五年级数学图形面积
- 格式:doc
- 大小:81.50 KB
- 文档页数:2
五年级数学图形的面积试题1.三角形的面积是42平方分米,底是12分米,高是分米.【答案】7【解析】三角形的面积=底×高÷2,三角形的面积和底已知,将数据代入其面积计算公式,即可求出它的高.解:42×2÷12,=84÷12,=7(分米);答:这个三角形的高是7分米.故答案为:7.【点评】此题主要考查三角形的面积的计算方法的灵活应用.2.如图中阴影部分面积是1.5平方米,那么平行四边形的面积是()平方米.A.0.75B.3C.1.5D.无法计算【答案】B【解析】平行四边形和三角形等底等高,所以三角形的面积是平行四边形的面积的一半,平行四边形的面积是三角形面积的2倍,所以用三角形的面积乘2即可解答.解:1.5×2=3(平方米)答:平行四边形的面积是3平方米.故选:B.【点评】本题考查了等底等高平行四边形和三角形,三角形的面积是平行四边形的面积的一半的知识.3.两个完全一样的三角形可以拼成一个形.每个三角形面积是这个图形的.【答案】平行四边;一半.【解析】两个完全一样的三角形可以拼成一个平行四边形,如图:拼成的平行四边形的底与原来三角形的底相等,高也相等,这个三角形的面积就是拼成平行四边形的面积的一半.解:两个完全一样的三角形可以拼成一个平行四边形,拼成的平行四边形的底和三角形的底相等,高也相等,所以三角形的面积=底×高÷2,即这个三角形的面积=平行四边形的面积的一半.故答案为:平行四边;一半.【点评】本题主要考查了三角形面积公式的推算方法,关键是找出三角形的底、高与拼成平行四边形的底、高之间的关系.4.一个三角形小红旗的底是8厘米,高是3厘米,面积是平方厘米,与它等底等高的平行四边形的面积是平方厘米.【答案】12;24.【解析】(1)根据三角形的面积公式S=ah÷2,把三角形的底8厘米,高3厘米代入公式,列式解答求出面积;(2)根据等底等高的平行四边形的面积是三角形的面积的2倍,用三角形的面积乘2求出平行四边形的面积.解:(1)8×3÷2=12(平方厘米),(2)12×2=24(平方厘米),答:三角形的面积是12平方厘米,与它等底等高的平行四边形的面积是24平方厘米.故答案为:12;24.【点评】本题主要是利用三角形的面积公式与等底等高的平行四边形的面积与三角形的面积的关系解决问题.5.一个梯形的上、下底的和是16厘米,高是上、下底和的一半,这个梯形的面积是平方厘米.【答案】64.【解析】由题意知,梯形的上下底的和是16厘米,高是16÷2=8厘米,根据梯形的面积=(上底+下底)×高÷2进行解答即可.解:梯形的高为;16÷2=8(厘米),面积为:16×8÷2=16×4=64(平方厘米);答:这个梯形的面积是64平方厘米.故答案为:64.【点评】本题主要考查了学生对梯形面积公式的灵活应用.6.一个自选商店门口的装饰牌是等腰梯形.它的上底是16米,下底是22米,高是3米.油漆这块装饰牌(每平方米需用油漆2千克),100千克油漆够不够?【答案】不够用【解析】根据题意,可根据梯形的面积公式计算出这块梯形装饰牌的面积,然后再乘2计算出油漆这块装饰牌需要的油漆的重量,最后再用实际用的油漆的重量与100千克进行比较即可得到答案.解:梯形装饰牌的面积为:(16+22)×3÷2=38×3÷2,=114÷2,=57(平方米),需要的油漆为:57×2=114(千克),114千克>100千克,答:100千克油漆不够用.【点评】解答此题的关键是根据梯形的面积公式计算出这块装饰牌的面积,然后再计算出需要的油漆的千克数,最后进行比较即可.7.一块长方形红布长3米,宽2米,用它做两条直角边都是5分米的直角三角形小旗,可以做多少面?【答案】48面.【解析】红布长3米,宽2米,它的面积是3×2=6(平方米),若是做的是边长5分米=0.5米的正方形,面积是:0.5×0.5=0.25(平方米),共剪出的个数为:6÷0.25=24(个),沿对角线剪开,共得到三角形的个数:24×2=48(个).