全球能源展望2021(英文原版)Global-Energy-Perspective-2021
- 格式:pdf
- 大小:670.90 KB
- 文档页数:9
国际能源署2024世界能源展望执行摘要报告指出,全球能源市场正面临许多挑战和变化。
能源需求的增长速度正在放缓,但能源供应的多样化和可持续发展仍然是一项重要任务。
随着可再生能源的快速发展,化石燃料的使用可能会下降,但在中期内仍然占主导地位。
报告预测,到2030年全球能源需求将增长30%。
新兴经济体的能源需求将增加60%,由于工业化和城市化的快速发展,这些地区将成为未来能源需求的主要驱动因素。
能源需求增长最快的行业将是交通和建筑,其中交通领域的能源需求将增长50%。
然而,随着气候变化和可再生能源的推动,能源供应也将发生变化。
报告指出,在政策推动下,可再生能源的份额将从目前的13%增至28%,其中大部分增长将来自太阳能和风能。
此外,随着技术的发展,能源储存和电动汽车等领域的创新也将推动能源供应的变化。
报告特别关注石油和天然气市场。
虽然可再生能源的快速发展可能会降低石油和天然气的需求,但在中期内,这两种能源仍然占据主导地位。
然而,报告也指出,对石油和天然气的依赖可能导致能源安全和环境可持续性的问题。
因此,发展替代能源和能源效率仍然是当务之急。
报告还指出,全球能源投资将继续增加,但能源供应的多样化和可持续发展将成为关键。
报告推荐各国政府采取措施,包括提供政策支持、建立清洁能源基础设施、减少能源浪费以及鼓励能源创新等,以促进可持续能源发展。
总体而言,报告强调了能源领域的变革和挑战,包括能源需求的增长放缓、可再生能源的快速发展以及应对气候变化的需求。
为了解决这些问题,各国政府应加强合作,制定清洁能源政策,并加大对可再生能源技术的投资和研发。
只有通过合作和创新,我们才能实现能源的可持续发展,并为未来提供充足的能源供应。
麦肯锡发布《2021年全球能源展望》报告2021年1月,麦肯锡咨询有限公司(McKinsey & Company)发布题为《2021年全球能源展望》(Global Energy Perspective 2021)报告,提出了每种燃料类型的具体前景,例如天然气、石油、煤炭和氢气,还讨论了碳排放,并提供了关于麦肯锡1.5℃路径的详细观点,其中包括对商业领袖和政策制定者的影响及对价值池和能源投资前景的看法。
该报告预测,化石燃料总需求可能在2027年达到峰值。
具体而言,全球石油需求的峰值可能会在2029年到来,而由于供暖建筑的低碳转型需要的时间更长,天然气需求峰值将出现在2037年。
麦肯锡报告认为,如果世界要与1.5℃目标保持一致,各国就必须做更多的努力。
按照报告中描述的参考情景,2050年全球一半以上的能源需求将依然由化石燃料来满足。
基于全球能源视角参考情景,该报告提出了5个关键见解01源自新冠疫情的长期影响不大在能源领域经历了10年的技术和政策快速转变后,2020年,整个能源领域出现了前所未有的混乱。
在报告的参考情景中,电力、石油和天然气需求需要1~4年才能反弹到新冠肺炎(COVID-19)前的水平,而煤炭需求不会恢复到2019年的水平。
由于新冠肺炎,政府政策在能源转型中更加重要。
鉴于许多经济复苏计划的规模之大,刺激措施的重点在未来几十年塑造能源体系方面发挥着关键作用。
从长远来看,能源系统的根本变化仍在继续,未来几十年将出现快速变化的局面。
在参考情景中,随着电气化的增加和可再生能源在电力系统中的作用迅速增长,化石燃料需求将在2027年达到峰值。
随着脱碳和气候变化在全球政策制定者和商界领袖的议程上越来越重要,以及气候变化的后果逐渐显现并促使采取更大行动,这些转变在未来几年将会加速。
02电力成为能源行业的关键,氢技术改变世界随着能源需求的增加,电力消耗翻了一番,到2050年,它在最终能源消耗中的份额从19%增加到30%。
BP能源2023展望中文版解读1. 背景介绍BP(英国石油公司)作为全球知名能源公司,每年都会发布一份关于能源行业趋势和展望的报告。
这份报告成为了全球能源行业的权威之一,对于全球能源市场的发展具有重要的指导意义。
今年,BP发布了2023年的能源展望报告,其中包含了对未来全球能源市场发展趋势的深入分析和展望。
2. 报告内容概览在2023年的能源展望报告中,BP对全球能源市场的供需情况、重要能源资源的开发和利用、可再生能源的发展前景、气候变化对能源产业的影响等方面进行了全面的分析和预测。
据报告显示,全球能源行业将面临诸多挑战和机遇,未来的能源市场将呈现出怎样的发展态势成为了人们关注的焦点。
3. 全球能源供需情况展望据BP的报告预测,随着全球经济的持续增长和人口的增加,全球对能源的需求将继续增长。
各国政府对碳排放的要求将促使传统能源的替代产品,如清洁能源、可再生能源等快速发展。
在未来的能源供需中,清洁能源将扮演越来越重要的角色。
4. 传统能源与可再生能源的竞争与合作传统能源(石油、天然气、煤炭等)与可再生能源(太阳能、风能、水能等)之间的竞争与合作也是报告关注的重点之一。
传统能源的供应稳定,而可再生能源的发展带来了环境友好和可持续发展的优势。
未来,两者如何合作共存,将对全球能源市场产生深远影响。
5. 气候变化对能源行业的影响随着全球气候变暖的加剧,各国政府和国际组织对碳排放的要求越来越严格,这对传统能源行业造成了一定的压力。
然而,这也催生了可再生能源的快速发展,为能源行业带来了新的发展机遇。
6. 新技术对能源行业的影响报告指出,新技术的不断发展将改变能源行业的格局。
特别是在油气勘探开发、清洁能源利用、能源传输等方面,新技术的应用将带来革命性的改变,这也将是未来能源行业发展的关键点。
7. 小结与展望BP2023能源展望报告详细分析了未来全球能源行业的发展趋势和关键挑战。
随着全球经济的持续增长和环境压力的增大,可再生能源将在未来能源市场中占据重要地位。
IEA发布《世界能源展望2020》World Energy Outlook 2020 shows how the response to the Covid crisis can reshape the future of energy《2020年世界能源展望》表明,应对Covid危机可以重塑能源的未来Amid deep disruption and uncertainty caused by the pandemic, a surge in well-designed energy policies is needed to put the world on track for a resilient energy system that can meet climate goals在⼤流⾏病造成严重破坏和不确定性的情况下,需要⼤⼒制定精⼼设计的能源政策,以使世界⾛上正轨,建⽴⼀个有弹性的能源体系,实现⽓候稳定⽬标。
It has been a tumultuous year for the global energy system. The Covid-19 crisis has caused more disruption than any other event in recent history, leaving scars that will last for years to come. But whether this upheaval ultimately helps or hinders efforts to accelerate clean energy transitions and reach international energy and climate goals will depend on how governments respond to today’s challenges.对全球能源体系来说,这是动荡的⼀年。
世界能源展望-可再生能源部分
可再生能源在全球能源中所占比例逐渐上升,越来越多的国家开始接受并使用可再生能源。
除了环境效益,政府也能从中获得经济收益。
目前,各国主要是通过将可再生能源转化为电能来实现大范围使用。
2011年,可再生能源发电新增装机
容量约占所有新增装机容量的一半,其中风电新增装机容量约占40%,光伏发电约占30%,水电约占25%。
截至2011年底,世界可再生能源发电装机容量约为13.6亿千瓦,同比增长8%。
从全球范围来看,可再生能源在能源组成中所占比例将逐渐增加,其中风能发电增长比例较高,光伏发电是新兴产业,而水能发电增长较慢。
可再生能源也在逐渐向依赖高技术和低环境成本的方向靠拢,对环境改善是个契机。
