伏电站的容量进行改造时,需要重新设计逆变器;④在弱光情况下发电量明显不足。
集中式组串式组串并联式图5-19 并网逆变器拓扑结构研究表明,集中式的性价比很高,同样功率规模下成本可达到组串式并网逆变器的60%,但效率比组串式逆变器要低1.5%。
2.组串式光伏并网逆变器组串式光伏并网逆变器通过串联光伏组件达到其功率等级,如图5-19所示。
因此优点之一是能够解决组件串之间的不匹配问题,并让该组件串工作在最大功率点下。
集中式光伏逆变器与组串式光伏逆变器优缺点对比分析光伏逆变器是光伏发电系统的重要组成部分,与一般逆变器相比,光伏逆变器具备最大功率点跟踪(MPPT)功能与针对电网平安的低电压穿越力量。
目前常见的光伏逆变器主要分为集中式光伏逆变器与组串式光伏逆变器。
那么集中式光伏逆变器与组串式光伏逆变器哪种好呢?下面一起来看看集中式光伏逆变器与组串式光伏逆变器的优缺点分析。
集中式光伏逆变器集中式光伏逆变器是将光伏组件产生的直流电汇总转变为沟通电后进行升压、并网,因此逆变器的功率都相对较大,光伏电站中一般采纳500kW以上的集中式逆变器。
集中式光伏逆变器的设备功率在50KW到630KW之间,功率器件采纳大电流IGBT,系统拓扑结构采纳DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。
体积较大,室内立式安装。
集中式光伏逆变器的优点:1.功率大,数量少,便于管理;元器件少,稳定性好,便于维护; 2.谐波含量少,电能质量高;爱护功能齐全,平安性高;3.有功率因素调整功能和低电压穿越功能,电网调整性好。
集中式光伏逆变器的缺点:1.集中式逆变器MPPT电压范围较窄,不能监控到每一路组件的运行状况,因此不行能使每一路组件都处于最佳工作点,组件配置不敏捷;2.集中式逆变器占地面积大,需要专用的机房,安装不敏捷; 3.自身耗电以及机房通风散热耗电量大。
组串式光伏逆变器组串式光伏逆变器是将光伏组件产生的直流电直接转变为沟通电汇总后升压、并网,因此逆变器的功率都相对较小,光伏电站中一般采纳50kW以下的组串式光伏逆变器。
组串式逆变器功率小于100KW,功率开关管采纳小电流的MOSFET 或IGBT,拓扑结构采纳DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。
体积较小,可室外壁挂式安装。
组串式光伏逆变器的优点:1.不受组串间模块差异,和阴影遮挡的影响,同时削减光伏电池组件最佳工作点与逆变器不匹配的状况,最大程度增加了发电量; 2.MPPT电压范围宽,组件配置更加敏捷;在阴雨天,雾气多的部区,发电时间长;3.体积较小,占地面积小,无需专用机房,安装敏捷;4.自耗电低、故障影响小。
集中式逆变器和组串式逆变器集中式逆变器与组串式逆变器:哪个更适合你?哎呀,听说你最近在研究太阳能发电系统的事儿?这可是个大好事儿,毕竟绿色能源有利于咱们的地球嘛。
今天咱们就聊聊两种常见的逆变器类型:集中式逆变器和组串式逆变器,看看它们分别有什么特点,哪个更适合你。
1. 集中式逆变器集中式逆变器,顾名思义,就是把所有太阳能板的电流“集中”到一个大逆变器里。
这个大逆变器就像一个老大哥,负责把从太阳能板上来的直流电转换成交流电,然后送到电网里。
这个老大哥的工作非常重要,毕竟它得保证电能转换得又快又好。
1.1 优点首先,集中式逆变器的处理能力特别强。
就像一个全能的工作狂,能处理很多很多的电力。
所以如果你家里太阳能板特别多,集中式逆变器能搞定一切,不需要担心电流过多的问题。
此外,集中式逆变器通常比较耐用,毕竟它不是一个个小玩意儿,而是一个大块头,能承受更多的挑战。
还有一个好处就是维护相对简单。
你只需要定期检查一个逆变器,不需要跑来跑去地检查多个小设备。
真是省心省力啊!而且,一旦集中式逆变器出了问题,虽然修起来可能有点麻烦,但毕竟只有一个大头需要维修,也比多个小头维修要方便一些。
1.2 缺点不过,集中式逆变器也有它的短板。
首先,如果逆变器坏了,那你的整个系统就得停摆。
就像大车开坏了,整车都不能跑了。
这对于依赖太阳能的家庭来说,可能会影响到电力供应。
此外,这种逆变器对太阳能板的布置要求比较高。
如果太阳能板的布置不够均匀,可能会影响发电效率。
2. 组串式逆变器组串式逆变器,这名字听起来是不是有点复杂?其实它的工作原理很简单。
它把太阳能板分成小组,每组的电流都通过一个小逆变器来处理。
