组成原理实验2
- 格式:pdf
- 大小:513.84 KB
- 文档页数:8
计算机组成原理--实验⼆算术逻辑运算实验实验⼆算术逻辑运算实验⼀、实验⽬的(1)了解运算器芯⽚(74LS181)的逻辑功能。
(2)掌握运算器数据的载⼊、读取⽅法,掌握运算器⼯作模式的设置。
(3)观察在不同⼯作模式下数据运算的规则。
⼆、实验原理1.运算器芯⽚(74LS181)的逻辑功能74LS181是⼀种数据宽度为4个⼆进制位的多功能运算器芯⽚,封装在壳中,封装形式如图2-3所⽰。
5V A1 B1 A2 B2 A3 B3 Cn4 F3BO A0 S3 S2 S1 S0 Cn M F0 F1 F2 GND图2-374LS181封装图主要引脚有:(1)A0—A3:第⼀组操作数据输⼊端。
(2)B0—B3:第⼆组操作数据输⼊端。
(3)F0—F3:操作结果数据输⼊端。
(4)F0—F3:操作功能控制端。
(5)Cn:低端进位接收端。
(6)(7)M:算数/逻辑功能控制端。
芯⽚的逻辑功能见表2-1.从表中可以看到当控制端S0—S3为1001、M为0、Cn为1时,操作结果数据输出端F0—F3上的数据等于第⼀组操作数据输⼊端A0—A3上的数据加第⼆组操作数据输⼊端B0—B3上的数据。
当S0—S3、M、Cn上控制信号电平不同时,74LS181芯⽚完成不同功能的逻辑运算操作或算数运算操作。
在加法运算操作时,Cn、Cn4进位信号低电平有效;减法运算操作时,Cn、Cn4借位信号⾼电平有效;⽽逻辑运算操作时,Cn、进位信号⽆意义。
2.运算器实验逻辑电路试验台运算器实验逻辑电路中,两⽚74LS181芯⽚构成⼀个长度为8位的运算器,两⽚74LS181分别作为第⼀操作数据寄存器和第⼆操作数据寄存器,⼀⽚74LS254作为操作结果数据输出缓冲器,逻辑结构如图2-4所⽰。
途中算术运算操作时的进位Cy 判别进位指⽰电路;判零Zi和零标志电路指⽰电路,将在实验三中使⽤。
第⼀操作数据由B-DA1(BUS TO DATA1)负脉冲控制信号送⼊名为DA1的第⼀操作数据寄存器,第⼆操作数据由B-DA2(BUS TO DATA2)负脉冲控制信号送⼊名为DA2的第⼆操作数据寄存器。
半导体存储器原理实验一、实验目的:1、掌握静态存储器的工作特性及使用方法。
2、掌握半导体随机存储器如何存储和读取数据。
二、实验要求:按练习一和练习二的要求完成相应的操作,并填写表2.1各控制端的状态及记录表2.2的写入和读出操作过程。
三、实验方案及步骤:1、按实验连线图接线,检查正确与否,无误后接通电源。
2、根据存储器的读写原理,按表2.1的要求,将各控制端的状态填入相应的栏中以方便实验的进行。
3、根据实验指导书里面的例子练习,然后按要求做练习一、练习二的实验并记录相关实验结果。
4、比较实验结果和理论值是否一致,如果不一致,就分析原因,然后重做。
四、实验结果与数据处理:(1)表2.1各控制端的状态(2)练习操作数据1:(AA)16 =(10101010)2写入操作过程:1)写地址操作:①应设置输入数据的开关状态:将试验仪左下方“INPUT DEVICE”中的8位数据开关D7-D0设置为00000000即可。
②应设置有关控制端的开关状态:先在实验仪“SWITCH UNIT”中打开输入三态门控制端,即SW-B=0,打开地址寄存器存数控制信号,即LDAR=1,关闭片选信号(CE),写命令信号(WE)任意,即CE=1,WE=0或1。
③应与T3脉冲配合可将总线上的数据作为地址输入AR地址寄存器中:按一下微动开关START即可。
④应关闭AR地址寄存器的存数控制信号:LDAR=0。
2)写内容操作:①应设置输入数据的开关状态:将试验仪左下方“INPUT DEVICE”中的8位数据开关D7-D0设置为10101010。
②应设置有关控制端的开关状态:在实验仪“SWITCH UNIT”中打开输入三态门控制端,即SW-B=0,关闭地址寄存器存数控制信号,即LDAR=0,打开片选信号(CE)和写命令信号(WE),即CE=0,WE=1。
③应与T3脉冲配合可将总线上的数据写入存储器6116的00000000地址单元中:再按一下微动开关START即可。
