中考数学压轴题课件学习资料.ppt
- 格式:ppt
- 大小:4.34 MB
- 文档页数:15
(20XX 年北京市)25.如图,在平面直角坐标系xOy 中,△ABC 三个顶点的坐标分别为A (-6,0),B (6,0),C (0,4 3 )延长AC 到点D ,使CD =12 AC ,过点D 作DE ∥AB 交BC的延长线于点E .(1)求D 点的坐标;(2)作C 点关于直线DE 的对称点F ,分别连结DF 、EF ,若过B 点的直线y =kx +b 将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;(3)设G 为y 轴上一点,点P 从直线y =kx +b 与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短.(要求:简述确定G 点位置的方法,但不要求证明)答案2009年北京市(20XX 年重庆市)26.如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为 65,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.答案2009年重庆市(20XX年山西省)26.如图,已知直线l1:y=23x+83与直线l2:y=-2x+16相交于点C,l1、l2分别交x轴于A、B两点.矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G都在x轴上,且点G与点B重合.(1)求△ABC的面积;(2)求矩形DEFG的边DE与EF的长;(3)若矩形DEFG从原点出发,沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤12)秒,矩形DEFG与△ABC重叠部分的面积为S,求S关于的t函数关系式,并写出相应的t的取值范围.答案2009年山西省(20XX年重庆綦江县)26.如图,已知抛物线y=a(x-1)2+33 (a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.答案2009年重庆綦江县(20XX年河北省)26.如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t =2时,AP= ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t 的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;t的值.(4)当DE经过点C时,请直接..写出答案2009年河北省(20XX年河南省)23.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.答案2009年河南省(20XX 年山西省太原市)29. 如左图,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当CE CD =12 时,求AM BN 的值. 方法指导:为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2.类比归纳:在左图中,若CE CD =13 则AM BN 的值等于 ;若CE CD =14 则AM BN 的值等于 ;若CE CD =1n (n 为整数),则AM BN 的值等于 .(用含n 的式子表示)联系拓广:如右图将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN ,设 AB BC =1m (m >1) CE CD =1n ,则AM BN 的值等于 .(用含m ,n 的式子表示)答案2009年山西省太原市(20XX 年江西省)25.如图1,在等腰梯形ABCD 中,AD ∥BC ,E 是AB 的中点,过点E 作EF ∥BC 交CD 于点F .AB =4,BC =6,∠B =60°.(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM ⊥EF 交BC 于点M ,过M 作MN ∥AB 交折线ADC 于点N ,连结PN ,设EP =x .①当点N 在线段AD 上时(如图2),△PMN 的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使△PMN 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.答案2009年江西省 (20XX 年广东广州)25. 如图,二次函数y =x 2+px +q (p <0)的图象与x 轴交于A 、B两点,与y 轴交于点C (0,-1),△ABC 的面积为54.(1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ABCD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.(20XX年广东省中山市)22.正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.市(20XX年哈尔滨市)28.如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.答案2009年哈尔滨市(2009山东省泰安市)26.如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD.(1)求证:BE=AD;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?并说明理由.答案2009山东省泰安市(20XX年烟台市)26.如图,抛物线y=a2+bx-3与x轴交于A,B两点,与y轴交于C 点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由;(4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立?(请直接写出结论).(20XX年山东省日照)24.已知正方形ABCD中,E为对角线BD上一点,过E点作EF ⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. (3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)(20XX年潍坊市)24.如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=a2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C.(1)求抛物线的解析式;(2)抛物线的对称轴交x轴于点E,连结DE,并延长DE交圆O于F,求EF的长. (3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由.答案2009年潍坊市(20XX年山东临沂市)26.如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.答案2009年山东临沂市(20XX年山东省济宁市)26.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A 点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x 轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△MBN 的周长为p ,在旋转正方形OABC 的过程中,p 值是否有变化?请证明你的结论.答案2009年山东省济宁市(20XX 年四川遂宁市)25.