这样就像把一大堆活分给几个小伙伴做,每个人负责自己的一部分。
2.1 优点组串式逆变器的最大好处就是灵活性强。
就像一群小伙伴合作,每个人都有自己的工作空间。
如果某一组的逆变器出了问题,其他组的发电不会受到影响。
这样,你的太阳能系统可以继续运转,即使某个小部分出现了小问题,也不会影响整体的电力供应。
集中式、组串式和集散式逆变器比较技术专题目前适用于大型光伏电站的逆变器主流产品包括集中式、组串式和集散式逆变器,各有利弊和优缺点。
为更好的为本项目选择合适的逆变器,做此逆变器比较专题报告。
集中式、组串式和集散式逆变器的主要优缺点、适应场合和比选结论详述如下:1集中式、组串式和集散式逆变器概述集中式逆变器:国内主流设备功率一般不超过630kW,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般不低于IP20。
体积较大,室内立式安装。
系统方案为采用直流汇流箱进行一级汇流,采用集中式逆变器(带MPPT跟踪功能)进行二级汇流及逆变,最后输入升压箱变。
组串式逆变器:功率一般不大于60kW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。
体积较小,可室外壁挂式安装。
系统方案为采用组串式逆变器(带多路MPPT跟踪功能)进行一级汇流及逆变,采用交流汇流箱进行二次汇流,最后输入升压箱变。
集散式逆变器:分布式多MPPT,独立跟踪,精度高,发电效率高;分布式DC/DC升压,直流传输电压800V左右、交流并网电压500V左右,传输损耗降低;传输及并网电压高、电流小,逆变器、电缆和箱变的投资都有所下降。
系统方案为采用直流汇流箱进行一级汇流(直流汇流箱带多路MPPT跟踪功能),再采用大容量逆变器(不带MPPT跟踪功能)进行二级汇流及逆变,最后输入升压箱变。
光伏场区使用主要器件对比:集中式逆变方案:光伏组件,直流电缆,直流汇流箱,直流电缆,直流配电柜,直流电缆,集中式逆变器,交流电缆,双分裂箱变。
组串式逆变方案:光伏组件,直流电缆,组串式逆变器,交流电缆,交流汇流箱,交流电缆,双绕组箱变。
集散式逆变方案:光伏组件,直流电缆,智能型带MPPT直流汇流箱,直流电缆,直流配电柜,直流电缆,集散式逆变器,交流电缆,双绕组箱变。
集中式、组合式、集散式逆变器的异同点- 集中式逆变器是一种逆变器系统,它使用一个中央逆变器来处理多个太阳能电池组的电能。
该系统通常用于大型太阳能电站。
集中式逆变器可以通过收集和连接多个太阳能电池组的电能来显著提高能源转换效率。
集中式逆变器是一种逆变器系统,它使用一个中央逆变器来处理多个太阳能电池组的电能。
该系统通常用于大型太阳能电站。
集中式逆变器可以通过收集和连接多个太阳能电池组的电能来显著提高能源转换效率。
- 组合式逆变器是将多个独立运行的逆变器组合在一起的系统。
每个逆变器负责转换一个或多个太阳能电池板的电能。
组合式逆变器通常用于中等规模的太阳能系统,如住宅和商业建筑。
组合式逆变器是将多个独立运行的逆变器组合在一起的系统。
每个逆变器负责转换一个或多个太阳能电池板的电能。
组合式逆变器通常用于中等规模的太阳能系统,如住宅和商业建筑。
- 集散式逆变器是一种将太阳能电池板和逆变器分别安装在不同的位置的系统。
太阳能电池板将电能输送到中央逆变器,然后将其转换为交流电。
这种配置通常用于太阳能电站或大型商业建筑,因为它可以降低能源传输损失。
集散式逆变器是一种将太阳能电池板和逆变器分别安装在不同的位置的系统。
太阳能电池板将电能输送到中央逆变器,然后将其转换为交流电。
这种配置通常用于太阳能电站或大型商业建筑,因为它可以降低能源传输损失。
这些逆变器系统之间存在以下异同点:1. 系统结构不同:集中式逆变器将多个太阳能电池组连接到一个中央逆变器上,而组合式逆变器将多个独立运行的逆变器组合在一起。
集散式逆变器在太阳能电池板和逆变器之间采用分离的配置。
系统结构不同:集中式逆变器将多个太阳能电池组连接到一个中央逆变器上,而组合式逆变器将多个独立运行的逆变器组合在一起。
集散式逆变器在太阳能电池板和逆变器之间采用分离的配置。
2. 适用规模不同:集中式逆变器主要用于大型太阳能电站,而组合式逆变器适用于中等规模的太阳能系统,如住宅和商业建筑。