实验报告成绩课程名称计算机组成原理指导教师实验日期院(系) 计算机科学与技术学院专业班级实验地点学生姓名学号同组人实验项目名称实验二八位寄存器一、实验目的和要求实验目的:1.了解寄存器的工作原理和构成;2.熟悉 EDA 工具软件的使用方法。
实验要求:1.电源选用+5V,注意D触发器的置0端和置1端必须接高电平,即+5V电源。
否则D触发器工作不正常。
2. D触发器可以选用 74LS74(7474 也可),其逻辑符号(图中SD为置1端,接低电平有效;图中CD为置0端,接低电平有效;CP为脉冲)。
二、实验原理设计一个八位寄存器,该寄存器具有一个时钟输入端CLK,一个复位端RE,八个并行数据输入端d7,d6,…d0和八个数据输出端q7,q6,…q0,当时钟脉冲到来时,并行数据输入端的数据被送入寄存器中。
寄存器框图如图所示。
三、主要仪器设备1.操作系统为WINDOWS的计算机一台;2.数字逻辑与计算机组成原理实验箱一台;3.基本D触发器7474。
四、实验方法与步骤1. 原理图输入:采用图形输入法在计算机上完成实验电路的原理图输入。
2. 管脚定义:根据硬件实验平台资源示意图和附录一“平台资源和FPGA引脚连接表”完成原理图中输入、输出管脚的定义。
将寄存器的输出q7-q0分别锁定在LD7-LD0上。
将寄存器的输入d7-d0分别锁定在K7-K0上。
将寄存器的输入脉冲CLK锁定在单脉冲(Pin 132引脚)上。
3.原理图编译、适配和下载:在QuartusⅡ环境中选择EP2C8Q208C8器件,进行原理图的编译和适配,无误后完成下载。
4.功能测试:改变K7-K0的状态,按动一次单脉冲键,LD7-LD0的显示将与K7-K0相对应,若有错则重新调试。
5.生成元件符号。
五、实验结果分析六、实验心得通过本次实验,了解了寄存器的工作原理和构成;熟悉了EDA工具软件的使用方法。
在实验中,用一个锁定在开关k8上的输入端用来控制置0端,我认为VCC也需要使用一个输入端表示,否则在引脚分配时无法对VCC进行分配。
实验二运算器──进位控制实验一实验目的(1) 验证带进位控制的算术运算功能发生器的功能;(2) 按指定数据完成几种指定的算术运算。
二实验设备TDN-CM++计算机组成原理教学实验系统一台,排线若干。
三实验内容进位控制运算器的实验原理如图3所示,在算术逻辑运算实验的基础上增加进位控制部分,其中74181的进位进入一个7474锁存器,其写入是由T4和AR信号控制,T4是脉冲信号,实验时将T4连至STA TE UNIT的微动开关KK2上。
AR是电平控制信号(低电平有效),可用于实现带进位控制实验,而T4脉冲是将本次运算的进位结果锁存到进位锁存器中。
图 3 进位控制实验原理图线四实验步骤(1) 按图4连接实验线路,仔细查线无误后,接通电源。
(2) 用二进制数码开关向DR1和DR2寄存器置数,具体方法:图 4 进位控制实验接线图线① 关闭ALU 输出三态门(ALU-B=1),开启输入三态门(SW-B=0),设置数据开关; ② 例如向DR 1存入01010101,向DR 2存入10101010。
具体操作步骤如下:(3) 关闭输入三态门(SW-B=1),开启ALU 输出三态门(ALU-B=0)。
(4) 进位标志清零具体操作方法如下:实验板中SWITCH UNIT 单元中的CLR 开关为标志CY ,ZI 的清零开关,它为零时是清零状态,所以依次将开关做1→0→1操作,即可使标志位清零。
注:进位标志指示灯CY 亮时表示进位标志为“0”,无进位:标志指示灯CY 灭时表示进位为“1”,有进位.(5) 验证带进位运算及进位锁存功能,使Cn=1,AR=0来进行带进位算术运算。
数据开关 (01010101) 三态门 寄存器DR 1 (01010101) 数据开关寄存器DR 2 (10101010) LDDR 1=1 LDDR 2=0 T4=ALU-B=1 SW-B=0LDDR 1=0 LDDR 2=1 T4= 关寄存器 LDDR 1=0 LDDR 2=0例如:做加法运算,首先向DR1,DR2置数,然后使ALU-B=0,S3S2S1S0M状态为10010,此时数据总线上显示的数据为DR1加DR2加当前进位标志,这个结果是否产生进位,则要按动微动开关KK2,若进位标志灯亮,表示无进位;反之,有进位。