在各个国家和地区,装机容量最多的非水可再生能源国家包括中国、美国、德国、西班牙、意大利、印度和日本,这七个国家的非水装机容量所占世界的非水装机容量比重超过70%。
XXX非水可再生能源装机容量最多,约占44%,其次
为金砖国家,约占26%。
世界各大国都在加强可再生能源的
使用,投入力度与国家实力相对等。
可再生能源不仅是改善环
境、保护环境的契机,也是增加国家实力、提高国家利益的机遇。
风电、太阳能发电、生物质能发电项目都在向大规模发展,同时小型分布式发电项目也在发展。
绿色电力市场也在不断发展。
风电有大规模国家项目、社区风电项目和小型机组项目,其他可再生能源主要是大规模综合项目。
国家允许可再生能源发电离网使用和并网使用,这些措施反映了国家对可再生能源的大量投入和扶持,对可再生能源的装机发电起到了很大的促进作用。
Global Energy Perspective 2021 January 2021Editor’s noteWe publish this long-term energy outlook at the start of 2021, after a year that has brought extraordinary challenges. Economies worldwide have experienced profound effects of the global health crisis, triggered by widespread public-health responses aiming to control the virus. Energy markets have reflected the uncertainty and shown exceptional movements. At the beginning of the crisis, plunging fuel demand in many key markets was reflected by prices: by the end of March 2020, the price of gas hit a 30-year low, whereas the price of oil, also affected by supply shocks, showed the largest single-day decline in the past 22 years. As economies have reopened, energy commodities have shown a partial rebound: for example, by the end of third quarter 2020, oil demand in China was back at pre-COVID-19 levels, and 50 percent of the decline was recovered in Europe and North America.In this volatile environment, long-term scenarios are more important than ever. To address the various pathways for the energy transition, our Global Energy Perspective presentsfour energy scenarios, which are based on contributions from hundreds of McKinsey expert practitioners worldwide.• The Reference Case is a forward-leaning “continuation of existing trends” outlook. This scenario reflects our expectations of how current technologies will evolve and incorporates current policies and an extrapolation of key policy trends.• The Accelerated Transition case assesses ten conceivable shifts that could happen at an accelerated pace.• The McKinsey 1.5°C Pathway offers a view on the shifts required to limit global warming to1.5°C in hopes of stabilizing the climate.• The Delayed Transition case mirrors the Accelerated Transition case and assumes that ata global scale, COVID-19 recovery measures fail to go hand in hand with green policies tostimulate the energy transition.The introductory chapter describes these four energy scenarios in further detail. In addition, we detail two economic scenarios that reflect the uncertainty of economic recovery.We use these scenario outlooks—and the underlying models—to support hundreds of clients around the world and across a broad range of sectors, helping leaders navigate the transitions in energy systems. Reflecting on the work for our Global Energy Perspective and discussions with many experts, we identified some common themes that stand out in this year’s edition:A As the world rapidly exhausts its carbon budget, there is growing momentum towarddecarbonization of the global economy. Policy makers, business leaders, investors, andconsumers are showing increasing levels of ambition to reshape energy systems. Yet the CO2emissions projected in our Reference Case and even in our Accelerated Transition case remain far from the 1.5°C Pathway. This shows that to further reduce emissions, significant additional action is needed, and more ambitious initiatives and policy measures must be specified and implemented.B Fundamental trends shaping the energy transition in the coming decade remain in place andappear resilient to the COVID-19 crisis. Renewable resources continue to decline in cost. When combined with battery technology, they become cost competitive with fossil-fuel-based power generation in