聚合物表征红外光谱
- 格式:ppt
- 大小:5.59 MB
- 文档页数:1
红外光谱法在聚合物鉴别中的应用红外光谱法在聚合物鉴别中的应用红外光谱法是一种分析化学技术,它通过将分子中的振动能量转化为电磁波,利用光谱仪测定样品吸收红外辐射的能量,进而分析样品的成分和结构。
在聚合物材料的鉴别和表征方面,红外光谱法得到了广泛的应用,成为了聚合物研究的基本手段之一。
本文将详细介绍红外光谱法在聚合物鉴别中的应用。
1.聚合物的基本结构聚合物是由数个重复单元结构化合而成的高分子化合物。
其中,重复单元由单体分子通过化学键结合而成,分子量高达几千至几百万不等。
不同的聚合物具有不同的物理化学性质和应用性能,因此对于聚合物的鉴别和表征具有重要的意义。
聚合物材料具有复杂的结构和特性,但是它们的基本单体结构和宏观性质往往与其红外光谱图谱(IR谱)相关联。
IR谱是由聚合物分子的振动带来的光谱图像,包括由伸缩、弯曲、扭曲和往复式振动产生的信息。
因此,IR谱可以用来确定单体结构、化学键类型、官能团或取代基类别、杂质种类、晶型、杂交锋的相对量等信息。
2.聚合物鉴别的方法在聚合物的鉴别和表征中,主要有以下几种方法:2.1 溶解色谱法通过在不同的溶剂中溶解样品,观察到不同的相对分子质量和分子间吸引力的变化,可以间接地进行聚合物的鉴别。
然而,对于相似结构的聚合物,由于其相似的水溶性和分子量,很难分辨出它们的差异性。
2.2 标准化的温度和热重分析法温度和热重分析法(TGA)和不同的附加技术也可以用于聚合物的鉴别。
通过在恒定的加热速率下,检测样品的重量损失,可以获得特定聚合物的热分解温度、热容和热稳定性等信息。
然而,由于在不同条件下的析出温度差异甚至可以超过10摄氏度,因此,这一方法只能识别相对不同的聚合物,而不能进行严格的鉴别。
2.3 光谱法光谱法是目前最常用的聚合物鉴别方法之一,IR谱作为其中的重要分支,提供了分子结构和化学键类型等信息。
根据不同的聚合物类型和分子结构,红外光谱谱图可以表现为一系列的吸收峰。
给定的峰可以被标识为相应的化学键,从而确定分子中的成分和结构。
红外光谱法鉴定聚合物的结构特征引言红外光谱法是一种常用的分析技术,广泛应用于聚合物材料的表征和鉴定。
聚合物是由重复单元组成的高分子化合物,其结构决定了其性质和应用领域。
通过红外光谱法,可以研究聚合物中的化学键类型、官能团以及杂质等信息,从而实现聚合物的结构特征的鉴定。
本文将介绍红外光谱法在聚合物结构鉴定中的原理和方法,并结合实例进行详细说明。
一、红外光谱的原理红外光谱法基于分子内振动产生的特定频率的吸收现象来鉴定材料的成分和结构。
红外光谱仪通过引入红外光源,照射到样品上,样品会吸收特定频率的红外光,所吸收的红外光谱与样品分子的振动能级间的能量差有关,因此可以得到有关样品结构和化学键性质的信息。
二、红外光谱法在聚合物结构鉴定中的应用1.化学键类型的鉴定红外光谱法可以通过分析吸收峰的位置和形状来确定聚合物中的化学键类型。
例如,碳氢键的振动会在285-300 cm-1范围内产生吸收峰,羟基(OH)官能团的振动会在320-360 cm-1范围内产生宽而强的吸收峰。
通过观察这些特征吸收峰的出现和位置,可以确定聚合物中的化学键类型。
2.官能团的鉴定红外光谱法可以通过分析吸收峰的位置和形状来确定聚合物中的官能团。
不同官能团的振动会在不同的频率范围内产生吸收峰。
例如,醛基(C=O)官能团会在165-175 cm-1范围内产生吸收峰,羧基(COOH)官能团会在170-180 cm-1范围内产生吸收峰。
通过观察这些特征吸收峰的出现和位置,可以确定聚合物中的官能团。
3.结构的定性和定量分析通过分析红外光谱中的吸收峰的强度和形状,可以对聚合物结构进行定性和定量的分析。
例如,在聚丙烯中,不饱和度的增加会导致红外光谱中烯烃吸收峰的增加。
通过测量吸收峰的强度,可以确定聚合物中不饱和度的含量。