集中式光伏项目组串式逆变器vs 集中式逆变器经济性、安全性分析对比前言:对大型光伏电站投资成本和发电效益来说,逆变器作为并网光伏电站关键设备之一,其性能直接影响整个并网光伏电站的发电效益。
2022年组串式逆变器销量市场占比 78.3%,集中式市场占比21.7%。
央国企组串式框采占比89%。
组串式技术路线更符合客户需求,已成为行业主流方案。
综合比较组串式逆变器在安装费、发电量、自耗电、经济性、安全性五大方面综合收益表现更优。
详细对比如下:一、经济性对比:(以100MW广东省集中式地面电站300KW组串式逆变器与3150KW集中式逆变器对比)1、初始安装费对比:初始投资:子阵布局容配比一致情况下,组串式方案单设备价格相对较高。
但考虑线缆、施工成本后,综合系统初始投资成本组串式方案与集中式一体机方案基本持平。
2、发电量对比:组串式比集中式发电量至少高2%集中式(含集中式一体机) 方案只有1/2路MPPT,且MPPT跟踪电压范围窄,启动电压905V , MPPT范围900V-1500V,对光伏阵列一致性要求高。
组串式采用多路MPPT设计,最大化减少组串失配损失;启动电压低,启动电压550VMPPT范围500V-1500V 有效发电时间更长。
(以100MW电站, 25年生命周期,年利用小时1050小时计算:100MW*1050小时*上网电价453元*25年*2%。
多收益2378.25万元)3、自耗电对比:组串式逆变器25年自耗电分析:因设备本体热源分散,待机自耗电5W,散热自耗电低,全场景适配;(外购电价按1.2元/千瓦时)0.005*24*365*25*1.2=1314元。
集中式逆变器再年自耗电分析:因设备本体散热风机等辅助大功率耗电,待机自耗电达到90W,运行自耗电更大;:0.11*24*365*25*1.2=28908元。
集中式较组串式多支出购电费2.76万元。
二、安全性对比:1、并网性能:集中式逆变器单级架构设计,无法满足GB/37408对高电压穿越的要求。
集中式逆变器和组串式逆变器之比较——深圳恒通源1、逆变器方案对比(1)集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。
体积较大,室内立式安装。
(2)组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。
体积较小,可室外臂挂式安装。
2、系统主要器件对比(1)集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。
(2)组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。
3、主要优缺点和适应场合(1)集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。
主要优势有:●逆变器数量少,便于管理;●逆变器元器件数量少,可靠性高;●谐波含量少,直流分量少电能质量高;●逆变器集成度高,功率密度大,成本低;●逆变器各种保护功能齐全,电站安全性高;●有功率因素调节功能和低电压穿越功能,电网调节性好。
主要缺点有:●直流汇流箱故障率较高,影响整个系统。
●集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。
在阴雨天,雾气多的部区,发电时间短。
●逆变器机房安装部署困难、需要专用的机房和设备。
●逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。
●集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。
●集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。
(2)组串式逆变器适用于中小型屋顶光伏发电系统,小型地面电站。
2014年慕尼黑Inter Solar论坛上,资深光伏从业人士Manfred Bachler(曾是全球最大EPC厂商Phoenix Solar的首席技术官)提出了用组串式逆变器改造现存的集中式逆变器的方案,给出的结论是5~6年可收回改造成本,主要是因为集中式逆变器维护麻烦、可用性差,仅在可用度方面就比组串式逆变器差6%。
近日,行业内对于组串式与集中式逆变器的故障率、可靠性众说纷纭。
本文将从以下几个角度详细分析,抛砖引玉。