实验一、实验箱介绍与DEBUG简单使用一、实验目的1)了解实验箱的构成2)掌握模型机的结构框图3)学会DEBUG的简单使用二、实验内容1.实验箱介绍图1-1 计算机组成原理实验箱图1-1给出了实验箱的结构图,构成部分均在实验箱的印刷电路板上标注,如:ALU Uint(算逻单元)、Input Device Unit(输入单元)、Switch Unit(控制开关单元)、Bus Unit(总线单元)……,同学们要结合计算机的组成原理,确定运算器、控制器、存储器、输入设备、输出设备等在实验箱中的位置。
2.模型机的框图图1-2 模型机框图图1-2给出了计算机模型机的框图,同学们在做实验时,要体会实验中数据的流向,以便对整机有一个完整的认识。
3.DEBUG的简单使用DEBUG须在DOS环境下运行。
具体操作可以在Windows操作系统的“开始”菜单的“运行”对话框中输入“CMD”(命令command)如图1-3所示。
图1-3 Windows的运行窗口Windows的“DOS”模式,如图1-4所示。
图1-4 Windows下的“DOS”模式输入命令DEBUG(调试),见图1-5.图1-5 DEBUG调试窗口DEBUG命令是在“-”下,由键盘键入的。
每条命令以单字母命令符开头,然后是命令的操作参数,操作参数与命令符之间用空格隔开,操作参数与操作参数之间用空格或逗号隔开,命令的结束符是回车键。
命令及参数的输入可以是大小写的结合。
Ctrl+Break键可中止命令的执行。
Ctrl+Num Lock键可暂停屏幕卷动,按任一键继续。
所用数均为十六进制数,不用加H。
有关DEBUG中的D(显示)、R(寄存器)、U(反汇编)、G(执行)和Q(退出)等命令已在前面讲过了。
下面介绍本实验用到的DEBUG的命令:(1)A-汇编,用于输入汇编语言源程序(2)g-运行,运行用A命令编写的汇编语言程序(3)e-编辑,用于修改计算机内存中存储单位的数据(4)d-显示,用于显示计算机内存中存储单位的数据(5)q-退出,用于退出DEBUG的状态,到DOS提示符下。
《计算机组成原理》实验报告实验二移位运算实验一、实验目的掌握移位控制的功能及工作原理二、实验环境EL-JY-II 型计算机组成原理实验系统一套,排线若干。
三、实验内容与实验过程及分析(写出详细的实验步骤,并分析实验结果)实验步骤:开关控制操作方式实验本实验中所有控制开关拨动,相应指示灯亮代表高电平“1”,指示灯灭代表低电平“0”。
1、按图 2-4 接线:连线时应注意:对于横排座,应使排线插头上的箭头面向自己插在横排座上;对于竖排座,应使排线插头上的箭头面向左边插在竖排座上。
为了避免总线冲突,首先将控制开关电路的所有开关拨到输出高电平“1”状态,所对应的指示灯亮。
2、实验过程:(以左移为例)开始实验前要把所有控制开关电路上的开关置为高电平“1”状态。
拨动清零开关 CLR,使其指示灯灭。
再拨动 CLR,使其指示灯亮。
(1)置数:置C-G=1,299-G=0,通过数据输入电路输入要移位的数据,置 D15---D0= “0000000000000001”,然后置C-G=0,数据总线显示灯显示“0000000000000001”,置 S0=1,S1=1,M=1 参考功能表表 2-2 可见,此时为置数状态,按脉冲源及时序电路上的【单步】按钮,置 C-G=1,完成置数的过程,进位指示灯亮表示进位“Z”已置位。
(2)不带进位移位:置299-G=0,S0=1,S1=0,M=0,参考功能表 2-2,此时为循环左移状态,数据总线显示灯显示“0000000000000001”,按【单步】,数据总线显示灯显示“0000000000000010”,再按一次【单步】,数据总线显示的数据向左移动一位。
连续按【单步】,观察不带进位移位的过程。
如想进行右移,参考表 2-2,置 S0=0,S1=1,再按【单步】即可实现右移操作。