4.杂质的检测实例以聚丙烯为例,通过红外光谱法鉴定其结构特征。
首先,我们需要将聚丙烯样品制备成薄膜状。
然后,将样品置于红外光谱仪中进行测试。
第五节红外光谱法在聚合物材料研究中的应用一、红外光谱法在聚合物材料研究中的应用红外光谱法在聚合物材料的研究中是一种必不可少的工具,也是近代分析方法中最成熟、最有效的方法之一。
用它来进行研究的内容也很广泛,包括未知聚合物及其添加剂的分析、聚合物结构(包括链结构及聚集态结构)和结构变化的分析、聚合反应的研究、聚合物与配合剂相互作用及并用聚合物之间相互作用的研究,结晶度、取向度的测定,聚合物表面的分析等。
对聚合物红外光谱的解释有三个要素必须注意。
第一是谱带的位置,它代表某一基团的振动频率,也是说明是否含有某种基团的标志。
这在第三节已有详细叙述,当然有些基团的谱带会出现在相同频率区或很接近的频率_匕这就需特别注意。
第二是谱带的形状,例如氢键和离子的官能团会产生很宽的红外谱带,这对于鉴定特殊基团的存在十分重要,如酸胺基的C =a和烯类的C =}伸缩振动都出现在}}5}c}、一’附近,但酞胺基团的默基大都形成氢键,其谱带较宽,这就容易与烯类的C }Cf谱带区分开。
第三是谱带的相对强度,谱带的强弱对比不单是一种基团含量的定量分析基础,而且可以暗示某一特殊基团或元素的存在,例如C H基团邻接氯原子时,将使它的摇摆、扭绞和变形振动的谱带由弱变强,因此从其对应的谱带的增强可提示有氯原子的存在。
分子中有极性较强的基团将产生强的吸收,如默基、醚基等谱带的吸收都很强。
下面举例说明红外光谱法在聚合物材料研究中的应用。
1、未知聚合物的鉴定一般来说,一张聚合物的光谱图是较复杂的,需要进行细心的分析才能得到初步的结果,最后还要根据分析结果查对标准潜图再作最后的确定。
首先可以基团的频率及频率分区中排除一些基团的存在,例如,在:3100~3700cm-1区域没有吸收带就可以排除O—H和N—H基团的存在;在3000~3100cm-1附近没有吸收带则表示不是芳环或不饱和碳氢化合物;在2242cm-1处没有谱带则表示不是含C≡N基团的聚合物(如丁睛胶、聚丙烯睛等);在1720~1735cm-1之间没有谱带则表示被分析聚合物不是含碳基或醋基的聚合物。
目录1 前言 (1)2 表征方法 (2)2.1 红外光谱法(IR) (2)2.2 核磁共振法(NMR) (4)2.3 热分析法 (4)2.4 扫描电镜法 (6)2.5 X-射线衍射法 (6)2.6 原子力显微镜法 (7)2.7 透射电镜法 (8)3 聚合物表征的相关研究 (9)4 结论 (9)参考文献 (10)聚合物表征方法概述摘要:介绍了常规的聚合物的表征方法,具体叙述了红外光谱(IR)、X射线衍射(XRD)、透射电镜(TEM)、核磁共振(NMR)等的原理、方法、特点、局限性及改进方法并展望了聚合物表征方法的发展趋势。
关键词: 聚合物表征方法Summary of polymer characterization methodsAbstrac t:The conventional polymer characterization methods were introduced in this paper. The principle, method, characteristics infrared spectra (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and the nuclear magnetic resonance (NMR) have been described, the limitations, the improved method and the predicts the development trend of those polymer characterization methods have been summarized.Keyword:polymer characterization method1 前言功能高分子是指具有某些特定功能的高分子材料[1]。