1、系统可靠性基本原理差异组串式方案组件和逆变器直接相连,逆变器输出通过升压变接入电网,输变电链路设备少,直流线缆短,输电主要以交流线缆为主;集中式方案主要设备有直流汇流箱、直流配电柜、逆变器及升压变,输变电链路设备多,输电线路直流线缆较多。
本文将从以下几个方面分析系统方案可靠性原理差异。
1.1、直流和交流线路对系统安全性能的影响直流电特点是易产生拉弧故障且不易熄灭,存在无法扑灭的风险,因为只要有光照,就会有电流产生,危害性大;交流电由于存在过零点,即使发生电弧故障,电弧也会在过零点处熄灭,危害性小。
1.2、系统故障响应时间交流侧出现短路故障时,由于能量来自于电网,能量足够大,电气保护设备可及时跳脱,切断短路路径,保护用电设备;直流侧短路时,由于故障电流小,且断路器常有降额设计,断路器不能快速保护切断短路路径,其间可能出现绝缘老化、软化,进而引发火灾。
1.3、关键设备成熟度由于交流电技术已发展了100多年,发电技术稳定、成熟,应用范围广,与之相关的电器件也已发展成熟。
而光伏直流电保护技术积累少,有很多亟待解决的技术难题;且直流电压范围广,能量差异较大,相关应用器件发展还不成熟,如用于高压直流保护的器件,只有极少数厂家才能提供。
1.4、系统关键器件选型当前,逆变器器件选型时,部分厂家为追求低成本,交流断路器用在集中式逆变器直流侧的现象非常普遍,这样会给系统带来极大的安全隐患。
首先,由于交流电和直流电电压等级不同,交流断路器用于直流场景,工作电压超出器件额定电压,长期使用会造成断路器功能失效,安全隐患大;其次,由于直流电压等级高,工作电流大,断路器切断过程易产生电弧,直流和交流特点不同,断路器灭弧装置设计也势必不同,当交流断路器应用在直流场景时,直流电弧不能有效熄灭,如果电弧持续太久(几十ms),则会产生爆炸事故。
组串式与集中式光伏电站安全对比本文通过分析对比组串式与集中式两种应用广泛的电站解决方案,通过理论与实际案例分析它们的安全性差异,供业界探讨。
1组串式和集中式电站结构对比集中式光伏电站解决方案主要包括组件、直流汇流箱、直流配电柜、逆变器及其配套的逆变器房或集装箱体、箱式升压变等。
与集中式方案相比,组串式方案减少了直流设备和逆变房等配套设施,增加了交流汇流箱,缩短了高压直流的传输距离,国内主流的组串式方案更采用了无熔断器设计,自然散热的简洁方案。
图1组串式和集中式方案电站结构对比主要电气设备对比:电缆对比:2、组串式和集中式安全风险对比本文中分析的安全风险,是指光伏电站中可能引发火灾或对人身安全产生威胁的风险点。
根据前述中关于组串式与集中式的对比,最大差异就是交流和直流电缆距离的不同,而交流输电与直流输电在安全性有显著的差异。
直流供电主要用于于安全电压48V以下的控制系统及后备电源使用,或是特高压长距离直流输电(±400kV以上)工程中。
1000V直流输电是伴随着光伏的发展而兴起,其配套的相关电气设备还有待完善,甚至有部分厂家使用交流断路器充当直流断路器使用的情况。
在开关元件中,在发生故障时能够正确灭弧是衡量开关元器件最重要的一项技术指标。
由于交流系统存在过零点(注释:工业交流电每半周电流要过零一次,交流电流总是在电流过零时熄灭的),开关元件在断开故障电流时,能够利用过电压过零点进行灭弧,而且由于电弧的产生电压要比维持电压高得多,所以,交流电弧在过零点处熄灭后很难再产生。
而直流没有过零点,电压一直存在,电弧持续燃烧,必须拉开足够的弧长距离才能够可靠熄灭。
接线不良、电缆绝缘破损等也会引起拉弧,具有较高热能的电弧的出现使得电站存在一个火灾的隐患,也是光伏电站发生火灾的最主要因素。
从总体上看,交流系统部分相对成熟可靠,电站的安全性风险主要来自直流部分。
必须采取严谨的设计、减少直流系统长度,同时进行精心的电气设备选型,以保障电站安全。
集中式、组合式、分散式逆变器的比较随着可再生能源的快速发展,逆变器成为太阳能发电系统中不可或缺的组成部分。
逆变器的设计和类型对系统的性能和效率有重要影响。
本文将比较集中式、组合式和分散式逆变器的特点和优劣。
集中式逆变器集中式逆变器是指将多个太阳能电池板串联连接后再连接到一个逆变器上。
主要特点包括:- 优点:- 高效性能:只有一个逆变器,能够集中处理大量太阳能电池板的输出。
- 简单维护:只需维护一个逆变器,降低维护成本。
- 安装灵活:可以通过电缆将太阳能电池板布置在较远的位置。
- 缺点:- 单点故障:若一个逆变器发生故障,整个系统都会受到影响。