解:3×2=6(平方米)5分米=0.5米0.5×0.5=0.25(平方米)6÷0.25=24(个)24×2=48(面).答:可以做48面.【点评】此题考查了图形的拆拼,重点是把剪三角形小旗,看做剪出的是边长5分米的正方形,因此锻炼了学生的空间想象力和抽象思维能力.8.等底等高的两个三角形,它们的面积一定相等.….(判断对错)【答案】√【解析】因为三角形的面积=底×高÷2,所以只要是等底等高的三角形,不管形状如何,面积一定相等.解:因为三角形的面积公式为:三角形的面积=底×高÷2,所以只要是等底等高的三角形面积一定相等,所以题干说法正确.故答案为:√.【点评】本题主要是灵活利用三角形的面积公式S=ah÷2解决问题.9.一堆圆形钢管堆在一起,它的横截面形状成等腰梯形.已知这堆钢管最上面一层有8根,最下面的一层有13根,并且下面一层都比上面一层多1根.求这堆钢管共有多少根?【答案】63根【解析】根据题意,最上层有8根,最下层有13根,这堆钢管的层数是(13﹣8+1)=6层,根据梯形的面积计算方法进行解答.解:13﹣8+1=6(层)(8+13)×6÷2=21×6÷2=63(根)答:这堆钢管共有63根.【点评】此题主要考查梯形的面积计算方法,能够根据梯形的面积计算方法解决有关的实际问题.10.你知道吗,我国古代数学名著《九章算术》中记载了一些常见图形的面积计算方法,如三角形面积的计算方法,数学家刘徽在注文中用“以盈补虚”的方法加以说明.如果三角形的底12厘米,高6厘米,用如下图的方法将三角形转化成长方形,那么转化成的长方形的长是厘米,宽是厘米,面积是平方厘米.(“广”指三角形的底,“从”指三角形的高)【答案】12,3,36.【解析】观察图形发现,按照图形的方法将三角形转化成长方形,那么转化成的长方形的长是三角形的底,宽是三角形高的一半,求面积是多少平方厘米用长方形的面积公式计算.所以三角形的面积就等于底乘高除以2.解:6÷2=3(厘米)12×3=36(平方厘米)答:将三角形转化成长方形,那么转化成的长方形的长是12厘米,宽是3厘米,面积是36平方厘米.故答案为:12,3,36.【点评】本题考查了三角形面积公式的推导过程.。
小学五年级数学解析:几何图形的面积计算一、常见几何图形的面积公式1. 长方形的面积公式:长方形的面积 = 长×宽。
例题解析:例题1:一个长方形的长为8米,宽为5米,求其面积。
解答:面积 = 8米× 5米 = 40平方米。
2. 正方形的面积公式:正方形的面积 = 边长×边长。
例题解析:例题2:一个正方形的边长为6厘米,求其面积。
解答:面积 = 6厘米× 6厘米 = 36平方厘米。
3. 三角形的面积公式:三角形的面积 = 底×高÷ 2。
例题解析:例题3:一个三角形的底为10米,高为4米,求其面积。
解答:面积 = 10米× 4米÷ 2 = 20平方米。
4. 平行四边形的面积公式:平行四边形的面积 = 底×高。
例题解析:例题4:一个平行四边形的底为9米,高为5米,求其面积。
解答:面积 = 9米× 5米 = 45平方米。
5. 梯形的面积公式:梯形的面积 = (上底 + 下底)×高÷ 2。
例题解析:例题5:一个梯形的上底为6米,下底为10米,高为4米,求其面积。
解答:面积 = (6米 + 10米)× 4米÷ 2 = 32平方米。
6. 圆的面积公式:圆的面积 = π×半径²。
例题解析:例题6:一个圆的半径为3厘米,求其面积。
解答:面积 = π× 3²厘米²≈ 3.14 × 9厘米² = 28.26平方厘米。
二、复合图形的分割与面积计算1. 复合图形的定义与分割方法定义:复合图形是由多个简单图形组合而成的图形。
要计算复合图形的面积,可以将其分割成多个简单图形,然后分别计算面积,再将这些面积相加。