它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。
聚合物分析测试—傅立叶红外光谱(FTIR)与拉曼光谱法高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。
相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。
一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。
科标分析实验室可以通过多种大型仪器对样品进行全方位的测试,提供专业聚合物分析测试服务。
以下是傅立叶红外光谱(FTIR)与拉曼光谱法介绍:分子吸收红外光后会引起分子的转动和振动。
红外光谱就是由于分子的振动和转动引起的,因而又称为振-转光谱。
分别通过基团的特征吸收波数和吸收峰的面积(或峰高)进行定性和定量分析。
波数是波长的倒数,单位是cm-1,与频率有正比关系。
红外光谱的研究范围是2~25µm(相当于200~4000cm-1)。
红外光谱在高分子方面的应用有如下一些方面:(1)高聚物品种的定性鉴别图11-1是高分子红外光谱中主要谱带的波数与结构的关系图,可用作高分子鉴别的快速指南。
图11-1高分子红外光谱中主要谱带位置的快速鉴别指南(2)高聚物的主链结构、取代基的位置、双键的位置、侧链的结构等定性鉴别(3)定量测定高聚物的结晶度、键接方式含量、等规度、支化度和共聚(或共混)组成、共聚序列分布等。
定量时需利用一个无关谱带作为参比谱带以扣除厚度变化的影响,例如结晶度的计算公式为:结晶度=K(4)通过对单体或产物的测定,分析单体纯度或研究反应(包括交联、老化等)过程。
(5)用红外二向色性比R表征取向程度。
(使用偏振红外光,在取向方向和与取向方向垂直的方向上测定,两个方向的强度比为二向色性比)。
由于计算机技术的发展,近代的红外光谱都采用了傅立叶变换技术,称傅立叶变换红外光谱(FTIR)。
FTIR不仅速度快,而且精度高。
通过差示分析还可以检出微量的混合组分、添加剂或杂质。
pvdf红外光谱特征峰
PVDF是一种聚合物材料,广泛应用于电池、太阳能电池和传感器等领域。
红
外光谱是一种常用的表征PVDF材料结构和性质的方法。
在PVDF的红外光谱中,有许多特征峰,其中一些峰具有重要的研究意义。
PVDF的红外光谱特征峰主要有C-H伸缩振动峰、C=O伸缩振动峰、CF2对称伸缩振动峰、CF2非对称伸缩振动峰、CF2振弯振动峰、CF2振扭振动峰和C-F伸缩振动峰等。
其中,C-H伸缩振动峰是PVDF红外光谱中较为明显的特征峰之一,该峰位在2930 cm-1左右。
C=O伸缩振动峰是另一个明显的特征峰,位于1775 cm-1左右。
CF2对称伸缩振动峰、CF2非对称伸缩振动峰、CF2振弯振动峰和CF2振扭振动峰,分别位于1140 cm-1左右、1210 cm-1左右、650 cm-1左右和540 cm-1左右。
而C-
F伸缩振动峰则位于1200 cm-1左右。
这些特征峰的位置和强度可以反映出PVDF的分子结构和化学键的类型与数量。
因此,在研究PVDF的应用和性质时,红外光谱特征峰的分析非常重要。
对于PVDF的红外光谱特征峰的研究也有一定的发展历程,现在已经有一些比较成熟的红外光谱分析方法。
以上是对于PVDF红外光谱特征峰的简要介绍,希望能为您提供一些参考。
聚合物表征与测试方法先说说啥是聚合物表征呢?简单来讲,就像是给聚合物做个全面“体检”,搞清楚它到底是啥样的。
那为啥要做这个表征呢?这就好比你找对象,得先了解对方的各种情况一样。
对于聚合物,我们得知道它的分子结构、分子量大小之类的重要信息。
咱先聊聊分子量的测试方法。
有个叫凝胶渗透色谱(GPC)的家伙,可神奇啦。