many parts of the world. Similarly, electric vehicles (EVs) are likely to become the most economic choice in the next five years in many parts of the world. In the case of hydrogen, a further acceleration in ramp-up plans and commitments is likely.C Fossil fuels continue to play an important role in the energy system in our Reference Case.Fossil fuels will remain relevant despite a peak in oil demand in the late 2020s and a peak in gas demand in the mid-2030s. Yet even if oil and gas demand returns to pre-COVID-19 levels in a few years, it will not return to its pre-COVID-19 growth path.D This year’s report includes several new elements and deep dives. Specifically, we havededicated full chapters to hydrogen, the demand outlook for coal and its role in the power sector, a perspective on the 1.5°C Pathway, and an outlook for energy investments and value pools.This report is structured into five parts: Part one provides a perspective on the development of fundamental drivers for the global energy system. Part two provides an outlook for power systems, addressing the development of power demand as well as the evolution of power supply. Part three presents outlooks per energy type and carrier, including natural gas, oil, coal, and hydrogen. Part four discusses carbon emissions and offers a detailed perspective on the McKinsey 1.5°C Pathway. And the final part reflects on implications for business leaders and policy makers, including a view on value pools and an energy-investment outlook.We hope this report is an interesting read that helps shape your thinking on the energy transition.Key insights from the Global Energy Perspective Reference CaseLong-term demand impact of COVID-19 is modestEnergy demand rebounds quicklypost-COVID-19,and the impacts of behavioral changes due to the crisis are small compared with fundamental shifts such as electrification Stimulus packages shape energy systems in the decades to come Power wins andhydrogen changes thelandscapeElectricity demandgrows significantlythrough directelectrification andthe uptake of greenhydrogenRenewables quicklyramp up and account forhalf of power generationby 2035Peaks in fossil-fueldemand continue tooccur earlierPeaks in demand forhydrocarbons occurearlier than projected(oil peaks in 2029 andgas in 2037)Yet fossil fuels continueto play a major rolein the energy systemby 2050, driven bygrowth in areas such aschemicals and aviationChange is tooslow to reach the1.5°C PathwayDespite rapid shifts inthe Reference Case,global greenhousegas (GHG) emissionsdecline by only around25 percent by 2050,implying a 3.5°C pathwayMoving to the 1.5°CPathway requiresstronger ambitionsand acceleratedimplementation at aglobal scaleInvestment flowsremain stable over thenext 15 yearsRenewables in theenergy-investmentmix grow at the expenseof conventionalpower generation, butfossil fuels maintain alarge shareSeveral tipping pointslie ahead in the energytransition; trackingsignposts will helpbusiness leaders assessthe direction and paceof change in the yearsto come12345 Source: McKinsey Energy Insights Global Energy Perspective 2021, December 2020Executive summaryLong-term demand impact of COVID-19 is modest1After a decade of rapid technological and policy shifts in energy sectors, 2020 has brought unprecedented disruption across the energy landscape. In ourReference Case, a rebound to pre-COVID-19 demand levels takes one to four years for power and oil and gas, whereas coal demand does not return to 2019 levels.As a result of COVID-19, government policies are more important in the energy transition. Given the unparalleled size of many economic-recoverypackages, the