- 基于串联设计:当某个太阳能电池板遮阻或故障时,所有太阳能电池板的输出都会受到影响。
组合式逆变器组合式逆变器结合了集中式逆变器和分散式逆变器的特点。
主要特点包括:- 优点:- 灵活性:将太阳能电池板组合连接成若干串联或并联的子系统,每个子系统都配备一个逆变器。
- 容错能力:若一个子系统或逆变器发生故障,其他子系统仍可继续运行。
- 缺点:- 较多部件:需要更多的逆变器和电缆,增加了系统的成本和复杂性。
分散式逆变器分散式逆变器是指每个太阳能电池板都有一个独立的逆变器。
主要特点包括:- 优点:- 高可靠性:每个太阳能电池板都有独立的逆变器,若一个逆变器发生故障,其他逆变器仍可继续运行。
- 模块化设计:易于维护和扩展,降低维护成本。
- 最大发电量:每个太阳能电池板都能实现最大功率点追踪,提高系统发电效率。
- 缺点:- 安装复杂:需要安装和管理多个逆变器,增加了安装工作量和成本。
根据系统的需求和特点,选择适合的逆变器类型是关键。
集中式逆变器适合规模较大且系统结构简单的场景,而组合式逆变器和分散式逆变器适用于灵活性和可靠性要求较高的系统。
134研究与探索Research and Exploration ·工艺与技术中国设备工程 2018.11 (下)1 逆变器转换效率重要性提高逆变器的转换效率有很大的重要性。
比如我们提高1%的转换效率,500kW 的逆变器,平均每天算4h,逆变器每天可以多发电20kW·h,那么1年就可以多发电7300kW·h,10年即可多发出73000kW·h。
这样就相当于1台5kW 逆变器的发电量。
这样客户可以节省1台5kW 逆变器的电站。
所以为了提高客户的最大利益,我们需要尽可能的提高逆变器的转换效率。
2 逆变器效率的影响因素提高逆变器效率措施就是降低损耗,逆变器的主要损耗来自于IGBT、MOSFET 等功率开关管,以及变压器、电感等磁性器件。
损耗和元器件的电流,电压以及选用的材料采取的工艺有关系,见表1。
表1IGBT 的损耗主要有导通损耗和开关损耗,其中导通损耗和器件内阻、经过的电流有关,开关损耗和器件的开关频率,器件承受的直流电压有关。
电感的损耗主要有铜损和铁损,铜损指电感线圈电阻所引起的损耗,分布式光伏电站中集中式逆变器和组串式逆变器的选择比较贾帅(中电投(深圳)电力销售有限公司,广东 广州 510000)摘要:科学技术的发展,使得光伏发电技术被广泛应用于电力系统之中。
光伏电站环境复杂,气候多变,实际工作中的电压及负载随辐射和温度变化而变化。
“中国效率”评估标准综合考虑了我国光伏发电建设和气候条件的综合影响,准确反映光伏逆变器在实际运行中的转换效率,直接影响系统发电量。
如今的分布式光伏电站为了进一步实现绿色环保,对变电器的选择十分的必要。
本文介绍了分布式光伏电站中集中式、组串式逆变器的结构及特点,并进行了一系列具体的比较和分析,从它们各自的优缺点中选择最适合分布式光伏电站中最经济的使用方法,也为以后更多的地面电站投资建设提供借鉴。
关键词:分布式光伏电站;集中式逆变器;组串式逆变器;逆变器转换效率、逆变器转换效率影响因素、逆变器技术路线中图分类号:TM464 文献标识码:A 文章编号:1671-0711(2018)11(下)-0134-03当电流通过线圈电阻发热时,一部分电能就转变为热能而损耗,由于线圈一般都由带绝缘的铜线缠绕而成,因此称为铜损,铜损可以通过测量变压器短路阻抗来计算。
逆变器防PID,集中式优于组串式1、引言两种不同类型逆变器采用负极虚拟接地的PID方案有何差异?抑制效果是否相同?为此,笔者进行了深度剖析,供大家参考。
2、集中式与组串式负极虚拟接地方案的差异集中式与组串式逆变器均可采用负极虚拟接地方案来抑制组件PID,如图1所示。
图1 :集中式与组串式的负极虚拟接地方案系统结构对比根据图1,从防PID装置交流接入点、安装位置、负极对地电压获取及调整方式等方面,对两种类型逆变器负极虚拟接地方案的差异进行对比,如表1所示。
表1 :集中式与组串式负极虚拟接地方案差异对比3、集中式与组串式负极虚拟接地方案的效果分析1)防PID时间差异集中式负极虚拟接地方案为全天候抑制,组串式负极虚拟接地方案为部分时段抑制交流中性点N的电位UN与逆变器直流负极U-的关系建立在电路回路连通的前提之下。