它就像是一个筛子,把不同大小的聚合物分子按照个头大小给分开,然后就能算出分子量啦。
这就像把一群小动物按照体型大小排队一样有趣呢。
还有端基分析法,通过测定聚合物分子链末端的基团数量,也能推算出分子量,就像数着一串珠子的两端来估摸珠子的总数。
再说说结构表征吧。
红外光谱(IR)就像是聚合物的“声音”。
不同的化学键在红外光下会发出不同的“声音”,也就是吸收不同频率的光。
我们通过听这些“声音”,就能知道聚合物里有哪些化学键,就像听一个人说话的口音能判断他是哪里人一样。
核磁共振(NMR)也很厉害,它能深入到聚合物分子内部,告诉你每个原子周围的环境是啥样的,就像给分子内部来个超级详细的“家访”。
还有热分析方法呢。
热重分析(TGA)就像是给聚合物“烤一烤”,看它在加热过程中重量怎么变化。
如果在某个温度下聚合物突然变轻了很多,那就说明它在这个温度可能发生了分解之类的反应。
差示扫描量热法(DSC)也很有趣,它能测量聚合物在加热或者冷却过程中吸收或者放出热量的情况,就像知道一个人在不同温度下是怕冷还是怕热一样。
另外,还有像X - 射线衍射(XRD)这种方法,可以用来研究聚合物的晶体结构。
如果聚合物是晶体,那XRD就能像照X光一样,把它内部的晶体结构给显示出来,就像看一个精心搭建的积木城堡内部的结构一样。
红外光谱在聚氨酯表征方面的应用摘要:聚氨酯(PU)综合性能优良,有着极为广泛的应用,是科研领域的研究热点。
而红外光谱(IR)是聚氨酯结构表征中不可或缺的表征方法。
本文从红外光谱的原理和聚氨酯的实用性出发,综述了红外光谱在合成与改性聚氨酯过程中的表征应用。
关键词:聚氨酯,红外光谱,表征TheApplicationsofFTIRinWaterbornePolyurethaneCharacterizationAbstract: Polyurethane(PU) is a focus in scientific fields due to its excellent properties and broad applications. And Infrared spectroscopy(IR) is one of essential methods to characterize the chemical structure of PU. This review started with the principle of IR and the practicability of PU, summarized the applications of IR in the characterization of PU during the synthesis and modificati on process.Key words: polyurethane, infrared spectroscopy characterization1. 红外光谱简介红外光谱法(Infrared Spectroscopy )[1]是研究红外光与物质间相互作用的科学,即以连续变化的各种波长的红外光为光源照射样品时,引起分子振动和转动能级之间的跃迁,所测得的吸收光谱为分子的振转光谱,又称红外光谱。
傅里叶光谱法就是利用干涉图和光谱图之间的对应关系,通过测量干涉图和对干涉图进行傅里叶积分变换的方法来测定和研究光谱图。
精品资料聚合物结构表征........................................FTIR测定聚合物的组成摘要傅里叶转变红外光谱(FTIR)在聚合物表征中有非常广泛的应用,本文中,摘取借鉴吴宏, 林志勇, 钱浩创作的《FTIR定量分析聚乙二醇P聚乙烯共混物组成》一文,对FTIR法测定聚合物组成方法进行探讨说明。
利用傅里叶转变红外光谱(FTIR) 定量分析聚乙二醇P聚乙烯共混物组成为例, 对特征谱带的选择, 重叠峰的分离, 数据的拟合处理作了详细讨论。