例题解析:例题1:计算一个由两个长方形组合而成的L形图形的面积。
解答:将L形图形分割为两个长方形,分别计算面积,再将两部分面积相加。
五年级数学图形的面积一试题答案及解析1.一个平行四边形的底是20分米,高是底的2倍,平行四边形的面积是平方米.【答案】8.【解析】根据平行四边形的面积公式:s=ah,首先求出高,再把数据代入公式解答即可.解:20分米=2米,2×(2×2)=2×4=8(平方米),答:平行四边形的面积是8平方米.故答案为:8.【点评】此题主要考查平行四边形的面积公式的灵活运用.2.如图的方格纸中,每个方格的边长都表示1厘米。
梯形的面积是________平方厘米,平行四边形的面积是________平方厘米,三角形的面积是________平方厘米。
【答案】18,24,12.5。
【解析】(1)图一为梯形,上底为5厘米,下底为1厘米,高为6厘米,可根据梯形的面积公式进行计算即可;(2)图二为平行四边形,底为6厘米,高为4厘米,可根据平行四边形的面积公式进行计算即可;(3)图三为三角形,底为5厘米,高为5厘米,可根据三角形的面积公式进行计算即可。
3.推导梯形面积的计算公式时,把两个完全一样的梯形转化成平行四边形,其方法是()。
A.旋转B.平移C.旋转和平移【答案】C。
【解析】将两个完全一样的梯形中的一个梯形沿上底或下底的一个端点进行旋转并且平移,即可拼成一个平行四边形,从而推导出梯形的面积公式。
4.两个梯形的面积相等,这两个梯形一定能拼成一个平行四边形。
()【答案】×。
【解析】我们知道,两个完全相同的梯形才能拼成一个平行四边形;如果两个梯形只有面积相等,由于梯形的面积=(上底+下底)×高÷2,也就是说,决定面积大小的因素有3个,这不能确定两个梯形是完全相同的,故不一定能拼成一个平行四边形。
5.图中四个图形的面积相等。
()【答案】√。
【解析】四个图形的底已知,高相等,分别利用长方形、平行四边形、三角形和梯形的面积公式分别求出其面积,比较后即可得解。
6.三角形的面积是6平方厘米,高3厘米,底是()厘米,与它等底等高的平行四边形的面积是()平方厘米。
五年级数学教案——《图形的面积》【教学内容】北师大版小学数学五年级上册P16-17 “比较图形的面积”。
【教学目标】1、借助方格纸,能直接判断图形面积的大小。
2、通过交流,知道比较图形面积大小的基本方法。
3、体验图形形状的变化与面积大小变化的关系。
【教学重点】掌握比较图形面积大小的方法。
会用不同的方法去比较图形的面积大小【教具准备】课件、方格纸、直尺、各种平面图形的硬纸板、七巧板等【教学设计】教学过程教学过程说明一、复习旧知,揭示新课。
1、课件播放已经学过的各种平面图形(长方形、正方形、三角形、梯形等),让学生说出图形的名称以及特征。
2、让学生拿出准备的长方形的硬纸板。
跟同桌说说哪儿是它的周长,哪儿是它的面积。
并且用手比划一下这个长方形的周长有多长?用手摸一摸它的面积有多大?(注:明确图形的周长是指绕图形一周的长度;图形的面积是指所占平面的大小。
)3、师:任意拿出两个图形纸板,说说哪个面积大?哪个面积小?让学生进行直观判断。
如果两个形状不同,大小很难区分时,你有什么办法?--揭示课题:我们今天来探讨图形面积的比较。
二、自主探究:比较图形面积的大小。
1、出示课本16页网格中的13个图形。
2、自主探究活动:这些图形的面积之间有什么关系呢?请同学们先仔细观观察、比较,看谁的发现最多多!3、小组交流:在小组里交流你的发现。
①全班交流,归纳比较图形面积的方法:各组派代表说说你们组找到了哪些图形之间的面积大小关系?是怎么知道的?依据同学的回答,归纳学生所使用的比较方法如下:②板书:A、数方格的方法;(重点说明这个方法,为今后学习面积公式的推导作好铺垫。