对于组串式负极虚拟接地方案,在逆变器早晚待机及故障停机时,内部继电器均处于断开状态,防PID装置与组件之间的回路就被切断,UN与U-关系不成立,即使调整UN也无法使U-等于或大于0V,此时PID方案失效,如图2(b)所示。
特别是在早晚逆变器待机时间段内,由于弱光下直流侧有电压,仍会导致组件PID现象。
集中式负极虚拟接地方案的防PID装置交流侧直接与逆变器的逆变桥臂连接,即使在主接触器断开情况下,仍可抬升逆变器内侧电压,防止组件发生PID现象,如图2(a)所示。
图2 :集中式PID方案与组串式PID方案对比2)是否可修复PID差异集中式负极虚拟接地方案可修复已发生PID的组件;由于组串式逆变器在夜间不工作时,内部继电器断开,调整UN 也无法使U-等于或大于0V,不能对已发生PID现象的组件施加反向电压进行修复!一旦组件出现PID现象则会在全生命周期内对电站发电量产生影响。
只能通过对每台逆变器额外配备装置进行PID修复,成本巨大,在实际电站应用中不具有可操作性。
而集中式负极虚拟接地方案可以利用组件PID的可逆性,在夜间对现场已发生PID现象的组件施加反向电压进行修复。
集中式、组串式、集散式逆变器的区别
1.集散式逆变器的设计和制造难度较大,成本相对较高;
2.逆变器数量较多,系统监控难度大;
3.由于分散MPPT跟踪,逆变器需要更多的通讯和控制线路,增加了系统的复杂度;
4.逆变器的维护和故障排查需要更专业的技术人员。
XXX是一家专业从事太阳能光伏逆变器研发、生产和销
售的企业。
太阳能光伏逆变器是将太阳能光伏组件产生的直流电转变为交流电的核心设备之一。
在光伏电站中,逆变器的选型和使用对于电站的发电效率和稳定性都有着至关重要的影响。
集中式逆变器的优点在于功率大、数量少、稳定性好、电能质量高、安全性高等方面。
然而,由于其MPPT电压范围
较窄、占地面积大、自身耗电量大等问题,使得组件配置不灵活,安装和维护成本较高。
组串式逆变器则具有体积小、占地面积小、自耗电低、故障影响小等优点。
但是,由于其功率器件电气间隙小、逆变器数量多等问题,使得其不适合高海拔地区,且总故障率会升高。
集散式逆变器是近几年新提出的一种逆变器形式,具有集中式逆变器的低成本和组串式逆变器的高发电量等优点。
但是,由于其设计和制造难度大、逆变器数量较多等问题,使得其成本相对较高,系统监控难度大,维护和故障排查需要更专业的技术人员。
1.相比于前两类,这种形式较新,因此在工程项目方面的
应用相对较少,缺乏工程经验;
2.需要经历工程项目的检验,以确保其安全性、稳定性和
高发电量等特性。
1.相对于前两类,这种形式比较新,因此在实际工程项目
中的应用还比较少,缺乏足够的工程经验。
2.为了确保其安全性、稳定性和高发电量等特性,需要经
过工程项目的检验和实践验证。
【深度图解数据说话】组串式与集中式光伏电站发电量对比在如今的度电补贴时代,评价一个光伏电站的好坏,其实是发电量的角力。
这涉及到光伏电站的各类产品设备选型、系统方案设计、建设、施工、运维等各层面和环节。
受技术水平影响,提高组件发电效率与降低系统成本不可能在短时间内达到和实现。
因此,提升光伏电站的发电量,改善空间就集中在设计更优系统方案、提升建设施工质量、提升运维效率等方面。
目前主流的系统方案有两种:集中式方案和组串式方案。
结合作者长期从事的工作和研究,就两种方案的发电量及影响因素进行比较分析。
1、组串式逆变器与集中式逆变器转换效率比较逆变器将组串发出的直流电转换成交流电,逆变器转换效率的高低直接影响到最终上网电量的多少。
设备方面,在组件效率一定的情况下,提升逆变器的转换效率是提升发电量的关键一环。
当前,不同厂家的逆变器转换效率都达到了相当高的水平。
那么不同逆变器在光伏电站运行过程中的实际表现如何,作者选择了国内知名的集中式和组串式厂家,并结合实际参与的电站项目,对集中式方案和组串式方案两种逆变器的实际效率曲线进行了比较。
实际电站运行效率测试结果表明:在不同负载等级下,组串式逆变器较集中式逆变器转换效率高0.5%~1%。
另外,当组串工作电压升高,组串式逆变器逆变转换效率随之升高;而集中式逆变器随着组串电压升高,效率出现了下降。
基于此,在冬季时,低温导致组串电压升高,组串式逆变器相对集中式逆变器的优势会更加明显,这也与电站实际发电量数据比较结果保持一致。
2、并网发电时长比较根据电站的数据记录,对电站内集中式方案和组串式方案两种逆变器的开关机时间和并网运行时长进行了比较,发现组串式逆变器在实际运行中弱光发电能力相对集中式逆变器更优,具体表现为:早晨开机和发电时间均早于集中式逆变器;傍晚关机和下网时间普遍晚于集中式逆变器。