如图,二次函数的图象经过点D (0,79 3 ),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6.(1)求二次函数的解析式;(2)在该抛物线的对称轴上找一点P ,使P A +PD 最小,求出点P 的坐标;(3)在抛物线上是否存在点Q ,使△QAB 与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由.答案2009年四川遂宁市(20XX 年四川南充市)21.如图9,已知正比例函数和反比例函数的图象都经过点A (3,3). (1)求正比例函数和反比例函数的解析式;(2)把直线OA 向下平移后与反比例函数的图象交于点B (6,m ),求m 的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形OECD 的面积S 1与四边形OABD 的面积S 满足:S 1=23S ?若存在,求点E 的坐标; 若不存在,请说明理由.答案2009年四川南充市(20XX 年四川凉山州)26.如图,已知抛物线y =a 2+bx +c 经过A (1,0),B (0,2)两点,顶点为D .(1)求抛物线的解析式;(2)将△OAB 绕点A 顺时针旋转90°后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为B 1,顶点为D 1,若点N 在平移后的抛物线上,且满足△NBB 1的面积是△NDD 1面积的2倍,求点N 的坐标.答案2009年四川凉山州(20XX 年鄂州市)27.如图所示,将矩形OABC 沿AE 折叠,使点O 恰好落在BC 上F 处,以CF 为边作正方形CFGH ,延长BC 至M ,使CM =|CE —EO |,再以CM 、CO 为边作矩形CMNO .(1)试比较EO 、EC 的大小,并说明理由.(2)令m =S 四边形CFGHS 四边形CNMO ,请问m 是否为定值?若是,请求出m 的值;若不是,请说明理由(3)在(2)的条件下,若CO =1,CE =13 ,Q 为AE 上一点且QF =23,抛物线y =mx 2+bx +c经过C、Q两点,请求出此抛物线的解析式.(4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否存在点K,使得以P、B、K为顶点的三角形与△AEF相似?若存在,请求直线KP与y轴的交点T的坐标?若不存在,请说明理由.答案2009年鄂州市(20XX年贵州安顺市)27.如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.答案2009年贵州安顺市(20XX年湖北省黄石市)24、如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 ,数量关系为 .②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)(3)若AC=4 2 ,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.答案2009年湖北省黄石市(20XX年武汉市)25.如图,抛物线y=a2+bx-4a经过A(-1,0)、C(0,4)两点,与x 轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.答案2009年武汉市(20XX年湖北省荆门市)25.一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C ,且AC ⊥BC . (1)若m 为常数,求抛物线的解析式;(2)若m 为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点? (3)设抛物线交y 轴正半轴于D 点,问是否存在实数m ,使得△BOD 为等腰三角形?若存在,求出m 的值;若不存在,请说明理由.答案2009年湖北省荆门市(20XX 年湖北省孝感市)25. 如图,点P 是双曲线y =k 1x(k 1<0,x <0)上一动点,过点P作x 轴、y 轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线 y =k 2x(0<k 2<|k 1|)于E 、F 两点.(1)图1中,四边形PEOF 的面积S 1= ▲ (用含k 1、k 2的式子表示); (2)图2中,设P 点坐标为(-4,3).①判断EF 与AB 的位置关系,并证明你的结论;②记S 2=S △PEF -S △OEF ,S 2是否有最小值?若有,求出其最小值;若没有,请说明理由.答案2009年湖北省孝感市(20XX 年襄樊市)26.如图,在梯形ABCD 中,AD ∥BC ,AD =2,BC =4点M 是AD 的中点,△MBC 是等边三角形.(1)求证:梯形ABCD 是等腰梯形; (2)动点P 、Q 分别在线段BC 和MC 上运动,且∠MPQ =60°保持不变.设PC =x ,MQ =y ,求y 与x 的函数关系式;(3)在(2)中:①当动点P 、Q 运动到何处时,以点P 、M 和点A 、B 、C 、D 中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数; ②当y 取最小值时,判断△PQC 的形状,并说明理由.答案2009年襄樊市(20XX 年湖南省株洲市)23.如图,已知△ABC 为直角三角形,∠ACB =90°,AC =BC ,点A 、C 在x 轴上,点B 坐标为(3,m )(m >0),线段AB 与y 轴相交于点D , 以P (1,0)为顶点的抛物线过点B 、D . (1)求点A 的坐标(用m 表示); (2)求抛物线的解析式; (3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结 BQ 并延长交AC 于点F ,试证明:FC (AC +EC )为定值.答案2009年湖南省株洲市(20XX年衡阳市)26.如图,直线y=-x+4与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D. (1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a<4),正方形OCMD与△AOB重叠部分的面积为S.试求S与a的函数关系式并画出该函数的图象.答案2009年衡阳市(20XX年湖南娄底市)25.如图在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE =4,∠DEF=∠CBA,AH:AC=2:3.(1)延长HF交AB于G,求△AHG的面积.(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH (如图2).探究1:在运动中,四边形CDH'H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.探究2:在运动过程中,△ABC与直角梯形DEFH'重叠部分的面积为y,求y与t的函数关系.答案2009年湖南娄底市(20XX年陕西省)25.问题探究:P,并说明理由.(1)请在图①的正方形ABCD内,画出使∠APB=90°的一个..点P,并说明理(2)请在图②的正方形ABCD内(含边),画出使∠APB=60°的所有..的点由.问题解决:(3)如图③,现在一块矩形钢板ABCD,AB=4,BC=3.工人师傅想用它裁出两块全等的、面积最大的△APB和△CP'D钢板,且∠APB=∠CP'D=60°.请你在图③中画出符合要求的点P和P',并求出△APB的面积(结果保留根号).