focus of the stimulus measures plays a key role in shaping energy systems in the decades to come.In the longer term, fundamental shifts in the energy system continue, and the coming decades will see a rapidly changing landscape. In our Reference Case, demand for fossil fuels peaks in 2027, aselectrification increases and the role of renewables in power systems grows rapidly. These shifts accelerate in the coming years, asdecarbonization and climate change are increasingly important on the agendas of global policy makers and business leaders, and as the consequences of climate change play out and prompt greater action. As the speed and magnitude of these shifts remain uncertain, this report covers four long-term scenarios for the decades to come: the Reference Case, the Accelerated and Delayed Transition cases, and the McKinsey 1.5°C Pathway.Power wins and hydrogen changes the landscape2Power consumption doubles as energy demand electrifies, increasing its share of final energy consumption from 19 to 30 percent in 2050.COVID-19 has limited impact on long-term power-demand growth.At the same time, low-cost renewables dominate power markets, outcompeting existing fossil assets inmost regions before 2030. By 2036, half of the global power supply comes from intermittent renewable sources.As green hydrogen becomes cost competitive in the 2030s, “indirect” power demand for electrolysis accounts for approximately 40 percent of electricitydemand growth from 2035 to 2050, primarily in industry and transport.To enable this shift to intermittent resources, both traditional capacity and new, flexible capacity are needed to ensure system security. Batteries play an important role, but gas peakers also remain relevant to cover longer spells of low output for renewables.Peaks in fossil-fuel demand continue to occur earlier3Oil-demand growth slows in the current decade and peaks in the late 2020s, driven by the decline in road transport and the impact of COVID-19. Demand in major markets, such as the United States and the European Union, has alreadypeaked and shown gradual decline for more than a decade. Continued demand growth is driven by chemicals and aviation, as well as by emerging economies. Despite significant decline, new oil supply is still needed in the foreseeable future.Gas demand continues to grow until the late 2030s. Sectors with the largest growth include chemicals, other industry, and buildings in non-OECD Asia and the Americas. Following the peak, declining demand for gas is driven by the power sector, as gas shifts its role from baseload provider to flexibility provider.Coal continues its decline. In the power sector, gas and, increasingly, renewables are moreeconomical alternatives. Until 2035, heavy industry, particularly iron and steel and cement, is expected toshow net growth driven by economic growth in India and the Association of Southeast Asian Nations (ASEAN)¹Despite the long-term decline in demand for all three fossil fuels, each continues to play a key role in theglobal energy landscape in the Reference Case. Without further decarbonization policies, more than half of all global energy demand comes from fossil fuels by 2050.In the Accelerated Transition case, both coal and oil demand will be 22 percent lower compared with the Reference Case in 2050 (and 52 and 27 percent lower versus 2019, respectively).