在不同天气条件下,早晨发电提前的时间从2~30min不等,傍晚关机和下网延后的时间从2~10min不等。
集中式逆变器与组串式逆变器技术经济比较发表时间:2017-12-01T10:03:03.393Z 来源:《电力设备》2017年第22期作者:许正梅[导读] 摘要:光伏并网发电系统的设计是本着合理性、实用性、高可靠性和高性能比(低成本)的原则。
(中国能源建设集团山西省电力勘测设计院有限公司山西太原 030001)摘要:光伏并网发电系统的设计是本着合理性、实用性、高可靠性和高性能比(低成本)的原则。
工程设计应协调整个系统工作的最大可靠性和系统成本之间的关系,在满足需要保证质量的前提下节省投资,达到最好的经济效益。
对于不同系统规模,考虑到系统整体效率、最大发电量等因素,可能会选择不同方式的并网逆变器。
一选择逆变器应注意的技术指标对于逆变器的选型,应注意以下几个方面的指标比较: 1)可靠性和可恢复性:逆变器应具有一定的抗干扰能力、环境适应能力、瞬时过载能力及各种保护功能。
2)逆变器输出效率:大功率逆变器在满载时,效率必须在90%或95%以上。
中小功率的逆变器在满载时,效率必须在85%或90%以上。
逆变器输出波形:输出电流波形良好,波形畸变以及频率波动低于门槛值。
3)逆变器输入直流电压的范围:要求逆变器在较大的直流输入电压范围内正常工作,并保证交流输出电压稳定。
4)最大功率点跟踪:逆变器的输入终端电阻应自适应于光伏发电发电系统的实际运行特性。
保证光伏发电系统运行在最大功率点。
5)监控和数据采集。
二集中式逆变器与组串式逆变器的技术比较本文选择具有代表性的逆变器,就无隔离变集中式逆变器和组串式逆变器两种方式进行比较。
集中式逆变器最大特点是系统的功率高,成本低。
技术较为成熟,目前大型地面电站开发市场占有率高。
集中式逆变器具有以下主要优点: 1)单机功率高,可集中安装和维护; 2)逆变器单价较低; 3)并网应用规模较大;缺点: 1)集中式逆变器防护等级仅为IP20,非全密闭设计,需带风扇强制风冷,在环境较为恶劣地区使用时增加了故障几率; 2)集中式逆变器仅有1~2路MPPT,导致无法最大限度的追踪光伏组串的最大功率点,影响发电量; 3)集中式方案中由于逆变器单机规模较大,在出现故障检修时,对发电量影响大。
组串式及集中式方案比较逆变器方案对比:集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。
体积较大,室内立式安装。
组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。
体积较小,可室外臂挂式安装。
系统主要器件对比:集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。
组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。
主要优缺点和适应场合:1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。
主要优势有:(1)逆变器数量少,便于管理;(2)逆变器元器件数量少,可靠性高;(3)谐波含量少,直流分量少电能质量高;(4)逆变器集成度高,功率密度大,成本低;(5)逆变器各种保护功能齐全,电站安全性高;(6)有功率因素调节功能和低电压穿越功能,电网调节性好。
主要缺点有:(1)直流汇流箱故障率较高,影响整个系统。
(2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。
在阴雨天,雾气多的部区,发电时间短。
(3)逆变器机房安装部署困难、需要专用的机房和设备。
(4)逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。
(5)集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。
(6)集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。
2、组串式逆变器适用于中小型屋顶光伏发电系统,小型地面电站。
逆变器分类集中式组串式逆变器是将直流电转换成交流电的电气设备,在太阳能发电系统中起着重要的作用。