答案2009年陕西省(20XX年福建宁德市第26题)如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x 轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求P点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.答案2009年福建宁德市第26题(2009贵州省黔东南苗族侗族自治州)26.已知二次函数22-++=a ax x y . (1)求证:不论a 为何实数,此函数图象与x 轴总有两个交点.(2)设a <0,当此函数图象与x 轴的两个交点的距离为13时,求出此二次函数的解析式. (3)若此二次函数图象与x 轴交于A 、B 两点,在函数图象上是否存在点P ,使得△P AB 的面积为2133,若存在求出P 点坐标,若不存在请说明理由. 答案(20XX 年湖南省益阳市第20题)阅读材料:如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积图等于水平宽与铅垂高乘积的一半. 解答下列问题:如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及S △CAB ; (3)是否存在一点P ,使S △P AB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 答案(20XX 年江苏省)28.如图,已知射线DE 与x 轴和y 轴分别交于点D (3,0)和点E (0,4).动点C 从点M (5,0)出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒.(1)请用含t 的代数式分别表示出点C 与点P 的坐标;(2)以点C 为圆心、12t 个单位长度为半径的⊙C 与x 轴交于A 、B 两点(点A 在点B 的左侧),连接P A 、PB .①当⊙C 与射线DE 有公共点时,求t 的取值范围; ②当△P AB 为等腰三角形时,求t 的值.答案2009年江苏省(2009浙江省杭州市)24. 已知平行于x 轴的直线y =a (a ≠0)与函数y =x 和函数y =1x的图象分别交于点A 和点B ,又有定点P (2,0).(1)若a >0,且tan ∠POB =19,求线段AB 的长;图2xCOy AB D1 1(2)在过A ,B 两点且顶点在直线y =x 上的抛物线中,已知线段AB =83,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式;(3)已知经过A ,B ,P 三点的抛物线,平移后能得到y =95x 2的图象,求点P 到直线AB 的距离.答案2009浙江省杭州市(20XX 年台州市)24.如图,已知直线121+-=x y 交坐标轴于A ,B 两点,以线段AB 为边向上作正方形ABCD ,过点A ,D ,C 的抛物线与直线另一个交点为E . (1)请直接写出点C ,D 的坐标; (2)求抛物线的解析式;(3)若正方形以每秒5个单位长度的速度沿射线AB 下滑,直至顶点D 落在x 轴上时停止.设正方形落在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,同时D 停止,求抛物线上C ,E 两点间的抛物线弧所扫过的面积.答案2009年台州市(20XX 年浙江丽水市)24. 已知直角坐标系中菱形ABCD 的位置如图,C ,D 两点的坐标分别为(4,0),(0,3).现有两动点P ,Q 分别从A ,C 同时出发,点P 沿线段AD 向终点D 运动,点Q 沿折线CBA 向终点A 运动,设运动时间为t 秒.(1)填空:菱形ABCD 的边长是 ▲ 、面积是 ▲ 、高BE 的长是 ▲ ; (2)探究下列问题:①若点P 的速度为每秒1个单位,点Q 的速度为每秒2个单位.当点Q 在线段BA 上时,求△APQ 的面积S 关于t 的函数关系式,以及S 的最大值;②若点P 的速度为每秒1个单位,点Q 的速度变为每秒k 个单位,在运动过程中,任何时刻都有相应的k 值,使得△APQ 沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t =4秒时的情形,并求出k 的值.答案2009年浙江丽水市(20XX 年浙江省湖州市)24.已知抛物线y =x 2-2x +a (a <0)与y 轴相交于点A ,顶点为M .直线a x y -=21分别与x 轴,y 轴相交于B ,C 两点,并且与直线AM 相交于点N . (1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则M ( , ), N ( , ); (2)如图,将△NAC 沿y 轴翻折,若点N 的对应点N '恰好落在抛物线上, AN '与x 轴交于点D ,连结CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线y =x 2-2x +a (a <0)上是否存在一点P ,使得以P ,A ,C ,N 为顶点的四边形是平行四边形?若存在,求出P 点的坐标;若不存在,试说明理由.答案2009年浙江省湖州市(20XX 年浙江省湖州市自选题)25.若P 为△ABC 所在平面上一点,且∠APB =∠BPC =∠CP A =120°,则点P 叫做△ABC 的费马点.(1)若点P 为锐角△ABC 的费马点,且∠ABC =60°,P A =3,PC =4,则PB 的值为_____; (2)如图,在锐角△ABC 外侧作等边△ACB '连结BB '.求证:BB '过△ABC 的费马点P ,且BB '=P A +PB +PC .答案2009年浙江省湖州市自选题B(20XX 年甘肃省兰州市)29.(本题满分9分)如左图,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如右图所示,请写出点Q 开始运动时的坐标及点P 运动速度; (2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标;(4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.答案2009年甘肃省兰州市(20XX 年威海市)25.一次函数y =ax +b 的图象分别与x 轴、y 轴交于点M ,N ,与反比例函数y =k x的图象相交于点A ,B .过点A 分别作AC ⊥x 轴,AE ⊥y 轴,垂足分别为C ,E ;过点B 分别作BF ⊥x 轴,BD ⊥y 轴,垂足分别为F ,D ,AC 与BD 交于点K ,连接CD .(1)若点A ,B 在反比例函数y =k x的图象的同一分支上,如左图,试证明: ①S 四边形AEDK =S 四边形CFBK ;②AN =BM .(2)若点A ,B 分别在反比例函数y =kx的图象的不同分支上,如右图,则AN 与BM 还相等吗?试证明你的结论.答案2009年威海市(20XX 年浙江省嘉兴市)24.如图,已知A 、B 是线段MN 上的两点,MN =4,MA =1, MB >1.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设AB =x . (1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?答案2009年浙江省嘉兴市(20XX 年安徽省)23.已知某种水果的批发单价kg ))第23题图(1)第23题图(2)与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.答案。