采用1 378 cm- 1处聚乙烯的复合峰与1 110 cm- 1处聚乙二醇的复合峰强度比作为定量分析的基准, 利用基于Beer2Lambert 定律的理论拟合方程能较好的实现峰强度比与组分浓度的对应关系, 可满足聚乙二醇P聚乙烯共混物组分的定量分析的要求。
主题词傅里叶转变红外光谱(FTIR) ; 定量分析;聚乙烯; 聚乙二醇;引言聚乙烯作为一种性能优异的通用树脂得到了普遍使用,但是较低的表面极性, 导致其在粘结、印刷、生物相容性等方面的应用受到限制, 因此常采用与极性组分共混的方法,改善其表面性质。
对聚合物共混物组成进行定量分析, 是研究其性能的重要依据。
在聚合物材料检测方面已有了很多的定量分析方法。
红外光谱法具有操作简单, 重复性好, 精度较高等优点, 同时又可以对结构进行深入研究, 在聚合物材料的应用研究中受到学者的广泛关注。
本文着重探讨了利用傅里叶变换红外光谱对聚乙二醇P聚乙烯共混物( PEG/PE) 薄膜组成进行定量检测时, 应遵循的基本原则和步骤,以说明利用FTIR方法对聚合物组成测定。
1 实验部分(摘抄,非亲自试验)1.1 原料线性低密度聚乙烯; 聚乙二醇(分子量6 000) , 进口分装。
1.2 聚合物共混物薄膜的制备聚乙烯和聚乙二醇经充分干燥后, 以相应的比例溶解在甲苯中, 回流, 将共混物溶液在硅片上成膜, 待溶剂充分挥发后, 从玻璃片剥离得到相应的聚合物薄膜。
聚合物性能表征与测试知识点总结第二章:红外光谱一、填空题1、分子内部的运动方式有三种,即:、和,相应于这三种不同的运动形式,分子具有能级、能级和能级。
电子相对于原子核的运动,原子在平衡位置的振动,分子本身绕其中心的转动,电子,振动、转动2、在中红外光区中,一般把4000-1350cm-1区域叫做,而把1350-650区域叫做。
特征谱带区,指纹区3、在朗伯—比尔定律I/Io = 10-abc中, Io是入射光的强度, I是透射光的强度, a是吸光系数, b是光通过透明物的距离, 即吸收池的厚度, c是被测物的浓度, 则透射比T =_________, 百分透过率T% =______, 吸光度A与透射比T的关系为__________________。
I/Io __________ I/Io×100%_____, _-logT_4、红外光谱是由于分子振动能级的跃迁而产生,当用红外光照射分子时,要使分子产生红外吸收,则要满足两个条件:(1)________________________________________________,(2)_______________________________________________。
(1) 辐射光子具有的能量与发生振动跃迁所需的跃迁能量相等(2) 辐射与物质之间有耦合作用。
1.红外辐射与物质相互作用产生红外吸收光谱,必须有分子偶极矩的变化。
只有发生偶极矩变化的分子振动,才能引起可观测到的红外吸收光谱带,称这种分子振动为(),反之则称为()。
红外活性的、红外非活性的。
2.红外光谱、凝胶渗透色谱、差示扫描量热法、扫描电镜的英文字母缩写分别是()、()、()、()。
IR、GPC、DSC、SEM1. 产生红外吸收的条件是激发能与分子的振动能级差相匹配,同时有偶极矩的变化。
()2. 所有的分子振动都会产生红外吸收光谱。
()1.分子的振-转光谱是连续光谱。
聚合物材料的性能测试与表征(l)红外光谱表征(IR)将乳液破乳、洗涤后,在室温下抽真空干燥,将所得聚合物与溴化钾研磨压片,在红外光谱仪上测试。
(2)玻璃化转变温度(Tg)测试将乳液在室温成膜后,放入40℃真空烘箱中真空干燥7d。
取样约10mg,在DSC上测其Tg。
升温速率20℃/min,氮气保护,温程一20℃至100℃。
(3)热失重测试(TGA)将干燥样品约10mg,放入热失重仪上测其热失重。
升温速率10℃/min,氮气保护,温程30’C~600’C。