¹ Includes Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, the Philippines, Singapore, Thailand, and Vietnam. Source: McKinsey Energy Insights Global Energy Perspective 2021, December 2020Change is too slow to reach the 1.5°C Pathway4The projected CO2 emissions in the Reference Case are far from pathways that would limit global warming to 1.5°C. In addition, global energy-related emissions in the Reference Case remain flat until 2030, followed by a gradual, approximately 25 percent decline until 2050.By contrast, CO 2 emissions need to reach net zero by 2050 to move to the 1.5°C Pathway. The comingdecade is particularly crucial, requiring a decline in global emissions of more than 50 percent by 2030. This requires substantial and rapid changes in how societies around the globe fuel their economies.Despite the increased momentum towarddecarbonization, many governments still need to translate ambitious targets into specific policies. Furthermore, the Reference Case can be interpretedas a sign that additional ambitious initiatives and policy measures are needed to move closer to the 1.5°C Pathway. In other words, not enough is being done.Investment flows remain stable over the next 15 years5Following recovery from the COVID-19 shock, investments in the energy system steadily grow toward 2035. Despite some fundamental shifts in underlying drivers, such as the rapid growth in renewables and peaking oil demand, the energy-investment mix remains remarkably stable, as shifts in volumes are offset by further declines in the cost of renewables and increasingly expensive oil and gas supply.In the Reference Case, oil and gas still represent 50 percent of energy investments by 2035. Investments in power-generation assets remain nearly flat, as strong growth in installed capacity is matched by a strong decline in capital expenditures for renewable technologies. Oil and gas investments grow by an average of 3 percent a year through 2030 versus 2020 lows, despite slowing demand growth driven by increasingly expensive projects to replace depleting existing production. Giventhe growing attention of governments, investors, and customers to the energy transition, theprofitability of all energy segments continues to vary significantly among countries and through cycles.Thus, in light of these substantial shifts, business leaders and investors face important strategic questions. To navigate the transition, they must identify and track key signposts that indicate the direction and speed of change.Source: McKinsey Energy Insights Global Energy Perspective 2021, December 2020Our Global Energy Perspective offers a detailed demand outlook across key dimensions.Illustrative examples 146 countries• 45 in Asia • 43 in Europe • 31 in Africa • 27 in Americas55 energy products• Natural gas • Coal• Electricity • Hydrogen• Oil products (including gasoline, diesel, and HFO)• Renewable resources (solar, wind, and hydro)Our report assesses energy systems across countries, sectors, and energy productsSource: McKinsey Energy Insights Global Energy Perspective 2021, December 202030 sectorsTransport• Road transport (including buses, trucks, and cars)• Rail • Aviation • Marine• Other transport Buildings• Residential buildings • Commercial buildings HeatIndustry• Iron and steel • Chemicals • Manufacturing • Construction • Mining • Agriculture • Re ning• Other industry Power• Electricity generation • Hydrogen productionIn the Reference Case, fossil fuels continue to play an importantrole in energy systems.In 2020, total energy demand drops by 7 percent due toreduced (economic) activity as a result of COVID-19. Ittakes until late 2021 to see energy demand return to pre-COVID-19 levelsGas continues to increase its share of global energydemand in the next ten to 15 years—the only fossil fuelto do so—and then peaks in the late 2030s. Still, gasdemand in 2050 is 5 percent higher versus today’s levelOil-demand growth slows