中考数学压轴题十大类型目录第一讲 中考压轴题十大类型之动点问题 1 第二讲 中考压轴题十大类型之函数类问题 7 第三讲 中考压轴题十大类型之面积问题 13 第四讲 中考压轴题十大类型之三角形存在性问题 19 第五讲 中考压轴题十大类型之四边形存在性问题 25 第六讲 中考压轴题十大类型之线段之间的关系 31 第七讲 中考压轴题十大类型之定值问题 38 第八讲 中考压轴题十大类型之几何三大变换问题 44 第九讲 中考压轴题十大类型之实践操作、问题探究 50 第十讲 中考压轴题十大类型之圆 56 第十一讲 中考压轴题综合训练一 62 第十二讲 中考压轴题综合训练二 68第一讲 中考压轴题十大类型之动点问题1.2011吉林如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E ,AD =8cm,BC =4cm,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s,动点P 沿A -B -C -E 方向运动,到点E 停止;动点Q 沿B -C -E -D 方向运动,到点D 停止,设运动时间为x s,△PAQ 的面积为y cm 2,这里规定:线段是面积为0的三角形解答下列问题:1 当x =2s 时,y =_____ cm 2;当x =92s 时,y =_______ cm 2. 2当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式.3当动点P 在线段BC 上运动时,求出154 y S 梯形ABCD 时x 的值. 4直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.D C BA 2.2007河北如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒t >0.1当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;2当点P 运动到AD 上时,t 为何值能使PQ ∥DC3设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的关系式;,写出t 的取值范围;若不能,请说明理由. 备用图3.2008河北如图,在Rt ABC △中,∠C=90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,B C 的中点.点P 从点D 出发沿折线DE -EF -FC -CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC -CA 于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒0t >.1D F ,两点间的距离是 ;2射线QK 能否把四边形CDEF 分成面积相等的两部分若能,求出t 的值.若不能,说明理由;3当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值; 4连结PG ,当PG AB ∥时,请直接..写出t 的值. 4.2011山西太原如图,在平面直角坐标系中,四边形OABC 是平行四边形.直线l 经过O 、C 两点.点A 的坐标为8,0,点B 的坐标为11,4,动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O -C -B 相交于点M .当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t秒0t>,△MPQ的面积为S.1点C的坐标为________,直线l的解析式为__________.2试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.3试求题2中当t为何值时,S的值最大,并求出S的最大值.4随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线l相交于点N.试探究:当t为何值时,△QMN为等腰三角形请直接写出t的值.5.2011四川重庆如图,矩形ABCD中,AB=6,BC=2错误!,点O是AB的中点,点P在AB的延长线上,且BP=3个单位长度的速度沿OA匀速运动,到达A点后,F从P点出发,以每秒1个单位长度的速度沿射线当两点相遇时停止运动.在点E、F的运动过程中,以和矩形ABCD在射线PA的同侧,设运动的时间为t秒1当等边△EFG的边FG恰好经过点C时,求运动时间t的值;2在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S 与t之间的函数关系式和相应的自变量t的取值范围;3设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形若存在,求出对应的t的值;若不存在,请说明理由.备用图1备用图2三、测试提高1.2011山东烟台如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为41633y x=-+,点A、D的坐标分别为-4,0,0,4.动点P自A点出发,在AB上匀速运动.动点Q自点B出发,在折线BCD 上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t秒时,△OPQ的面积为S不能构成△OPQ的动点除外.1求出点B、C的坐标;2求S随t变化的函数关系式;3当t为何值时S有最大值并求出最大值.备用图第二讲中考压轴题十大类型之函数类问题12011浙江温州如图,在平面直角坐标系中,O是坐标原点,点A的坐标为-4,0,点B的坐标为0,bb>0.P是直线AB上的一个动点,作PC⊥x轴,垂足为C,记点P 关于y轴的对称点为P′ 点P′不在y轴上,连结P P′,P′A,P′C,设点P的横坐标为a.(1) 当b =3时,①直线AB 的解析式;②若点P ′的坐标是-1,m ,求m 的值;2若点P 在第一象限,记直线AB 与P ′C 的交点为D .当P ′D :DC =1:3时,求a 的值; 3是否同时存在a ,b ,使△P ′CA 为等腰直角三角形若存在,请求出所有满足要求的a ,b 的值;若不存在,请说明理由.2. 2010武汉如图,抛物线212y ax ax b=-+经过A -1,0,C 2,32两点,与x 轴交于另一点B . 1求此抛物线的解析式; 2若抛物线的顶点为M ,点P 为线段OB 上一动点 不与点B 重合,点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ=22y ,求y 2与x 的函数关系式,并直接写出自变量x 的取值范围; 3在同一平面直角坐标系中,两条直线x =m ,x =n 分别与抛物线交于点E ,G ,与2中的函数图象交于点F ,H .问四边形EFHG 能否为平行四边形 若能,求m ,n 之间的数量关系;若不能,请说明理由.备用图3. 2011江苏镇江在平面直角坐标系xOy 中,直线1l 过点A 1,0且与y 轴平行,直线2l 过点B 0,2且与x 轴平行,直线1l 与2l 相交于点P .点E 为直线2l 上一点,反比例函数k y x=k >0的图象过点E 且与直线1l 相交于点F . 1若点E 与点P 重合,求k 的值; 2连接OE 、OF 、EF .若k >2,且△OEF 的面积为△PEF 的面积2倍,求点E 的坐标; 3是否存在点E 及y 轴上的点M ,使得以点M 、E 、F 为顶点的三角形与△PEF 全等若存在,求E 点坐标;若不存在,请说明理由.4. 2010浙江舟山△ABC 中,∠A =∠B =30°,AB=ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O 如图,△ABC 可以绕点O 作任意角度的旋转.1当点B 在第一象限,,求点B 的横坐标; x y P'DO C B A P2如果抛物线2y ax bx c =++a ≠0的对称轴经过点C ,请你探究:①当a =,12b =-,c =,A ,B 两点是否都在这条抛物线上并说明理由; ②设b =-2am ,是否存在这样的m 值,使A ,B 两点不可能同时在这条抛物线上若存在,直接写出m 的值;若不存在,请说明理由.5.12若点N 为线段BMQ .