(4)乳胶粒粒径大小及分布测定将乳液样品按1:100稀释后,在美国BROOKHA VEN公司BI一90型激光粒度仪上测定乳液粒度及分布。
(5)单体转化率测定定时用针管吸取少量乳液加到己称重的称量瓶中,密封,迅速冷却终止反应。
称重,再滴入2%的对苯二酚水溶液数滴,置于100℃烘箱中烘干至恒重,按下式计算转化率:(6)力学性能测试称取等量的待测乳液倒入模具中,30OC干燥ld,成膜后按GB528一82裁样,然后置于40℃真空干燥箱中真空干燥7d。
在DL一1000B 型万能试验机上测试,拉伸速率60mm/min。
(7)耐水性测试将等量待测乳液称重后倒入模具中,30℃干燥ld,随后将聚合物膜取出裁切成20mmx20mmxlmm膜片置于40℃真空干燥箱中真空干燥7d。
待试样完全干燥后称重,再投入去离子水中浸泡,定时取出,用滤纸吸干其表面水分,称重,计算吸水率。
(8)冻融稳定性:乳液于一10士5℃下冻16小时,然后在30士0.5℃的水中融化1小时,观察破乳情况。
1.试样融化,与原状态相比没有变化,或粘度稍有增大,则冻融稳定性合格.2.试样融化,试样不能恢复原状态,冻融稳定性不合格3.试样不融化,需在(60.0±0.5)℃的水浴中继续融化,试样能够融化且不失去乳液的使用价值(9)机械稳定性:在聚合过程中或其后的乳液存放应用过程中,遇到搅拌、转移等机械处理的时候,观察乳液是否会析出凝聚物。
红外光谱法表征聚苯乙烯的结构特征一、 实验目的、要求:(1)掌握聚合物红外光谱的;理论及特征。
(2)了解红外光谱仪的原理及使用。
(3)鉴别聚合物的结构。
二、 基本原理:当用一束红外光(具有连续波长)照射一物质时,该物质的分子就吸收一定频率的红外光,并将其光能变为分子振动能量和转动的能量。
若将其透过的光用单色器进行色散,就可以得到一带有缠的谱带。
如果以波长(或波数)为横坐标,以百分吸收率(或透过率)为零纵坐标,把这谱带记录下来就得到了该物质的红外吸收光谱图。
红外光谱的吸收带是由于分子吸收一定频率的红外光,发生振动能级的跃迁而产生的,即只有符合一定选择规律的跃迁,才能吸收红外光产生吸收带。
首先跃迁只能在两个相邻能级之间发生,这时吸收的红外光的频率(V )等于分子振动的基本频率V 0:0hcv E hcv =∆= 0v v =其中:h=0.662×10-33焦耳·秒-1=6.62×10-27尔格·秒-1C =2×1010厘米(光速)ν0=分子基本频率ν:红外光频率多原子分子的振动时很复杂的,每个键的振动,会受其余键振动的影响。
在总结大量红外光谱试验资料的基础上,发现同一种化学键或基团,在不同化合物的红外光谱中,往往出现大致相同的吸收峰位置,称为基团特征频率。
例如CH 3CH 2Cl 中的CH3基团一欧一定的吸收峰,而且多数具有CH 3基团的化合物,不同样的频率附近出现吸收峰,这可以认为是CH 3基团的特征频率,基团频率的特征不能孤立的只看作时局部基团振动的反映,而是一个分子整体某种振动的反映。
在低分子红外光谱法基础上发展起来的聚合物振动光谱从理论和应用上,即有和前者相同的地方,也有其自身的特点:(I )应用:1. 振动光谱能鉴别聚合物的晶态,非晶态以及它的取向性,运用对聚合物结晶敏感的谱带来测定聚合物的结晶度。
2.偏振红外光谱能测定聚合物的取向性。
聚合物检测方法
1. 光谱分析:包括红外光谱(IR)、紫外可见光谱(UV-Vis)、核磁共振光谱(NMR)等。
这些方法可用于确定聚合物的化学结构、官能团、化学键等信息。
2. 分子量测定:通过凝胶渗透色谱(GPC)或质谱法(MS)等技术,可以测定聚合物的分子量分布、平均分子量和分子量分布宽度等参数。
3. 热分析:热重分析(TGA)、差示扫描量热法(DSC)等热分析技术可用于研究聚合物的热稳定性、熔点、玻璃化转变温度、热分解等特性。
4. 显微镜观察:使用光学显微镜或电子显微镜可以观察聚合物的形态、晶体结构、相分离等微观结构信息。
