疏水层析
- 格式:ppt
- 大小:1.42 MB
- 文档页数:32
疏水层析原理
疏水层析是一种常用的色谱分析技术,其原理基于样品分离时固定相与移动相之间的亲疏水性差异。
疏水层析中,固定相通常是一种非极性材料,如疏水性树脂或疏水性硅胶。
移动相则是一种有机溶剂,如甲醇或乙腈,其疏水性介于固定相和要分离的样品之间。
在疏水层析柱中,样品溶液由于亲疏水性差异而与固定相发生不同程度的相互作用。
亲疏水性强的物质会与固定相发生较强的相互作用,停留时间相对较长,而亲疏水性弱的物质则会较快地通过固定相,停留时间较短。
疏水层析的分离原理可解释为两种相互竞争的作用力。
一方面,固定相表面具有较大的亲疏水性,使得亲疏水性强的物质更容易与其发生相互作用,并在固定相上停留。
另一方面,移动相中的有机溶剂对固定相表面也有一定的亲疏水性,这种亲疏水性决定了溶剂与固定相之间的相互作用力。
当亲疏水性强的物质进入移动相后,相互作用力较弱,从而更容易通过固定相。
在实际应用中,疏水层析常用于分离极性较强的化合物,如多肽、核苷酸、脂肪酸等。
通过调整移动相和固定相的亲疏水性,可以实现对不同化合物的选择性分离。
总而言之,疏水层析利用样品与固定相之间亲疏水性差异实现分离。
疏水性强的物质在固定相上停留时间较长,而疏水性弱的物质则更容易通过固定相。
通过调整移动相和固定相的亲疏水性,可以实现对不同化合物的选择性分离。
疏水作用层析1. 疏水层析的原理:疏水作用层析(Hydrophobic Interaction Chromatography,HIC)是根据分子表面疏水性差别来分离蛋白质和多肽等生物大分子的一种较为常用的方法。
由于蛋白质是一类有序三维结构的活性大分子,但其空间排列很容易受到外界环境的影响,极易从有序的结构变成无序结构。
当立体结构发生变化时,常常失去原有的活性,即蛋白质的失活。
使用适度疏水性的分离介质,在含盐的水溶液体系中,借助于分离介质与蛋白质分子之间的疏水作用达到吸附活性蛋白分子的目的,这种层析技术称为疏水作用层析。
蛋白质的一级结构中有很多非极性氨基酸,这些氨基酸在三级结构上由于疏水相互作用会被尽量包在分子内部,但是仍不可避免地有一些非极性侧链暴露在表面,这些非极性的表面是它和疏水层析介质作用的结合部位。
因为蛋白质分子的疏水性不同,它们和疏水层析介质的作用力强弱也不同,所以非极性表面的大小和含量决定了蛋白质分子的疏水性强弱。
疏水层析就是利用各种蛋白质分子和疏水功能基团之间作用力的差异对蛋白质进行分离、纯化的一种技术。
蛋白质可以看成是一种有亲水性外壳包裹着疏水性核心的四级结构的复杂体系。
蛋白质表面存在一些非极性的疏水基团,这些基团多为非极性的氨基酸残基。
由于各种基团疏水性的差别、疏水基团暴露数量的不同、疏水区与亲水区在数量、大小和分布的不同等因素,使各种蛋白质之间存在较大的差异,同时,对于同一种蛋白质在不同的溶液中,使疏水基团暴露的程度也呈现出一定的差异。
由于这种差异,致使各种蛋白质分子与同一种分离介质疏水基团的相互作用不同,吸附能力不同,可以达到分离的目的。
如果在水溶液中加入中性盐,使溶液处于高盐浓度时,可以破坏蛋白质分子表面水分子的有序排列,使大分子与分离介质的功能基团之间产生疏水作用。