当点N 在线段BM 上运动时点N 不与点B ,点M 面积为S ,求S 与t 之间的函数关系式及自变量3,求出所有符合条件的点P 4将△OAC 补成矩形,使得△,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标不需要计算过程. 三、测试提高1. 2011山东东营如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为30-,,0,1,点D是线段BC 上的动点与端点B 、C 不重合,过点D 作直线12y x b =+交折线OAB 于点E . 1记△ODE 的面积为S .求S 与b 的函数关系式;2当点E 在线段OA 上时,且tan ∠DEO =12.若矩形OABC 关于直线DE 的对称图形为四边形1111O A B C .试探究四边形1111O A B C 与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由. 第三讲 中考压轴题十大类型之面积问题1. 2011辽宁大连如图,抛物线y =ax 2+bx +c 经过A -1,0、B 3,0、C 0,3三点,对称轴与抛物线相交于点P 、与直线BC 相交于点M ,连接PB .1求该抛物线的解析式;2抛物线上是否存在一点Q ,使△QMB 与△PMB 的面积相等,若存在,求点Q 的坐标;若不存在,说明理由;3在第一象限、对称轴右侧的抛物线上是否存在一点R ,使△RPM 与△RMB 的面积相等,若存在,直接写出点R 的坐标;若不存在,说明理由.2. 2011湖北十堰如图,和点 B ,与y 轴交于点C 0,-3.1求抛物线的解析式;2如图1,己知点H 0,-1.问在抛物线上是否存在点G 点G 在y 轴的左侧,使得S △GHC =S △GHA 若存在,求出点G 的坐标,若不存在,请说明理由:3如图2,抛物线上点D 在x 轴上的正投影为点E ﹣2,0,F 是OC 的中点,连接DF ,P 为线段BD 上的一点,若∠EPF =∠BDF ,求线段PE 的长.3. 2010天津在平面直角坐标系中,已知抛物线2y x bx =-+c +与x 轴交于点A 、B 点A 在点B 的左侧,与y 轴的正半轴交于点C ,顶点为E . Ⅰ若2b =,3c =,求此时抛物线顶点E 的坐标;Ⅱ将Ⅰ中的抛物线向下平移,若平移后,在四边形ABEC 中满足S △BCE = S △ABC ,求此时直线BC 的解析式;Ⅲ将Ⅰ中的抛物线作适当的平移,若平移后,在四边形ABEC 中满足S △BCE =2S △AOC ,且顶点E 恰好落在直线43y x =-+上,求此时抛物线的解析式.4. 2011山东聊城如图,在矩形ABCD 中,AB =12cm,BC =8cm .点E 、F 、G 分别从点A 、B 、C 同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s,点F 的速度为4cm/s,当点F 追上点G 即点F 与点G 重合时,三个点随之停止移动.设移动开始后第t s 时,△EFG 的面积为S cm 2.1当t =1s 时,S 的值是多少2写出S 与t 之间的函数解析式,并指出自变量t 的取值范围;3若点F 在矩形的边BC 上移动,当t 为何值时,以点B 、E 、F 为顶点的三角形与以C 、F 、G 为顶点的三角形相似请说明理由.5. 2011江苏淮安如图,在Rt△ABC中,∠C =90°,AC =8,BC =6,点P 在AB 上,AP =2,点E 、F 同时从点P 出发,分别沿PA 、PB 以每秒1个单位长度的速度向点A 、B 匀速运动,点E 到达点A 后立刻以原速度沿AB 向点B 运动,点F 运动到点B 时停止,点E 也随之停止.在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧.设E 、F 运动的时间为t 秒t >0,正方形EFGH 与△ABC 重叠部分面积为S .1当t =1时,正方形EFGH 的边长是 .当t =3时,正方形EFGH 的边长是 . 2当0<t ≤2时,求S 与t 的函数关系式;3直接答出:在整个运动过程中,当t 为何值时,S 最大最大面积是多少A EB FC GDA 备用图三、测试提高1. 2010山东东营如图,在锐角三角形ABC 中,BC =12,△ABC 的面积为48,D ,E 分别是边AB ,AC 上的两个动点D 不与A ,B 重合,且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG .1当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长;2设DE = x ,△ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,写出x 的取值范围,并求出y 的最大值.第四讲 中考压轴题十大类型之 三角形存在性问题板块一、等腰三角形存在性1. 2011江苏盐城如图,已知一次函数7y x =-+与正比例函数34y x =的图象交于点A ,且与x 轴交于点B .1求点A 和点B 的坐标;2过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.是否存在以A 、P 、Q 为顶点的三角形是等腰三角形若存在,求t 的值;若不存在,请说明理由.备用图2. 2009湖北黄冈如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与x 轴的交点为点A ,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t 单位:秒B AD E F G C B 备用图1 A C B 备用图2 A C1求A ,B ,C 三点的坐标和抛物线的顶点的坐标;2当t 为何值时,四边形PQCA 为平行四边形请写出计算过程;3当902t <<时,△PQF 的面积是否总为定值若是,求出此定值,若不是,请说明理由;4当t 为何值时,△PQF 为等腰三角形请写出解答过程.板块二、直角三角形3. 2009四川眉山如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 1,0. 1求该抛物线的解析式;2动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标.4. 2010广东中山如图所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动点M 可运动到DA 的延长线上,当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、FN ,当F 、N 、M 不在同一直线上时,可得△FMN ,过△FMN 三边的中点作△PWQ .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题:1说明△FMN ∽△QWP ;2设04x ≤≤即M 从D 到A 运动的时间段.试问x 为何值时,△PWQ 为直角三角形当x 在何范围时,△PQW 不为直角三角形3问当x 为何值时,线段MN 最短求此时MN 的值.板块三、相似三角形存在性 5. 2011湖北天门在平面直角坐标系中,抛物线2y ax bx =+ 3+与x 轴的两个交点分别为-3,0、B 1,0,过顶点C 作CH ⊥x 轴于点. 1直接填写:a = ,b = ,顶点C 的坐标为 ;2在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形若存在,求出点D 的坐标;若不存在,说明理由; 3若点P 为x 轴上方的抛物线上一动点点P 与顶点C 不重合,PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标. W QPNM F D CB A备用图三、测试提高1. 