5. 力学性能测试:包括拉伸试验、弯曲试验、冲击试验等,用于评估聚合物的力学强度、韧性、弹性等性能。
6. 元素分析:通过元素分析仪可以测定聚合物中各元素的含量,例如碳、氢、氧、氮等元素的比例。
7. 流变性能测试:使用流变仪可以测量聚合物的黏度、弹性、熔体流动等流变学特性。
8. 老化试验:进行加速老化或自然老化试验,以评估聚合物在长期使用或暴露条件下的稳定性和耐久性。
这些方法可以单独或结合使用,根据具体的需求和应用选择合适的检测方法。
聚合物检测有助于评估材料的质量、性能和可靠性,对于材料科学研究、产品开发和质量控制具有重要意义。
聚己内酯红外光谱解析
聚己内酯(PCL)是一种常见的生物可降解聚合物,具有许多应用,如医学领域的缝合线和药物缓释系统。
红外光谱是一种常用的分析技术,可用于表征聚合物的结构和化学成分。
对聚己内酯的红外光谱进行解析可以提供关于其分子结构和功能团的重要信息。
在红外光谱中,聚己内酯的特征峰可以被解释如下:
1. 羰基吸收峰,在1720 cm^-1左右的位置,这是由于PCL中酯基团的伸缩振动引起的。
2. 亚甲基和甲基吸收峰,在2940 cm^-1和2860 cm^-1附近,这些峰是由于PCL分子中甲基和亚甲基基团的伸缩振动引起的。
3. C-O-C吸收峰,在1150 cm^-1左右的位置,这是由于PCL 中酯键的伸缩振动引起的。
除了上述主要的吸收峰外,还可能存在一些其他次要峰,这些峰可以提供关于PCL分子链的构象和取向的信息。
通过对PCL红外光谱的解析,我们可以了解其分子结构、官能团和键合情况,这对于研究其在药物传递和生物医学应用中的性能至关重要。
红外光谱分析还可以用于监测PCL的降解过程和反应活性,以及评估其在医学和生物工程领域中的可行性。
总之,通过对聚己内酯红外光谱的解析,我们可以深入了解其结构和特性,为其在医学和生物工程应用中的设计和优化提供重要参考。
实验一红外光谱法测定聚合物的结构一、实验目的:1. 了解红外线分析聚合物的原理及其应用范围;2. 掌握操作红外线分析仪器的操作方法;3. 测定某位置样品的红外谱图。
二、实验原理:在分子中存在着许多不同类型的振动,其振动自由度与原子数有关。
含N 个原子的分子有3N个自由度,除去分子的平动和转动自由度以外,振动动自由度应为3N-6(线性分子是3N-5)这些振动可分两大类:一类是沿键轴方向伸缩使键长发生变化的振动,称为为伸缩振动,用V表示。
这种振动又分为对称伸缩振动用V表示和非对称伸缩震动用Vas表示;另一类原子垂直于价键方向振动;此类振动会引起分子内键角发生变化称为弯曲(或变形)振动,用δ表示,这类振动又可分为面内弯曲振动(包括平面及剪式两种振动),面外弯曲振动(包括非平面摇摆及弯曲摇摆两种振动)。
分子振动能与振动频率成反比。
为计算分子振动频率,首先研究各个孤立的振动,即双原子分子的伸缩振动。
可用弹簧模型来描述最简单的双原子分子的简谐振动。
把两个原子看成质量分别为m1和m2的钢性小球,化学键好似一根无质量的弹簧在原子分子中有多种振动形式,每一种简正振动都对应一定的振动频率,但并不是每一种振动都会和红外辐射发生相互作用而产生红外吸收光谱,只有能引起分子偶极矩变化的振动(称为红外活性振动),才能产生红外吸收光谱。
也就是说,当分子振动引起分子偶极矩变化时,就能形成稳定的交变电场,其频率与分子振动频率相同,可以和相同频率的红外辐射发生相互作用,使分子吸收红外辐射的能量跃迁到高能态,从而产生红外吸收光谱。
在正常情况下,这些具有红外活性的分子振动大多数处于基态,被红外辐射激发后,跃迁到第一激发态。
这种跃迁所产生的红外吸收称为基频吸收。
在红外吸收光谱中大部分吸收部属于这一类型。
除基频吸收外还有倍频和合频吸收,但这两种吸收都较弱。
红外吸收谱带的强度与分子数有关,但也与分子振动时偶极矩变化率有关。
变化率越大,吸收强度也越大,因此极性基团如碳基、胺基等均有很强的红外吸收带。