同时,由于高盐的存在,使蛋白质分子的疏水基团暴露增多,增加了大分子的疏水性,增强了蛋白质分子与分离介质功能基团之间的疏水作用,相互结合力增强。
疏水作用层析法(蛋白质纯化实验)原理及步骤原理在疏水层析的主要支持介质上含有大小不等的疏水侧链,烷基或芳香基,可是绝大多数情况起作用的是苯基或辛基。
当碳氢链长度增加,即变得更疏水时,疏水强的少量蛋白质被吸附。
这时疏水相互作用太强,需用极端方法洗脱,可能会导致蛋白质变性。
苯基琼脂糖比辛基琼脂糖疏水性低,是疏水纯化中效果不错的常用介质,尤其是试用于纯化开始时。
疏水相互作用介质苯基琼脂糖-0-CH2-CH0H-CH2-0-C6H5辛基琼脂糖-0-CH2-CH0H-CH2-0-(CH2)7-CH3溶液盐浓度增加时疏水作用变得更强。
因此,大多数疏水层析程序都是高盐时上样,降低盐浓度时洗脱。
所以在硫酸镂沉淀或离子交换层析后可以方便地直接进行疏水层析纯化。
温和的洗脱条件及高蛋白质结合容置(10~100mg∕m1)使疏水层析在蛋白质纯化中成为很有价值的方法,也是更换缓冲液的方法之一。
材料与仪器蛋白质样品液苯基琼脂糖C1-4BNaC1硫酸铉磷酸钠盐层析柱步骤下述方案设定样品是在75%硫酸镂沉淀后溶在50%硫酸镂溶液的情况。
1.装填5m1苯基琼脂糖C1-4B进入柱内;2.10倍柱床体积层析缓冲液(20mmo1∕1,PH7.0磷酸钠盐,50%硫酸钱)洗柱;3.调整样品液符合要求,即在pH7.0磷酸钠缓冲液中含50%硫酸镂。
上样总蛋白量200-500mg;4.3倍柱床体积层析缓冲液洗柱或洗至A280值回到基线;5.用分步梯度法洗脱。
每步依次分别采用两倍体积各含40%、30%、20%、10%或0%硫酸镂的pH7.0磷酸钠缓冲液洗脱;6.再依次用5倍体积水、5倍体积1mo1/1NaC1和5倍体积水洗柱,使其获得再生。
疏水层析色谱的原理及应用1. 简介疏水层析色谱(Hydrophobic Interaction Chromatography,简称 HIC)是一种常用的色谱技术,利用样品中溶质与柱上固定相之间的疏水作用来分离和纯化目标蛋白质。
本文将介绍疏水层析色谱的原理和应用。
2. 原理疏水层析色谱的原理基于疏水作用。
在疏水层析柱上,通常使用亲疏水性互补的固定相材料。
样品中的溶质通过与固定相发生疏水作用,从而被留下来。
疏水层析柱的选择参数主要包括固定相的亲水/疏水程度、样品溶液的 pH 值以及溶液中的盐浓度。
3. 疏水层析色谱的应用3.1 蛋白质分离与纯化疏水层析色谱广泛应用于蛋白质的分离与纯化。
根据蛋白质的疏水性质,可以通过调节溶液 pH 值和盐浓度来改变蛋白质与固定相之间的疏水相互作用,实现蛋白质的选择性吸附和洗脱。
3.2 病毒和肽的富集疏水层析色谱也可以用于病毒和肽的富集。
一些疏水层析柱可以选择性地吸附病毒和肽,并去除其他的杂质物质。
这样可以提高样品中目标物的浓度,方便后续的分析和研究。
3.3 降低样品的复杂性对于复杂样品,疏水层析色谱可以通过去除一部分干扰物质,降低样品的复杂性。
通过人为调节固定相的亲疏水性质,可以实现不同溶质的选择性吸附,并采用洗脱方法将目标物质洗脱出来。
3.4 聚合物分离疏水层析色谱还可以应用于聚合物的分离。
通过调节溶液 pH 值和盐浓度,可以改变聚合物与固定相之间的疏水作用,实现聚合物之间的分离和纯化。