2009广西钦州如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点, A 点的坐标为-1,0,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且01t <<.1填空:点C 的坐标是_____,b =_____,c =_____;2求线段QH 的长用含t 的式子表示;3依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似若存在,求出所有t 的值;若不存在,说明理由.第五讲 中考压轴题十大类型之四边形存在性问题1. 2009黑龙江齐齐哈尔直线364y x =-+与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.1直接写出A 、B 两点的坐标;2设点Q 的运动时间为t 秒,△OPQ 的面积为S ,求出S 与t 之间的函数关系式;3当485S =时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.2. 2010河南在平面直角坐标系中,已知抛物线经过A (40),-,B (04),-,C (20),三点.1求抛物线的解析式;2若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.3若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.3. 2011黑龙江鸡西已知直线y =+与x 轴、y 轴分别交于A 、B 两点,∠ABC =60°,BC 与x 轴交于点C .1试确定直线BC 的解析式;2若动点P 从A 点出发沿AC 向点C 运动不与A 、C 重合,同时动点Q 从C 点出发沿CBA 向点A 运动不与C 、A 重合,动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.设△APQ 的面积为S ,P 点的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围;3在2的条件下,当△APQ 的面积最大时,y 轴上有一点M ,平面内是否存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形若存在,请直接写出N 点的坐标;若不存在,请说明理由.4. 2007河南如图,对称轴为直线x =27的抛物线经过点A 6,0和B0,4.1求抛物线解析式及顶点坐标;2设点Ex ,y 是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;3①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形②是否存在点E ,使四边形OEAF 为正方形若存在,求出点E 的坐标;若不存在,请说明理由.5. 2010黑龙江大兴安岭如图,在平面直角坐标系中,函数2y x =+12的图象分别交x轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点M,且点M 为线段OB 的中点. 1求直线AM 的解析式;2试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;3若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形若存在,请直接写出点H 的坐标;若不存在,请说明理由.三、测试提高 1. 2009辽宁抚顺已知:如图所示2=++y ax x c a ≠0与x C .1求出此抛物线的解析式,2在抛物线上有一点D ,D 的坐标,并求出直线AD 的解析式;3在2中的直线AD P ,x 轴上有一动点Q .是否存在以A 、M 、P 、Q 为顶点的平行四边形如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.第六讲 中考压轴题十大类型之线段之间的关系1. 2010天津在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点.Ⅰ若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;Ⅱ若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标.2. 2011四川广安四边形ABCD 是直角梯形,BC ∥AD ,∠=90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A 1 0-,,B 1 2-,,D 3,0.连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N .1求抛物线的解析式;2抛物线上是否存在点P ,使得PA =PC ,若存在,求出点P 的坐标;若不存在,请说明理由;3设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE -QC |最大并求出最大值.3. 2011四川眉山如图,在直角坐标系中,已知点A 0,1,B 4-,4,将点B 绕点A 顺时针方向旋转90°得到点C ,顶点在坐标原点的抛物线经过点B . 1 求抛物线的解析式和点C 的坐标;2 抛物线上有一动点P ,设点P 到x 轴的距离为1d ,点P 到点A 的距离为2d ,试说明211d d =+;3 在2的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.4. 2011福建福州已知,如图,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x轴交于A 、B 两点B 在A 点右侧,点H 、B 关于直线3:33l y x =+ 1求A 、B 两点坐标,并证明点A 在直线l 上; 2求二次函数解析式;3过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN +NM +MK 和的最小值.5. 2009湖南郴州 如图1,已知正比例函数和反比例函数的图象都经过点M -2,-1,且y B O D C A xEyB O DC A x温馨提示:如图,可以作点D 关于x 轴的对称点D ',连接CD '与xP -1,-2为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B .1写出正比例函数和反比例函数的关系式;2当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等如果存在,请求出点Q 的坐标,如果不存在,请说明理由;3如图2,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值. 图1 图26. 2010江苏苏州如图,以A 为顶点的抛物线与y 轴交于点B .已知A 、B 两点的坐标分别为3,0、0,4. 1求抛物线的解析式;2设()M m n ,M B O A 、、、,求点M 的坐标; 3在2的条件下,试问:22228PA PB PM ++>是否总成立请说明理由.三、测试提高1. 