气动调节阀结构图
- 格式:doc
- 大小:48.50 KB
- 文档页数:2
气动调节阀的结构和工作原理一、阀体结构:阀体是气动调节阀的主要部分,常见的结构有直通型、角型和三通型等。
直通型阀体具有流体通道直接通畅、流体阻力小的特点,适用于流量调节;角型阀体具有结构紧凑、占用空间小的特点,适用于压力和温度的调节;三通型阀体具有两个入口和一个出口的特点,适用于流量的分散或合并。
二、阀芯结构:阀芯是气动调节阀的主要控制部分,常见的结构有直行式、角行式、微调式和滚筒式等。
直行式阀芯沿阀体轴线方向移动,一般用于流量和温度的调节;角行式阀芯可通过旋转来调节流量和温度;微调式阀芯是一种特殊的阀芯,其调节范围较小,适用于对流量或温度进行微小调节。
三、作用器:作用器是气动调节阀的执行部分,其主要作用是将输入的信号转化为阀芯的运动,从而实现流量、压力、温度等参数的调节。
常见的作用器有气动活塞式和气动膜片式两种。
气动活塞式作用器由气缸和活塞两部分组成,通过气源的输入和输出来控制活塞的移动,进而控制阀芯的位置。
气动膜片式作用器由膜片和导向件组成,当输入的气源压力改变时,膜片的形变引起阀芯的运动。
四、附件:附件是气动调节阀的辅助部分,用于增强阀芯的动力和稳定性。
常见的附件有位置器、阻尼器、限位器和手动装置等。
位置器通过检测阀芯位置,将信号转化为阀芯的运动,以实现准确的调节。
阻尼器用于减小阀芯的运动速度,防止因过快的动作造成流量冲击和液压冲击。
限位器用于限制阀芯的运动范围,保护阀芯和阀座不受过大的压力和扭矩。
手动装置用于在自动控制失效或维护时,通过手动操作来控制阀芯的位置。
气动调节阀的工作原理是通过控制输入的气源压力来控制阀芯的位置,从而改变介质的流量、压力、温度等参数。
当输入气源压力改变时,作用器会对阀芯施加力,使阀芯产生运动。
阀芯的位置决定了流通通道的开启程度,从而控制介质的流量或压力。
当输入气源压力恢复到初始状态时,作用器上部的弹簧会将阀芯恢复到初始位置,介质的流量或压力也随之恢复到初始状态。
气动调节阀的结构和原理
气动调节阀是一种可以通过气动信号控制流体介质的流量、压力、温度等参数的调节阀。
它由执行机构、阀体、阀芯、阀座、导向机构等部分组成。
气动调节阀的结构主要包括:
1. 执行机构:执行机构将气动信号转化为机械动作,带动阀芯和阀座的开启和关闭。
2. 阀体:阀体是调节阀的主要部分,其内部有流体通道。
阀座和阀芯通常位于阀体内部,通过控制阀芯的位置来调节流体介质的通路。
3. 阀芯:阀芯是阀体内活动的零件,通常由柱状或圆柱状的构件组成。
阀芯与阀座紧密配合,可依靠阀芯的上下运动控制介质的流量。
4. 阀座:阀座是阀体内固定的部分,通常由金属或弹性材料制成。
它的形状与阀芯相呼应,通过与阀芯接触产生密封,控制流体的通道。
5. 导向机构:导向机构用于引导阀芯的运动轨迹,确保阀芯与阀座的良好配合。
气动调节阀的工作原理:
1. 当气动信号输入执行机构时,执行机构将气动信号转化为机械动作,推动阀芯与阀座分离或接触。
2. 当阀芯与阀座接触时,阀体内的流体介质通过阀芯与阀座之间的通道流过。
根据阀芯的位置,调节阀的开度大小,从而控制介质的流量或压力等参数。
3. 当气动信号停止或调节信号作用于执行机构方向变化时,阀
芯位置发生相应的变化,从而改变阀体内的通道大小,调整介质通路,实现对流体参数的调节。
通过控制气动信号的大小和方向,气动调节阀可以精确地控制流体介质的流量、压力、温度等参数,保证工业过程的正常运行和控制。
气动调节阀结构与原理气动调节阀是一种通过气动力来控制流体介质流量、压力和液位的调节装置。
它由阀体、阀瓣、执行器、气缸、位置调节机构等部件组成。
1. 阀体:阀体通常采用铸铁、碳钢、不锈钢等材料制成,具有较高的强度和耐腐蚀能力。