)B、重叠法;(通过旋转、平移、翻转等操作方法,使两个图形重叠,再观察比较出图形面积的大小)C、转化法;(通过割补、拼合转化为规则的图形后,再做比较)三、实践活动:比较图形面积的大小。
1、活动一:课件出示课本17页1题:师:同学们观察得很仔细,总结了这么多的比较图形面积大小的方法,那我要考考大家的眼力,下列图形中哪些与图1的面积一样?为什么?你用的是什么方法得到的?(注:重点要引导学生怎样对图形进行平移和分割,让学生体会形状变化而面积不变的事实,培养学生图形的转化思想,为后续运用转化思想学习面积公式的推导打下基础。
姓名:1、求下面图形的面积。
3、量出所需要的数据,再求图形的面积。
面积公式在生活中的运用。
1、有一块平行四边形菜地,底是240m,宽是125m,在这块地里共收油菜7.38吨。
这块菜地有多少公顷?平均每公顷收油菜多少吨?2、有一块麦田的形状是平行四边形。
它的底是250m,高是84m,共收小麦14.7吨。
这块菜地平均每公顷收小麦多少吨?3、一块玻璃的形状是一个三角形,它的底是12.5dm,高是7.8dm。
每平方米玻璃的价格是68元,买这块玻璃要用多少钱?4、小雨的书房需要用一些同样大小的平行四边形地砖铺地,每块砖的第是7dm,高是4dm,每平方米地砖的价格是0.25元,小雨带了200元钱去建材城买地砖,他最多能买多少块这样的地砖?5、一架滑翔机模型的尾翼是由两个完全相同的梯形组成的。
它的面积是多少?6、一个果园的形状是梯形。
它的上底是160米,下底是180米,高是50米。
如果每棵果树占地10平方米,这个果园共有多少棵果树?7、如图,靠墙围成一个花坛,围成花坛的篱笆长46米,求这个花坛的面积?8、有一块梯形地,上底长64米,比下底短16米,高50米。
平均每15平方米种一棵果树,这块地共种多少棵果树?基础题型三、已知周长,求平面图形的面积。
注:“已知周长,求图形的面积这一类题型”,我们先要根据“周长”,求出计算“面积”所需要的条件,再代入面积公式计算。
另外,在求计算面积所需要的条件时,列方程来求解可以降低出错率。
【例题】已知一个等边三角形的周长是15cm,高约是4.3cm。
求三角形的面积。
分析与解:等边三角形的周长是其边长的3倍,所以等边三角形的边长是:15÷3=5(cm),所以三角形的面积是:S=ah÷2=5×÷2=10.75(2cm)1、一个等腰直角三角形的两条直角边的和是8.4dm,求三角形的面积?2、一个等腰梯形的周长是34cm,一腰长度是5cm,等腰梯形的高是3cm。
奥数培训班习题
班级姓名
例1 在梯形中阴影部分的面积是150平方厘米,求梯形的面积。
练1、如图4-2,已知平行四边形面积是48 平方厘米,求阴影部分的面积。
例2:两个完全相同的直角三角形叠在一起,求阴影面积。
单位:分米
例3 将长为9厘米,宽为6厘米的长方形,划分成四个三角形,其面积分别为S1,S2,S3,S4,且S1=S2=S3+S4。
求S4。
练2、如图4-4。
四边形ABCD是直角梯形,其中AD=12厘米,AB=8厘米,BC=15厘米,且△ADE、四边形DEBF及△CDF的面积相等,求三角形EBF的面积。
例4 AE=5厘米,CF=2厘米,AB=6厘米,CD=4厘米,∠B=∠D=90°.求四边形AFCE的面积.
练3、如图4-6,四边形ABCD中,AE=5厘米,AB=10厘米,FC=12厘米,DC=15厘米,∠B= ∠
D=90°。
求四边形AFCE的面积。
例5:求图4-7阴影部分的面积(单位:厘米)
例:6 平行四边形ABCD的边长BC=10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形FEG的面积大10平方厘米,求CF的长。
练4、如图4-11,正方形ABCD的边长是12厘米,已知DE是EC的长度的2倍。
求:(1)△DEF的面积;(2)CF的长。