2009浙江舟山如图,已知点A -4,8和点B 2,n 在抛物线2=y ax 上.1求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;2平移抛物线2=y ax ,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C -2,0和点D -4,0是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.第七讲 中考压轴题十大类型之定值问题1. 2011天津已知抛物线1C :21112y x x =-+,点F 1,1. Ⅰ求抛物线1C 的顶点坐标;Ⅱ①若抛物线1C 与y 轴的交点为A ,连接AF ,并延长交抛物线1C 于点B ,求证:112AF BF +=;②抛物线1C 上任意一点P P P x y ,01P x <<,连接PF ,并延长交抛物线1C 于点Q Q Q x y ,,试判断112PF QF+=是否成立请说明理由; Ⅲ将抛物线1C 作适当的平移,得抛物线2C :221()2y x h =-,若2x m <≤时,2y x ≤恒成立,求m 的最大值.2. 2009湖南株洲如图,已知△ABC 为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x轴上,点B 坐标为3,m 0m >,线段AB 与y 轴相交于点D ,以P 1,0为顶点的抛物线过点B 、D .1求点A 的坐标用m 表示; 2求抛物线的解析式;3设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.3. 2008山东济南已知:抛物线2y ax bx c =++a ≠0,顶点C1,3-,与x 轴交于A 、B 两点,(10)A -,. 1求这条抛物线的解析式; 2如图,以AB 为直径作圆,与抛物线交于点D ,与抛物线对称轴交于点E ,依次连接A 、D 、B 、E ,点P 为线段AB 上一个动点P 与A 、B 两点不重合,过点P 作断PM PNBE AD+是否为PM ⊥AE 于M ,PN ⊥DB 于N ,请判定值 若是,请求出此定值;若不是,请说明理由;3在2的条件下,若点S 是线段EP 上一点,过点S 作FG ⊥EP ,FG 分别与边.AE 、BE相交于点F 、GF 与A 、E 不重合,G 与E 、B 不重合,请判断PA EFPB EG=是否成立.若成立,请给出证明;若不成立,请说明理由.4. 2011湖南株洲孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线2(0)y ax a =<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于A 、B 两点,请解答以下问题: 1若测得OA OB ==如图1,求a 的值;2对同一条抛物线,孔明将三角板绕点O 旋转到如图2所示位置时,过B 作BF x ⊥轴于点F ,测得1OF =,写出此时点B 的坐标,并求点A 的横坐标...; 3对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点A 、B 的连线段总经过一个固定的点,试说明理由并求出该点的坐标.5. 2009湖北武汉如图,抛物线24y ax bx a =+-经过()10A -,、()04C ,两点,与x 轴交于另一点B .1求抛物线的解析式;2已知点(),1D m m +在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; 3在2的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=︒,求点P 的坐标.三、测试提高1. 2009湖南湘西在直角坐标系xOy与x 轴交于两点A 、B ,与y 的坐标是3,0.将直线y kx =沿y 轴向上平移3(1) 求k 的值;(2) 求直线BC 和抛物线的解析式; (3) 求△ABC 的面积;(4) 设抛物线顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P 的坐标.、第八讲 中考压轴题十大类型之 几何三大变换问题1. 2009山西太原问题解决:如图1,将正方形纸片ABCD 折叠,使点B 落在CD 边上一方法指导:图1 图2 图3 图4αθ4HB 2B 3A 3A 222B 1A 1A 011点E 不与点C ,D 重合,压平后得到折痕MN .当12CE CD =时,求AMBN 的值. 类比归纳:在图1中,若13CE CD =,则AMBN 的值等于 ;若14CE CD =,则AMBN的值等于 ;若1CE CD n=n 为整数,则AMBN 的值等于 .用含n 的式子表示 联系拓广: 如图2,将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E 不与点C D ,重合,压平后得到折痕MN ,设()111AB CE m BC m CD n=>=,,则AMBN 的值等于 .用含m n ,的式子表示 2. 2011陕西如图①,在矩形ABCD 中,将矩形折叠,使B落在边AD 含端点上,落点记为E ,这时折痕与边BC 或边CD 含端点交于点F ,然后再展开铺平,则以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.1由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形;2如图②,在矩形ABCD 中,AB =2,BC =4.当它的“折痕△BEF ”的顶点E 位于边AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标;3如图③,在矩形ABCD 中, AB =2,BC =4,该矩形是否存在面积最大的“折痕△BEF ”若存在,说明理由,并求出此时点E 的坐标;若不存在,为什么图① 图② 图③3. 2010江西南昌课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题. 实验与论证设旋转角∠A 1A 0B 1=αα<∠A 1A 0A 2,θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示. 1用含α的式子表示:θ3=_________,θ4=_________,θ5=_________;图1-图4中,连接A 0H 时,在不添加其他辅助线的情况下,是否存在与直线0H 垂直且被它平分的线段若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想图2NA B CD E F M图1A BCDE FM N设正n 边形A 0A 1A 2…A n -1与正n 边形A 0B 1B 2…B n -1重合其中,A 1与B 1重合,现将正n 边形A 0B 1B 2…B n -1绕顶点A 0逆时针旋转αn1800<<α. 3设θn 与上述“θ3,θ4,…”的意义一样,请直接写出θn 的度数;4试猜想在n 边形且不添加其他辅助线的情形下,是否存在与直线A 0H 垂直且被它平分的线段若存在,请将这条线段用相应的顶点字母表示出来不要求证明;若不存在,请说明理由.4. 2009山东德州已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC于F ,连接DF ,G 为DF 中点,连接EG ,CG . 1求证:EG =CG ;2将图①中△BEF 绕B 点逆时针旋转45o,如图②所示,取DF 中点G ,连接EG ,CG .问1中的结论是否仍然成立若成立,请给出证明;若不成立,请说明理由. 3将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问1中的结论是否仍然成立通过观察你还能得出什么结论均不要求证明5. 2010江苏苏州刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,90°,B ∠=306cm °,;A BC ∠==图②中,90D =°,45E ∠=°, 4cm DE =.