阀体内部设有阀座,阀座上有一个阀座孔,用以控制流体的流量。
2. 阀瓣:阀瓣是气动调节阀的关键部件,通常由金属制成,具有良好的耐磨损和耐腐蚀性能。
阀瓣的动作受到执行器的控制,能按照设定的信号实现开、关和调节流量的控制。
3. 执行器:执行器是用来控制阀瓣的开闭和调节的装置,一般由气缸、活塞和传感器组成。
它通过获取输入的控制信号,并将其转换为对阀瓣的运动的力和位移。
4. 气缸:气缸是执行器的核心部件,由气体活塞和气缸筒组成。
当气缸接收到气源信号时,气体活塞会在气缸筒内做往复运动,通过连接杆将力传递给阀瓣,实现流量和压力的调节。
5. 位置调节机构:位置调节机构用于测量和控制阀瓣的位置,在气动调节阀的工作过程中起到调节和控制流量的作用。
位置调节机构一般包括定位阀和位置传感器。
气动调节阀的工作原理如下:当气动调节阀接收到来自控制系统的压力信号时,信号会被传递给执行器,执行器接收到信号后会控制气缸的运动。
当气缸伸出时,连接杆将力传递给阀瓣,使其打开;当气缸缩回时,连接杆将力收回,阀瓣关闭。
通过改变气缸的长度来调节阀瓣的开度,进而控制流体介质的流量和压力。
在实际应用中,气动调节阀通常会配备位置传感器,用来监测阀瓣的位置并反馈给控制系统。
控制系统会根据位置传感器的反馈信号来调整气动调节阀的动作,从而实现更精确的流量调节和压力控制。
总之,气动调节阀通过气动力来控制流体介质的流量、压力和液位。
其结构由阀体、阀瓣、执行器、气缸和位置调节机构等部件组成。
它的工作原理是通过控制执行器的运动,使阀瓣开闭,进而实现对流体介质的精确调节和控制。
⼲货:⽓动调节阀⼯作原理图解及结构图⽓动调节阀在化⼯⽣产中是很重要的,它是组成⼯业⾃动化系统的重要环节,它就像是⽣产过程⾃动化的⼿和脚⼀样必须。
⽓动调节阀在⽯油、化⼯、电⼒、冶⾦等⼯业企业中都有着⼴泛的应⽤,接下来就带⼤家来了解⽓动调节阀的相关知识。
⽓动调节阀⼯作原理图解 ⽓动调节阀通常由⽓动执⾏机构和调节阀连接安装调试组成,⽓动执⾏机构可分为单作⽤式和双作⽤式两种,单作⽤执⾏器内有复位弹簧,⽽双作⽤执⾏器内没有复位弹簧。
其中单作⽤执⾏器,可在失去起源或突然故障时,⾃动归位到阀门初始所设置的开启或关闭状态。
⽓动调节阀根据动作形式分⽓开型和⽓关型两种,即所谓的常开型和常闭型,⽓动调节阀的⽓开或⽓关,通常是通过执⾏机构的正反作⽤和阀态结构的不同组装⽅式实现。
⽓动调节阀结构 ⽓动调节阀主要由⽓动执⾏机构、阀体和附件三部分组成。
执⾏机构以洁净压缩空⽓为动⼒,接收4~20毫安电信号或20~100KPa⽓信号,驱动阀体运动,改变阀芯与阀座间的流通⾯积,从⽽达到调节流量的作⽤。
为了改善阀门的线性度,克服阀杆的摩擦⼒和被调介质⼯况(温度、压⼒)变化引起的影响,使⽤阀门定位器与调节阀配套,从⽽使阀门位置能按调节信号精准定位。
执⾏机构由隔膜/活塞、弹簧、⼿轮、⽓动杆、连轴器等主要部件构成;阀体的主要部件有阀笼、阀瓣、阀座、阀杆、阀笼压环等;其他附件如电磁阀、减压阀、过滤器、电流/⽓压转换器、定位器、流量放⼤器等。
为了机组安全运⾏,⼀些重要的阀门设计有电磁阀、保位阀、快速泄压阀等附件,确保调节阀在失电、失信号或失⽓情况下实现快开(关)或保卫功能(三断⾃锁保护功能),满⾜⼯艺系统安全运⾏要求。
控制阀的三断保护:断⽓源保护、断电源保护和断信号源保护。
⽓动调节阀结构图 ⽓动调节阀作⽤⽅式: ⽓开型(常闭型)是当膜头上空⽓压⼒增加时,阀门向增加开度⽅向动作,当达到输⼊⽓压上限时,阀门处于全开状态。
反过来,当空⽓压⼒减⼩时,阀门向关闭⽅向动作,在没有输⼊空⽓时,阀门全闭。
气动调节阀常见于钢铁行业,尤其广泛应用于加热炉、卷取炉等燃烧控制系统。
本文根据气动调节阀的结构和工作原理对在气动调节阀在日常使用的常规维护和常见故障进行了分析研究,为设备维护和故障维修提供了参考。
