常见聚合物的红外光谱一览
- 格式:doc
- 大小:131.50 KB
- 文档页数:7
常见聚合物红外光谱红外光谱是一种常用的分析方法,可用于研究聚合物的结构和化学环境。
下面将介绍常见聚合物红外光谱的主要特征。
1、聚合物的类型不同类型的聚合物在红外光谱上表现出不同的特征。
例如,聚烯烃在红外光谱上表现出明显的C-H伸缩振动,而聚酰胺则表现出N-H伸缩振动和C-N伸缩振动的双峰。
因此,通过红外光谱可以区分不同类型的聚合物。
2、聚合物链的构型聚合物的链构型也会影响红外光谱的特征。
例如,等规聚合物和无规聚合物在红外光谱上表现出不同的特征。
等规聚合物在红外光谱上表现出等规序列的C-H 伸缩振动,而无规聚合物则表现出非等规序列的C-H伸缩振动。
3、聚合物链的取代基聚合物链中的取代基也会影响红外光谱的特征。
例如,聚合物链中的烷基、芳基、酯基等不同的取代基在红外光谱上表现出不同的特征。
因此,通过红外光谱可以研究聚合物链中的取代基类型和数量。
4、聚合物链的序列结构聚合物的序列结构也会影响红外光谱的特征。
例如,在聚合物链中,如果存在序列结构的变化,如序列分布、嵌段共聚物等,那么在红外光谱上就会表现出不同的特征。
因此,通过红外光谱可以研究聚合物的序列结构。
5、聚合物链的立体结构聚合物的立体结构也会影响红外光谱的特征。
例如,结晶聚合物和非晶聚合物在红外光谱上表现出不同的特征。
结晶聚合物在红外光谱上表现出有序的结晶结构,而非晶聚合物则表现出无序的结构。
此外,聚合物的立构构型也会影响红外光谱的特征。
例如,等规立构和间规立构在红外光谱上表现出不同的特征。
因此,通过红外光谱可以研究聚合物的立体结构。
6、聚合物链的聚集态结构聚合物的聚集态结构也会影响红外光谱的特征。
例如,不同形态的聚合物在红外光谱上表现出不同的特征。
粉末状的聚合物在红外光谱上表现出颗粒状的结构,而纤维状的聚合物则表现出丝状的结构。
此外,不同温度下的聚合物聚集态结构也会影响红外光谱的特征。
因此,通过红外光谱可以研究聚合物的聚集态结构。
7、聚合物链的化学环境聚合物的化学环境也会影响红外光谱的特征。
常见高分子红外光谱谱图解析1. 红外光谱的基本原理1)红外光谱的产生能量变化ννhch==E-E=∆E12ννh∆E=对于线性谐振子μκπνc21=2)偶极矩的变化3)分子的振动模式多原子分子振动伸缩振动对称伸缩不对称伸缩变形振动AX2:剪式面外摇摆、面外扭摆、面内摇摆AX3:对称变形、反对称变形. 不同类型分子的振动线型XY2:对称伸缩不对称伸缩弯曲弯曲型XY2:不对称伸缩对称伸缩面内弯曲(剪式)面内摇摆面外摇摆卷曲平面型XY3:对称伸缩不对称伸缩面内弯曲面外弯曲角锥型XY3:对称弯曲不对称弯曲面内摇摆4)聚合物红外光谱的特点1、组成吸收带2、构象吸收带3、立构规整性吸收带4、构象规整性吸收带5、结晶吸收带2 聚合物的红外谱图1)聚乙烯各种类型的聚乙烯红外光谱非常相似。
在结晶聚乙烯中,720 cm-1的吸收峰常分裂为双峰。
要用红外光谱区别不同类型的聚乙烯,需要用较厚的薄膜测绘红外光谱。
这些光谱之间的差别反映了聚乙烯结构与线性—CH2—链之间的差别,主要表现在1000-870㎝-1之间的不饱和基团吸收不同,甲基浓度不同以及在800-700㎝-1之间支化吸收带不同。
低压聚乙烯(热压薄膜)中压聚乙烯(热压薄膜)高压聚乙烯(热压薄膜)2.聚丙烯无规聚丙烯等规聚丙烯的红外光谱中,在1250-830 cm-1区域出现一系列尖锐的中等强度吸收带(1165、998、895、840 cm-1)。
这些吸收与聚合物的化学结构和晶型无关,只与其分子链的螺旋状排列有关。
3.聚异丁烯CH3H2C CnCH3丁二烯聚合可以生成多种结构不同的异构体。
H2 CHCHC CH2C CHCH2HH2CC CHCH2H2CH 1,2- 顺式1,4- 反式1,4-990、910 cm-1 775、741、690 cm-1 970 cm-1 1,2-聚丁二烯顺式1,4-聚丁二烯用于橡胶的顺式1,4-丁二烯的光谱中,730 cm-1的宽强吸收很特征,但反式1,4-和1,2-结构的吸收虽弱但仍很明显。
聚丙烯红外光谱特征峰
聚丙烯(Polypropylene,简称PP)是一种常见的聚合物材料,其红外光谱特征峰如下:
1. C-H伸缩振动:在2800-3000 cm^-1范围内出现,主要由于甲基(CH3)和亚甲基(CH2)基团引起。
2. C=C伸缩振动:在1630-1660 cm^-1范围内出现,可用于识别双键存在。
但聚丙烯中一般不存在碳碳双键,因此该峰较弱或不明显。
3. C-H弯曲振动:在1375 cm^-1附近出现,主要由于甲基(CH3)和亚甲基(CH2)基团引起。
这个峰通常比较强烈。
4. C-O伸缩振动:在1150 cm^-1附近出现,主要由于聚丙烯中羧基(COOH)引起。
然而,在纯聚丙烯中,羧基含量较低,因此该峰可能较弱。
需要注意的是,红外光谱特征峰的具体位置和强度可能会受到多种因素的影响,如样品制备方法、测量条件等。
因此,最好还是通过对比标准聚丙烯样品的红外光谱来确定特征峰的位置和强度。