图③是刘卫同学所做的一个实验:他将DEF △的直角边DE 与△ABC 的斜边AC 重合在一起,并将DEF △沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上移动开始时点与点重合. 1在DEF △沿AC 方向移动的过程中,刘卫同学发现:F C 、两点间的距离逐渐_________.填“不变”、“变大”或“变小” 2刘卫同学经过进一步地研究,编制了如下问题:问题①:当DEF △移动至什么位置,即AD 的长为多少时,F C 、的连线与AB 平行 问题②:当DEF △移动至什么位置,即AD 的长为多少时,以线段AD FC BC 、、的长度为三边长的三角形是直角三角形问题③:在DEF △的移动过程中,是否存在某个位置,使得15FCD ∠=°?如果存在,求出AD 的长度;如果不存在,请说明理由. 请你分别完成上述三个问题的解答过程.三、测试提高1. 2009湖南常德如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:F BA D E G图①F A D G图② F A E 图③ ①图②F ED AB图③D。
36 - x 2 PH 2 + MH 2 x 2 + 9 - 1x 2 4 1 36 + 3x 2中考数学压轴题复习讲义(动点问题详细分层解析,尖子生首选资料 )所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况, 需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例 1 )如图 1,在半径为 6,圆心角为 90°的扇形 OAB 的弧 AB 上,有一个动点 P,PH⊥OA,垂足为 H,△OPH 的重心为 G.(1)当点 P 在弧 AB 上运动时,线段 GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设 PH = x ,GP = y ,求 y 关于 x 的函数解析式,并写出函数的定义域(即自变量 x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段 PH 的长.解:(1)当点 P 在弧 AB 上运动时,OP 保持不变,于是线段 GO 、GP 、GH2中,有长度保持不变的线段,这条线段是 GH= 3 NH= 2 ⋅ 1 OP=2.3 2(2) 在 Rt △ POH 中 ,OH= = ,∴MH = 1 OH = 1 2 236 - x 2 .在 Rt△MPH 中,图 1MP = = = 2 1OP 2 - PH 2BPD ●●.∴ y =GP= 2MP= 136 + 3x 2(0< x <6).3 3(3)△PGH 是等腰三角形有三种可能情况:1①GP=PH 时, 3 36 + 3x 2 = x ,解得 x = . 经检验, x = 是原方程的根,且符合题意.1②GP=GH 时,336 + 3x 2 = 2 ,解得 x = 0. 经检验, x = 0是原方程的根,但不符合题意.③PH=GH 时, x = 2 .综上所述,如果△PGH 是等腰三角形,那么线段 PH 的长为或 2.二、应用比例式建立函数解析式例 2 如图 2,在△ABC 中,AB=AC=1,点 D,E 在直线 BC 上运动.设 BD= x , CE= y . (1)如果∠BAC=30°,∠DAE=105°,试确定 y 与 x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α, β满足怎样的关系式时,(1)中 y 与 x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°,ADE∴∠CAE=∠ADB,B C∴△ADB∽△EAC, ∴ AB = BD ,图 2CEAC1x 1∴ = , ∴ y = . y 1 xα(2)由于∠DAB+∠CAE= β-α,又∠DAB+∠ADB=∠ABC= 90︒ - ,且2函数关系式成立,Fα α∴ 90︒ - = β-α, 整理得β-2 2 = 90︒ .当β- α = 90︒ 时,函数解析式 y = 1成立.2 x例 3(2005 年·上海)如图 3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点 O 是边 AC 上的一个动点,以点 O 为圆心作半圆,与边 AB 相切于点 D,C 交线段 OC 于点 E.作 EP⊥ED,交射线 AB 于点 P,交射线 CB 于点 F.(1)求证: △ADE∽△AEP. P (2)设 OA= x ,AP= y ,求 y 关于 x 的函数解析式,并写出它的定 BF义域.(3)当 BF=1 时,求线段 AP 的长. 解:(1)连结 OD.3(1)E OAD根据题意,得 OD⊥AB,∴∠ODA=90°,∠ODA=∠DEP.2CE OA3(2)6 6 62 288 又由 OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD∥BC, ∴ OD = x , AD = x, 3 5 4 53 4 3 8∴OD= x ,AD= x . ∴AE= x + x = x .5 5 55 8x4x25∵△ADE∽△AEP, ∴ AE = AD,∴5 = 5 . ∴ y = 16x ( 0 < x ≤).(3)当 BF=1 时,AP AEy8x 5 85①若 EP 交线段 CB 的延长线于点 F,如图 3(1),则 CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5- x =4,得 x =55 .可求得 y = 2,即 AP=2.8②若 EP 交线段 CB 于点 F,如图 3(2), 则 CF=2. 类似①,可得 CF=CE.∴5-x =2,得 x = 15 .58可求得 y = 6,即 AP=6.综上所述, 当 BF=1 时,线段 AP 的长为 2 或 6.三、应用求图形面积的方法建立函数关系式例 4 如图,在△ABC 中,∠BAC=90°,AB=AC= 2 ,⊙A 的半径为 1.若点 O 在 BC 边上运动(与点 B 、C 不重合),设 BO= x ,△AOC 的面积为 y .(1)求 y 关于 x 的函数解析式,并写出函数的定义域.(2)以点 O 为圆心,BO 长为半径作圆 O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点 A 作 AH⊥BC,垂足为 H.∵∠BAC=90°,AB=AC= 2 , ∴BC=4,AH= 12 1BC=2. ∴OC=4- x .∵ S ∆AOC= OC ⋅ AH , ∴ y = -x + 4 2( 0 < x < 4 ). 图 8(2)①当⊙O 与⊙A 外切时,在 Rt△AOH 中,OA= x + 1,OH= 2 - x , ∴ (x + 1) 2= 22+ (2 - x ) 2. 解得 x = 7. 6此时,△AOC 的面积 y = 4 - 76 ②当⊙O 与⊙A 内切时,=17 .6在 Rt△AOH 中,OA= x - 1,OH= x - 2 , ∴ (x - 1) 2= 22+ (x - 2) 2. 解得 x = 7. 2此时,△AOC 的面积 y = 4 - 7 2 = 1.22 2 17 3217 1综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为或 .62动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系; 分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。