本文以美国博雷(BARY)厂家生产的S92/93系列的气动执行机构为例,结合现场实际使用情况,进行了分析和总结。
阀门公称直径DN250,介质为混合煤气,气源为仪表压空,压力为3-5Bar,电磁阀为24V。
1、气动调节阀的结构和工作原理1.1、气动调节阀的结构气动调节阀由执行机构和阀体两部分组成。
1.2、气动调节阀的工作原理气动调节阀的工作原理:气动调节阀由执行机构和调节机构组成。
执行机构是调节阀的推力部件,当调节器或定位器得到4-20mA信号时,控制电磁阀24V信号到,打开,使得仪表压空进入执行机构汽缸,转动阀杆使阀体动作,当到达需要指定开度时,位置反馈使得定位器停止信号输出,维持当前位置。
当需要关闭阀门时,定位器得到关闭信号,使电磁阀停止供气,汽缸靠内部弹簧反作用力,使阀门关闭。
当需要从满度减少开度时,定位器输出气源压力会减弱,弹簧自身反作用力致使阀门向关闭方向动作,直至信号压力与弹簧压力平衡,到达指定开度,以此来控制该介质流量。
2、气动调节阀的日常维护在对气动调节阀日常点巡检中,要注意以下几点:一是检查仪表气源是否正常,检查过滤器、减压阀是否正常,观察压力是否在3-5Bar;二是观察汽缸有无漏气现象,尤其是阀杆连接处和两端盖处;三是检查电磁阀是否工作正常,有无漏气现象;四是检查定位器工作是否正常,有无漏气现象;五是检查所有连接部件固定螺丝是否紧牢;六是尽量避免过多浮灰覆盖到执行机构上,要市场保持工作环境清洁。
3、气动调节阀常见故障原因分析3.1、气动调节阀无反馈信号气动调节阀的信号线由一对控制信号线和一对反馈信号线组成。
当PLC给阀门一个信号时,信号在调节阀的定位器中进行信号转换,通过气源压力来控制阀杆动作。
阀作为执行器的最主要的组成部分,在管路中,具有调节、截断、分配流体等功能。
由于它直接在管路上工作,所以,应该满足工艺流体介质的压力、温度、腐蚀性等各方面的要求,也应符合配管以及自控方面的各种条件。
调节阀与普通阀门一样,是一局部阻力可以改变的节流元件。
由于阀芯在阀体内移动,改变了阀芯与阀座之间的流通面积,也就改变了阀的阻力系数,被控介质的流量也随着相应的改变,从而达到调节工艺参数的目的。
根据阀内节流件的运动轨迹的不同,阀可分为直行程和角行程两大类。
1.直行程阀:球形阀、角形阀、低噪声阀、高压阀、隔膜阀、分体阀、小流量阀等。
1).角行程阀:偏心旋转阀、蝶阀、球阀、旋塞阀等。
在自动控制系统中,作为比例式连续调节的执行器,直行程阀占使用的绝对多数,但角行程阀的发展很快,已有替代直行程阀的趋势。
8.2.3调节阀阀芯型式根据调节阀的阀芯动作型式可分为直行程阀芯和角行程阀芯两大类。
1.直行程阀芯(1)平板型如图8一3(a)。
结构简单,具有快开特性,可作两位控制用。
详情可参考:气动薄膜单座调节阀:/(2)柱塞型如图8一3(b,c,d)。
其中(b)可上、下倒装,实现正、反调节;(c)适用于角型阀和高压阀;(d)适用于小流量阀。
(3)窗口型如图8一3(e)。
左边为合流型,右边为分流型,适用于三通调节阀。
(4)多级阀芯如图8-3(f)。
由于将几个阀芯串接在一起,起到逐级降压的作用,所以适用于高压差阀,可防止汽蚀破坏作用。
2.角行程阀芯如图8-4所示,(a)为偏心旋转芯,适用于偏心旋转阀;(b)为蝶形阀芯,适用于蝶阀,为球形阀芯,适用于球阀。
8.2.4常用调节阀的结构型式1.直通单座阀(图8-5)直通单座阀阀体内只有一个阀芯和一个阀座,它的特点是泄漏量小,单阀芯结构易于保证与阀座间的严密关闭。
但它的不平衡力大,特别是在高压差、大口径时尤为严重,所以仅适用于低压差的场合。
这种阀在结构上又分为调节型和切断型,它们的主要区别在于阀芯形状不同,前者为柱塞型,后者为平板型。