(3)带进位移位当数据总线显示“0000000000000001”时,置 299-G=0,S0=1,S1=0,M=1,参考功能表 2-2,此时为带进位循环左移状态。
实验一寄存器实验一、实验目的1、了解CPTH模型机中寄存器的结构、工作原理及其控制方法.2、熟悉CPTH实验仪的基本构造及操作方法。
二、实验电路寄存器的作用是用于保存数据的,因为CPTH模型机是8位的,因此模型机中大部寄存器是8 位的,标志位寄存器(Cy, Z)是二位的.CPTH 用74HC574 (8—D触发器)来构成寄存器。
74HC574 的功能如表1—1所示:图1-1 74HC574的引脚图1. 在CLK的上升沿将输入端的数据打入到8 个触发器中2. 当OC = 1 时触发器的输出被关闭,当OC=0 时触发器的输出数据表1-1 74HC574功能表图1—2 74HC574工作波形图三、实验内容(一)proteus仿真平台1、proteus仿真平台简介Proteus软件是英国Lab Center Electronics公司出版的EDA工具软件。
它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件.它的主界面如图1-3所示:图1—3 proteus仿真平台主界面2、在proteus平台上运行电路:寄存器_1.DSN。
拨动开关,观察灯的亮灭,回答思考题1。
思考题1:先使OC=1,拨D0~D7=00110011,按下CK提供CLK上升沿;再拨D0~D7=01000100,OC=0,此时Q0~Q7为多少?3、CPTH模型机上,寄存器A的电路组成如图1-4所示。
在proteus平台上运行电路:寄存器_2.DSN,回答思考题2。
图1-4 寄存器A原理图思考题2:数据从D端传送到Q端,相应的控制端如何设置?3、CPTH模型机上,寄存器组R0~R3的电路组成如图1-5所示。
在proteus平台上运行电路:寄存器_3。
DSN,回答思考题3。
图1—5 寄存器组R0~R3 原理图74LS139是2—4线译码器,由A、B两个输入端选择控制4个输出端Y0~Y3,使能端E低电平有效,允许译码输出。
74HC32是或门,两个输入端同时为低电平,输出为低电平.具体的控制方式见表1-2。
计算机组成原理实验二移位寄存实验一、实验目的:1、了解移位寄存器的硬件电路,验证移位控制与寄存的组合功能。
2、利用寄存器进行数据传输。
二、实验要求:实现寄存器移位操作,了解通用寄存器的运用。
三、实验原理:移位运算实验原理图移位运算实验原理如图所示,使用了一片74LS299作为移位发生器,其八输入/输出端以排针方式和总线单元连接。
299—B信号控制其使能端,T4时序为其时钟脉冲,实验时将“W/R UNIT”中的T4接至“STATE UNIT”中的KK2单脉冲发生器,由S0、S1、M控制信号控制其功能状态,其列表如下:299—B S 1 S 0 M 功能0 0 0 任意保持0 1 0 0 循环右移0 1 0 1 带进位循环右移0 0 1 0 循环左移0 0 1 1 带进位循环左移任意 1 1 任意装数四、实验连接:1.运算器控制信号连接:S0,S1,M,LDCZY,LDR0,/SW-B,/SR-B,/R0-B2.完成连接并检查无误后接通电源。
五、实验仪器状态设定:在闪动的“P.”状态下按动“增址”命令键,使LED显示器自左向右第一位显示提示符“H”,表示本装置已进入手动单元实验状态。
五、实验项目:(一)移位寄存器置数首先置CBA=000,然后按下面流程操作:数据开关(01101011)三态门置数(01101011)三态门[CBA=001] [S0=1,S1=1] [CBA=111][ “按STEP” ](二)寄存器移位置CBA=001并输入数据,然后置CBA=111,参照实验原理中的移位寄存器控制特性表改变S0、S1、M,按动“单步”命令键,实验发现数据移位正确。
(三)移位结果寄存我们选取R0,把移位寄存器移位后的内容寄存到通用寄存器。
在移位操作后保持CBA=111,S0=0,S1=0,然后令LDR0=1,再按动“单步”命令键,完成移位结果保存。
(四)移位结果读出置CBA=100,总线指示灯显示R0内容,与上步中存的数一致。
