特征选择
特征选择可以看作是一个(从最差的开始)不断删去无 用特征并组合有关联特征的过程,直至特征的数目减少至易 于驾驭的程度,同时分类器的性能仍然满足要求为止。例如, 从一个具有M个特征的特征集中挑选出较少的N个特征时, 要使采用这N个特征的分类器的性能最好。
特征方差 类间距离 降维
二、概率论基本知识
样本空间的划分 定义 设 为试验E的样本空间, B1, B2 ,L , Bn 为 E 的一组事件,若
1 0 Bi Bj , i, j 1, 2,L , n;
20 B1 U B2 UL U Bn , 则称 B1, B2 ,L , Bn 为样本空间 的一个划分.
全概率公式
定义 设为试验E的样本空间, A为E的事件, B1, B2 ,L , Bn为的一个划分,且P(Bi ) 0 (i 1, 2,L , n),则
基本方法:用一组已知的对象来训练分类器 目的的区分:1. 分类错误的总量最少
2. 对不同的错误分类采用适当的加权 使分类器的整个“风险”达到最低 偏差:分类错误
分类器的性能测试
已知类别的测试集;已知对象特征PDF的测试集 PDF的获取:画出参数的直方图,并计算均值和方差,
再规划到算法面积,需要的话再做一次平滑,就可将 这个直方图作为相应的PDF设计 独立每一类的测试集 使用循环的方法
概率论基本知识
确定事件:概念是确定的,发生也是确定的; 随机事件:概念是确定的,发生是不确定的; 模糊事件:概念本身就不确定。
联合概率和条件概率
联合概率:设A,B是两个随机事件,A和B同时发生 的概率称为联合概率,记为:P(AB);
条件概率:在B事件发生的条件下,A事件发生的概率 称为条件概率,记为:P(A|B), P(A|B) = P(AB) / P(B) ;