气动阀门控制原理图
如下是一个简化的气动阀门控制原理图:
(图中各部分无标题标识,仅有图示,文中无重复标题相同的文字)
1. 气动阀门主体部分:包括阀门本体和气动执行机构。
阀门本体用于控制流体的通断和调节。
气动执行机构通过接受控制信号来控制阀门的开启和关闭。
2. 控制信号源:产生控制气压信号的装置,可以是手动操作的开关或自动控制系统中的控制器。
控制信号的大小和方向决定了气动执行机构的工作状态。
3. 电磁阀:通过产生电磁力控制气路的开启和关闭,将控制信号传递给气动执行机构。
通常,电磁阀与控制信号源连接,当接收到控制信号时,电磁阀打开或关闭,以调节气动阀门的开闭程度。
4. 压缩空气源:提供气压源以驱动气动执行机构。
压缩空气源通常与气动执行机构通过一条气管连接。
5. 作动筒:气动阀门的核心部分,通过接收控制信号并将其转化为机械运动,驱动阀盘完成通断或调节操作。
6. 弹簧:提供反向力以使阀门保持在关闭状态。
当控制信号作用于气动执行机构时,打破弹簧的力平衡,阀门打开。
7. 气动阀门的输入和输出口:连接流体管道的接口,控制气动阀门的流体进出口。
根据实际需要,输入口可以是一个或多个,以满足流体管道的分支和合流要求。
请注意,上述原理图仅为概念示意图,实际的气动阀门控制系统可能因具体应用而有所不同。
气动调节阀是石油,化工,电力,冶金等工业企业广泛使用的工业过程控制仪器之一。
化工生产中的调节阀在调节系统中必不可少。
它是工业自动化系统的重要组成部分。
以下内容带您全面了解气动控制阀的工作原理及作用方式。
工作原理以压缩空气为动力源,气缸为执行器,并借助电动阀门定位器,变矩器,电磁阀,保持阀等附件驱动阀门实现开关量或比例调节。
自动控制系统的控制信号用于完成管道介质的调整:流量,压力,温度和其他过程参数。
特点是控制简单,响应速度快,本质安全,无需采取额外的防爆措施。
气动调节阀工作原理(图)气动调节阀通常由气动执行器和调节阀的连接,安装和调试组成。
气动执行器可分为单作用和双作用。
单作用执行机构中有复位弹簧,而双作用执行机构中没有复位弹簧。
当阀失去原点或突然失效时,单作用执行器可以自动返回到初始设置的打开或关闭状态。
气动控制阀根据作用形式分为空气开启型和空气关闭型两种,即所谓的常开型和常闭型。
气动控制阀的气动开启或关闭通常是通过执行器的正反作用和阀的状态结构不同的组装方法。
作用方式空气打开型(常闭型)是指当膜头上的气压增加时,阀朝打开度增加的方向移动。
当达到输入气压的上限时,阀完全打开。
相反,当气压降低时,阀沿关闭方向移动,而当没有空气输入时,阀完全关闭。
Gu通常将空气打开控制阀称为故障关闭阀。
空气封闭型(常开型)的操作方向与空气开放型相反。
当气压升高时,阀门沿关闭方向移动;当气压降低或不存在时,阀门沿打开方向移动或直至完全打开。
Gu通常将气体关闭控制阀称为故障打开阀。
根据工艺生产的安全性来考虑选择开气和闭气。
切断气源后,调节阀在关闭或打开位置安全吗?例如,加热炉的燃烧控制,将调节阀安装在燃气管道上,并且根据炉的温度或炉出口处的加热材料的温度来控制燃料的供应。
此时,选择打开空气的阀门更安全,因为一旦停止供气,关闭阀门比完全打开阀门更合适。
如果空气供应中断并且燃油阀完全打开,则存在过热的危险。
另一个例子是由冷却水冷却的热交换装置。
气动调节阀工作原理图文详解(附图)气动调节阀工作原理简单地说是通过压缩空气实现的,在实际应用中,了解气动调节阀工作原理有很大的意义。
下面,世界工厂泵阀网综合运用图文为大家详细介绍气动调节阀工作原理。
气动调节阀是石油、化工、电力、冶金等工业企业广泛使用的工业过程控制仪表之一。
通常由气动执行机构、阀门、定位器等连接安装调试后形成气动调节阀。