实验指导DICE-CP226系统概述1.1 DICE-CP226特点1、采用总线结构DICE-CP226实验系统使用三组总线即地址总线ABUS、数据总线DBUS、指令总线IBUS和控制信号,CPU、主存、外设和管理单片机等部件之间通过外部数据总线传输,CPU内部则通过内部数据总线传输信息。
各部件之间,通过三态缓冲器作接口连接。
2、计算机功能模块化设计DICE-CP2226为实验者提供运算器模块ALU,众多寄存器模块(A,W,IA ,ST,MAR,R0…R3等),程序计数器模块PC,指令部件模块IR,主存模块EM,微程序控制模块〈控存〉uM,微地址计数器模块UPC,组合逻辑控制模块及I/O等控制模块。
各模块间的电源线、地线、地址总线和数据总线等已分别连通,模块内各芯片间数据通路也已连好,各模块的控制信号及必要的输出信号已被引出到主板插孔,供实验者按自己的设计进行连接。
3、智能化控制系统在单片机监控下,管理模型机运行和读写,当模型机停机时,实验者可通过系统键盘,读写主存或控存指定单元的内容,使模型机实现在线开发。
模型机运行时,系统提供单步一条微指令(微单步)、单步一条机器指令(程单步),连续运行程序及无限止暂停等调试手段,能动态跟踪数据,流向、捕捉各种控制信息。
4、提供两种实验模式①手动运行“Hand……”:通过拨动开关和发光二极管二进制电平显示,支持最底层的手动操作方式的输入/输出和机器调试。
②自动运行:通过系统键盘及液晶显示器或PC机,直接接输入或编译装载用户程序<机器码程序和微程序>,实现微程序控制运行。
5、开放性设计运算器采用了EDA技术设计,随机出厂时,已提供一套已装载的方案,能进行加、减、与、或、带进位加、带进位减、取反、直通八种运算方式,若用户不满意该套方案,可自行重新设计并通过JTAG 口下载。
用户还可以设计自己的指令/微指令系统。
系统中已带三套指令/微程序系统,用户可参照来设计新的指令/微程序系统。
一、单选题 (共 50.00 分)1.下列存储器中,速度最慢的是()。
A.半导体存储器B.光盘存储器C.磁带存储器D.硬盘存储器满分:2.00 分得分:2.00 分你的答案:C正确答案:C教师评语:--2.某一SRAM芯片,容量为16K×1位,则其地址线有()。
A.14根B.16K根C.16根D.32根满分:2.00 分得分:2.00 分你的答案:A正确答案:A教师评语:--3.下列部件(设备)中,存取速度最快的是()。
A.光盘存储器B.CPU的寄存器C.软盘存储器D.硬盘存储器满分:2.00 分得分:2.00 分你的答案:B正确答案:B教师评语:--4.在主存和CPU之间增加Cache的目的是()。
A.扩大主存的容量B.增加CPU中通用寄存器的数量C.解决CPU和主存之间的速度匹配D.代替CPU中的寄存器工作满分:2.00 分得分:2.00 分你的答案:C正确答案:C教师评语:--5.相联存储器是按()进行寻址的存储器。
A.地址指定方式B.堆栈存取方式C.内容指定方式D.地址指定与堆栈存取方式结合满分:2.00 分得分:2.00 分你的答案:C正确答案:C教师评语:--6.在Cache的地址映射中,若主存中的任意一块均可映射到Cache内的任意一快的位置上,则这种方法称为()A.全相联映射B.直接映射C.组相联映射D.混合映射满分:2.00 分得分:2.00 分你的答案:A正确答案:A教师评语:--7.和辅存相比,主存的特点是()。
A.容量小,速度高,成本高。
B.容量小,速度快,成本低。
C.容量大,速度快,成本高。
满分:2.00 分得分:2.00 分你的答案:A正确答案:A教师评语:--8.在程序的执行过程中,Cache与主存的地址映象是由()。
A.程序员调度的B.操作系统管理的C.由程序员和操作系统共同协调完成的D.硬件自动完成的满分:2.00 分得分:2.00 分你的答案:D正确答案:D教师评语:--9.Cache的地址映象中()比较多的采用“按内容寻址”的相联存储器来实现。
计算机组成原理实验报告——微程序控制器实验1.一. 实验目的:2.能看懂教学计算机(TH-union)已经设计好并正常运行的数条基本指令的功能、格式及执行流程。