substantially, with a projectedpeak in the late 2020s followed by a 10 percent declineby 2050, mainly driven by slowing car-park growth,enhanced engine efficiency in road transport, andincreased electrificationCoal demand decreases almost 40 percent from 2019 to2050, driven mainly by the phaseout of coal plants in thepower sector across regions Oil demand peaks in the late 2020s and gas in the 2030s, whereas coal shows a steady declineSource: McKinsey Energy Insights Global Energy Perspective 2021, December 2020Primary energy demand per fossil fuel, million TJCAGR, %2017–35CAGR, %2035–50Gas0.7OilCoal20030040050060019902000201020202030204020502027 Fossil-100ReferenceGlobal CO₂ emissions peak at around 33 GtCO₂ in 2030, but the trajectory remains far from the 1.5°C Pathway.COVID-19 has triggered a drop in global CO 2 emissions of around 7 percent. In the Reference Case, energy-related CO 2 emissions peak by 2023, followed by a steady decline of approximately 25 percent until 2050In the Accelerated Transition scenario, emissions by 2050 are 20 percent lower than in the Reference Case, reflecting a more rapid shift to renewable sources for power generation as well as an accelerated uptake of new, lower-carbon technologies in end-use segments, such as road transport and industryHowever, Reference Case CO 2 emissions, and even Accelerated Transition emissions, remain far from the 1.5ºC Pathway. CO 2 emissions by 2050 need to drop by 90 and 85 percent versus projected levels, respectively, to comply with the requirements for the 1.5ºC Pathway. In fact, CO 2 emissions need to show an annual decrease similar to the drop in 2020 for the next 30 years to reach the target by 2050Source: McKinsey Energy Insights Global Energy Perspective 2021, December 2020Global energy-related CO₂ emissions, GtCO₂ p.a.In the Reference Case, the global carbon budget for 1.5°C Pathway is exhausted by 2030Reference Case Accelerated Transition 1.5ºC Pathway35302520199020502040202020102000203015105Get in touch About us For more information about our Global Energy Perspective,please contact us:Christer Tryggestad Senior Partner Namit SharmaSenior PartnerOle RolserPartnerBram Smeets Associate Partner and Senior Solution Leader Jasper van de Staaij Associate Partner and Senior Solution LeaderTamara GruenewaldSolution Leaderinfo_energyinsights@/energyinsightsWe are a global market intelligence and analytics group focused onthe energy sector. We enable organizations to make well-informedstrategic, tactical, and operational decisions, using an integrated suiteof market models, proprietary industry data, and a global networkof industry experts. We work with leading companies across theentire energy value chain to help them manage risk, optimize theirorganizations, and improve performance© Copyright 2021 McKinsey & CompanyThis report contains confidential and proprietary information of McKinsey & Company and is intendedsolely for your internal use. Do not reproduce, disclose, or distribute the information contained hereinwithout McKinsey & Company’s express prior written consentNothing herein is intended to serve as investment advice, or a recommendation of any particulartransaction or investment, any type of transaction or investment, the merits of purchasing or sellingsecurities, or an invitation or inducement to engage in investment activityThis material is based on information that we believe to be reliable and adequately comprehensive,but we do not represent that such information is in all respects accurate or complete. McKinsey &Company does not accept any liability for any losses resulting from use of the contents of this report。