它将每个太阳能电池板生成的直流电转换为交流电,以供家庭、企业和其他设施使用。
逆变器在太阳能系统中起着至关重要的作用,因为它确保系统的可靠性和效率。
由于太阳能电池板产生的电压和电流都是不稳定的,所以逆变器需要对电能进行调节以确保其流向正常的用电设备。
逆变器的分类逆变器通常有两种分类方法,一种是从电路连接方式来区分,即集中式逆变器和串联式逆变器;另一种是从输出功率来区分,即小功率逆变器和大功率逆变器。
在这里我们主要介绍前者,集中式逆变器和串联式逆变器的区别。
集中式逆变器集中式逆变器的连接方式类似于一个大的组合电路,每个太阳能电池板都连接到一个逆变器的输入端。
逆变器负责从所有电池板的电流中收集所有的直流电,并将其转换为交流电,供家庭、企业和其他设施使用。
这个设计非常简单和易于维护。
集中式逆变器通常定位在电池板的附近或附近的墙壁上。
下面是几个集中式逆变器的优点:1.集中式逆变器提供更高的转换效率。
由于集中式逆变器的电路总长度相对较短,因此转换效率比串联式逆变器要高。
2.集中式逆变器是更经济实用的方案。
对于一个大的太阳能电池板系统,使用一个集中转换装置更为简单而且更为经济实用。
3.集中式逆变器提供更高的稳定性。
与串联式逆变器相比,集中式逆变器更为稳定,因为每个逆变器都有各自的控制系统,并且不需要多个逆变器之间的同步和沟通。
串联式逆变器串联式逆变器采用连接电池板的串联连接方式。
每个太阳能电池板都装有一个小型串联式逆变器。
这些逆变器将每个电池板产生的直流电转化为交流电,然后将电流连接到一个集中器。
集中器将所有逆变器的输出串联连接,并使其输出一个可用于家庭、企业和其他设施的交流电。
下面是几个串联式逆变器的优点:1.串联式逆变器可以定制设计。
与集中式逆变器相比,串联式逆变器可以根据使用场合和功率需求进行个性化定制设计,从而更方便地满足客户的需求。
集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。
组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。
主要优缺点和适应场合
1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。
主要优势
(1)便于维护管理;
(2)逆变器集成度高,功率密度大,成本低;
(3)逆变器各种保护功能齐全,电站安全性高;
(4)有功率因素调节功能和低电压穿越功能,电网调节性好。
主要缺点
(1)直流汇流箱故障率较高,影响整个系统。
(2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。
在阴雨天,雾气多的部区,发电时间短。
(3)逆变器机房安装部署困难、需要专用的机房和设备。
(4)逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。
(5)集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。
(6)集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。
2、组串式逆变器适用于中小型屋顶光伏发电系统,中型地面光伏电站。
主要优势
(1)组串式逆变器采用模块化设计,每个光伏串对应一个逆变器,直流端具有最大功率跟踪功能,交流端并联并网,其优点是不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量。
(2)组串式逆变器MPPT电压范围宽,一般为250-800V,组件配置更为灵活。
在阴雨天,雾气多的部区,发电时间长。
(3)组串式并网逆变器的体积小、重量轻,搬运和安装都非常方便,不需要专业工具和设备,也不需要专门的配电室,在各种应用中都能够简化施工、减少占地,直流线路连接也不需要直流汇流箱和直流配电柜等。
组串式还具有自耗电低、故障影响小、更换维护方便等优势。
主要缺点
(1)电子元器件较多,功率器件和信号电路在同一块板上,设计和制造的难度大。
(2)功率器件电气间隙小,不适合高海拔地区。
户外型安装,风吹日晒很容易导致外壳和散热片老化。
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。