3.5 生物药物制剂的纯化疏水层析色谱在生物药物制剂的纯化中发挥重要作用。
对于重组蛋白质等生物药物,疏水层析色谱可以有效地去除杂质蛋白质和其他有机物,提高药物纯度。
4. 优势和限制4.1 优势•疏水层析色谱对样品中溶质的选择性吸附具有一定的调节性,适用于多种样品分离与纯化;•疏水层析色谱操作简单、设备要求低,易于应用于实验室和工业生产中。
4.2 限制•疏水层析柱通常需要根据样品性质进行特定的预处理和优化;•高盐浓度的使用可能导致样品与固定相缓慢结合,降低目标物质的得率。
疏水层析原理
疏水层析原理,也称为非极性层析原理,是一种分离和纯化化合物的常用方法。
该原理利用化合物在疏水性固定相(如疏水性硅胶)和溶剂中的亲水性差异来进行选择性分离。
在疏水层析中,化合物混合物首先通过一个填充有疏水性固定相的柱子(如硅胶柱);然后用一个选择性的溶剂进行洗脱,使得各种化合物可以以不同的速度从柱中流出。
疏水性固定相作为分离介质,最主要的特点是表面疏水性强,与非极性或疏水性化合物具有较好的相互作用能力。
这种相互作用可以通过范德华力、氢键等进行,使得疏水性化合物被相互作用力留在柱上。
而亲水性化合物则更容易与溶剂发生作用而从柱中洗脱。
在进行疏水层析时,溶剂的选择是非常重要的。
选择的溶剂应该足够强大,可以与疏水性化合物发生相互作用,从而实现其分离。
常用的溶剂包括乙腈、甲酸乙酯、异丙醇等。
总之,疏水层析原理是通过利用化合物在疏水性固定相和溶剂中的亲水性差异,实现化合物的选择性分离。
这种方法在分析化学和生物化学等领域中广泛应用,能够有效地纯化和分离化合物。
疏水层析原理疏水层析是一种常用的分离技术,它利用样品成分在疏水固定相和流动相之间的分配差异,实现对混合物中成分的分离和纯化。
疏水层析原理是基于样品成分在疏水固定相和流动相之间的亲疏水性差异而建立的,下面将详细介绍疏水层析原理及其应用。
首先,疏水层析原理的核心是疏水作用。
疏水作用是指非极性物质在水相中受到排斥的倾向,因此在含有疏水基团的分子中,分子内部的疏水基团之间会发生疏水相互作用,使得分子趋向于聚集在一起形成疏水相。
而在疏水固定相中,也存在着疏水基团,因此样品成分在疏水固定相和流动相之间的分配差异就是基于这种疏水作用而产生的。
其次,疏水层析原理的应用非常广泛。
疏水层析技术在生物化学、生物医药、环境监测等领域都有着重要的应用。
例如在蛋白质纯化过程中,疏水层析可以利用蛋白质分子中的疏水氨基酸残基与疏水固定相之间的相互作用,实现对蛋白质的分离和纯化。
在药物分析领域,疏水层析也常用于药物的提取和分离,通过调节流动相的成分和流速,实现对复杂混合物中药物的有效分离。
此外,疏水层析原理还可以与其他分离技术相结合,发挥更大的作用。
例如与离子交换层析、亲和层析等技术结合,可以实现对复杂混合物中成分的更精确分离和纯化。
同时,疏水层析也可以与质谱联用,实现对样品成分的快速鉴定和定量分析。
总之,疏水层析原理是一种重要的分离技术,它利用样品成分在疏水固定相和流动相之间的分配差异,实现对混合物中成分的分离和纯化。
疏水层析技术在生物化学、生物医药、环境监测等领域有着广泛的应用,而且可以与其他分离技术相结合,发挥更大的作用。
通过对疏水层析原理的深入理解和应用,可以为科研工作者和工程技术人员提供更多的选择和可能性。