气动调节阀工作原理气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门定位器、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的流量、压力、温度等各种工艺参数。
气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。
气动调节阀动作分气开型和气关型两种。
气开型(Air to Open) 是当膜头上空气压力增加时,阀门向增加开度方向动作,当达到输入气压上限时,阀门处于全开状态。
反过来,当空气压力减小时,阀门向关闭方向动作,在没有输入空气时,阀门全闭。
故有时气开型阀门又称故障关闭型(Fail to Close FC)。
气关型(Air to Close)动作方向正好与气开型相反。
当空气压力增加时,阀门向关闭方向动作;空气压力减小或没有时,阀门向开启方向或全开为止。
故有时又称为故障开启型(Fail to Open FO)。
气动调节阀的气开或气关,通常是通过执行机构的正反作用和阀态结构的不同组装方式实现。
气开气关的选择是根据工艺生产的安全角度出发来考虑。
当气源切断时,调节阀是处于关闭位置安全还是开启位置安全?举例来说,一个加热炉的燃烧控制,调节阀安装在燃料气管道上,根据炉膛的温度或被加热物料在加热炉出口的温度来控制燃料的供应。
这时,宜选用气开阀更安全些,因为一旦气源停止供给,阀门处于关闭比阀门处于全开更合适。
如果气源中断,燃料阀全开,会使加热过量发生危险。
又如一个用冷却水冷却的的换热设备,热物料在换热器内与冷却水进行热交换被冷却,调节阀安装在冷却水管上,用换热后的物料温度来控制冷却水量,在气源中断时,调节阀应处于开启位置更安全些,宜选用气关式(即FO)调节阀。
气动调节阀结构图
气动薄膜调节阀:按其结构和用途的不同种类很多,高压氧能大多选用正作用、直通、单座等百分比调节阀,其标准代号为ZMAP,主要由气室、薄膜、推力盘、弹簧、推杆、调节螺母。
阀位标尺、阀杆、阀芯、阀座、填料函、阀体、阀盖和支架等组成。
工作原理:当气室输入了0.02~0.10MPa信号压力之后,薄膜产生推力,使推力盘向下移动,压缩弹簧,带动推杆、阀杆、阀芯向下移动,阀芯离开了阀座,从而使压缩空气流通。
当信号压力维持一定时,阀门就维持在一定的开度上。
隔膜阀联接着润滑油的低压安全油系统与EH油的高压安全油系统,其作用是润滑油系统的低压安全油压力降低到1.4Mpa时,可以通过EH油系统遮断汽轮机。
当汽轮机正常工作时,润滑油系统的透平油进入阀内活塞上的油室中,克服弹簧力,使隔膜阀在关闭位置,堵住EH危急遮断油母管的泄油通道,使EH系统投入工作。
当危急遮断器动作或手动打闸时均能使透平油压力降低或消失,从而使弹簧打开把EH危急遮断油泄掉,关闭主汽门和调门
很多阀门的名称都是有误区的,气动薄膜阀国内喜欢把他看成是调节阀.但从专业角度来说,这个名词只说明这个阀门是由一个"气动薄膜执行机构"来控制的阀门,阀门与薄膜没有什么关系,用气动薄膜来控制的,不一定是调节用的,(但现在很多调节阀门都是用薄膜执行机构来控制).薄膜执行机构可以安装在任何阀门上面,但
国内很多厂家只装在截止阀(单座阀)、调节阀上面.
隔膜阀,这是一个阀门的品种。
这个阀门是通过阀体内安装的膜片与阀体产生挤压达到密封效果。
隔膜阀可以由手动、电动、气动控制。
气动中就可以选择薄膜执行机构和活塞执行机构,隔膜阀的结构不同,还可以分为:直通隔膜阀,堰式隔膜阀,角型隔膜阀。
他们的运用场合是不同的。
综上所述,回答楼主的问题。
薄膜调节阀:一种有气动薄膜执行机构加定位器加某某阀门组成的一个调节阀,国内一般就是用截止类阀门做调节,也叫做单座薄膜调节阀。
隔膜阀,只是一款发的品种。
无法判断他的控制方式和详细的结构。