并可以自己设计几条指令, 并理解其功能, 格式及执行流程, 在教学计算机上实现。
3.深入理解计算机微程序控制器的功能与组成原理4.深入学习计算机各类典型指令的执行流程5.对指令格式、寻址方式、指令系统、指令分类等建立具体的总体概念6.学习微程序控制器的设计过程和相关技术二. 实验原理:微程序控制器主要由控制存储器、微指令寄存器和地址转移逻辑三大部分组成。
其工作原理分为:1.将程序和数据通过输入设备送入存储器;2.启动运行后从存储器中取出程序指令送到控制器去识别, 分析该指令要求什么事;3.控制器根据指令的含义发出相应的命令(如加法、减法), 将存储单元中存放的操作数据取出送往运算器进行运算, 再把运算结果送回存储器指定的单元中;4、运算任务完成后, 就可以根据指令将结果通过输出设备输出三. 微指令格式:1)微地址形成逻辑TH—UNION 教学机利用器件形成下一条微指令在控制器存储器的地址.下地址的形成由下地址字段及控制字段中的CI3—SCC控制.当为顺序执行时,下地址字段不起作用.下地址为当前微指令地址加1;当为转移指令(CI3—0=0011)时,由控制信号SCC提供转移条件,由下地址字段提供转移地址.2)控制字段控制字段用以向各部件发送控制信号,使各部件能协调工作。
控制字段中各控制信号有如下几类:①对运算器部件为了完成数据运算和传送功能, 微指令向其提供了24位的控制信号, 包括:4位的A、B口地址, 用于选择读写的通用积存器3组3位的控制码I8-I6、I5-I3、I2-I6, 用于选择结果处置方案、运算功能、数据来源。
3组共7位控制信号控制配合的两片GAL20V83位SST, 用于控制记忆的状态标志位2位SCI, 用于控制产生运算器低位的进位输入信号2位SSH, 用于控制产生运算器最高, 最地位(和积存器)移位输入信号②对内存储器I/O和接口部件, 控制器主要向它们提供读写操作用到的全部控制信号, 共3位, 即MRW③对CPU内部总线数据来源的控制, 主要通过3位编码标记为DCD, 来选择把哪一组数据发送到内部总线(IB)上。
《计算机组成原理》实验1寄存器试验,2运算器试验实验指导书课程:计算机组成原理实验教师:班级:第⼀章系统概述1.1 实验系统组成第⼆章基础模块实验实验⼀寄存器实验实验⽬的:熟悉试验仪各部分功能。
掌握寄存器结构、⼯作原理及其控制⽅法。
实验内容:利⽤实验仪开关区上的开关sk23-sk16提供数据,其它开关做为控制信号,将数据通过DBUS写⼊OUT 寄存器,并将OUT寄存器的内容送往扩展区通过数码管和发光⼆极管显⽰。
实验原理:实验箱⽤74HC273 来构成寄存器。
(1)74HC273的功能如下:(2)实验箱中74HC273的连接⽅式:(3)实验逻辑框图12、打开实验仪电源,按CON单元的nRST按键,系统复位;如果EXEC键上⽅指⽰灯不亮,请按⼀次EXEC键,点亮指⽰灯,表⽰实验仪在运⾏状态。
3、利⽤开关和控制信号将数据通过DBUS写⼊OUT寄存器,并将OUT寄存器的内容送往扩展区通过数码管和发光⼆极管显⽰。
并写出将数据5FH写⼊OUT寄存器的操作过程。
实验⼆运算器实验实验⽬的:了解运算器的组成结构;掌握运算器的⼯作原理和控制⽅法。
实验内容:利⽤实验仪提供的运算器,通过开关提供数据信号,将数据写⼊寄存器A和寄存器B,并⽤开关控制ALU的运算⽅式,验证运算器的功能。
实验原理:(1)实验逻辑框图:信号说明:IN0~IN7:ALU数据输⼊信号ALU_D0~ALU_D7:ALU数据输出信号:寄存器A写信号,低电平有效。
当T1节拍信号到来,该信号有效时,IN0~IN7数据可以写⼊寄存器A。
:寄存器B写信号,低电平有效。
当T2节拍信号到来,该信号有效时,IN0~IN7数据可以写⼊寄存器B。
:ALU计算结果读出信号,当T3节拍信号到来,该信号有效时,ALU计算结果送往ALU_D0~ALU_D7。
S3~S0,CN_I:ALU运算控制信号,控制ALU的运算⽅法。
T1,T2,T3:三个节拍信号,⾼电平有效,由con区的uSTEP按键控制,在运⾏状态时,依次按下uSTEP 键会依次发出T1、T2、T3节拍。