(完整word版)数列章节课后习题及答案
- 格式:doc
- 大小:121.01 KB
- 文档页数:5
1.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )点击观看解答视频A .6B .5C .4D .3答案 C解析 ∵a 4=2,a 5=5,∴a 4a 5=a 1a 8=a 2a 7=a 3a 6=10,∴lg a 1+lg a 2+…+lg a 8=lg (a 1a 2…a 8)=lg (a 1a 8)4=lg (a 4a 5)4=4lg (a 4a 5)=4lg 10=4,选C.2.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( )A .2B.73C.83D .3 答案 B解析 由等比数列的性质得:S 3,S 6-S 3,S 9-S 6仍成等比数列,于是,由已知得S 6=3S 3,∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,∴S 9=7S 3,∴S 9S 6=73,故选B. 3.已知等比数列{a n }的前n 项积记为Ⅱn ,若a 3a 4a 8=8,则Ⅱ9=( )点击观看解答视频A .512B .256C .81D .16答案 A解析 由题意可知,a 3a 4a 7q =a 3a 7a 4q =a 3a 7a 5=a 35=8,Ⅱ9=a 1a 2a 3…a 9=(a 1a 9)(a 2a 8)(a 3a 7)(a 4a 6)a 5=a 95,所以Ⅱ9=83=512.故选A.4.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.答案 2n -1解析 ∵⎩⎪⎨⎪⎧ a 1+a 4=9a 2a 3=8,∴⎩⎪⎨⎪⎧ a 1+a 4=9a 1a 4=8,则a 1,a 4可以看作一元二次方程x 2-9x +8=0的两根,故⎩⎪⎨⎪⎧ a 1=1a 4=8或⎩⎪⎨⎪⎧ a 1=8a 4=1, ∵数列{a n }是递增的等比数列,∴⎩⎪⎨⎪⎧ a 1=1a 4=8,可得公比q =2,∴前n 项和S n =2n-1. 5.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析 S 1=a 1,S 2=2a 1-1,S 4=4a 1-6.故(2a 1-1)2=a 1×(4a 1-6)6.成等差数列的三个正数的和等于15,并且这三个数分别加上列{b n }中的b 3,b 4,b 5.(1)求数列{b n }的通项公式;(2)求数列{b n }的前n 项和S n .解 (1)设成等差数列的三个正数分别为a -d ,a ,a +d ,则(a -d )+a +(a +d )=15,解得a =5,∴b 3=7-d ,b 4=10,b 5=18+d .∵b 3,b 4,b 5成等比数列,∴b 3b 5=b 24,即(7-d )(18+d )=102,化简,得d 2+11d -26=0,解得d =2或d =-13(舍去),∴b 3=5,b 4=10,b 5=20,∴数列{b n }的公比q =105=2, 数列{b n }的通项公式为b n =b 3q n -3=5×2n -3.(2)由b 3=5,q =2,得b 1=b 3q 2=54, ∴数列{b n }是首项为b 1=54,公比为q =2的等比数列,b11-q n1-q =5×2n-2-54.∴数列{b n}的前n项和S n=。
课时规范训练[A 级 基础演练]1.若数列{a n }的通项公式是a n =(-1)n·(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12D .-15解析:选A.记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.故选A.2.(2021·河北承德模拟)等差数列{a n }的前n 项和为S n (n =1,2,3,…),当首项a 1和公差d 变化时,若a 5+a 8+a 11是一个定值,则下列各数中为定值的是( )A .S 17B .S 18C .S 15D .S 16解析:选C.由等差数列的性质得a 5+a 11=2a 8,所以a 5+a 8+a 11为定值,即a 8为定值.又由于S 15=15(a 1+a 15)2=15×2a 82=15a 8,所以S 15为定值.故选C.3.已知数列{a n }的通项公式是a n =n 2sin ⎝ ⎛⎭⎪⎫2n +12π,则a 1+a 2+a 3+…+a 2 016=( )A.2 015×2 0162B .2 016×2 0172C.2 015×2 0152D .2 016×2 0162解析:选B.a n =n 2sin ⎝ ⎛⎭⎪⎫2n +12π=⎩⎪⎨⎪⎧-n 2n2(n 为奇数),(n 为偶数),∴a 1+a 2+a 3+…+a 2 016=-12+22-32+42-…-2 0152+2 0162=(22-12)+(42-32)+…+(2 0162-2 0152)=1+2+3+4+…+2 016=2 016×2 0172.4.设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2D .2解析:选A.由等差数列性质及前n 项和公式,得 S 8=8(a 1+a 8)2=4(a 3+a 6)=4a 3,所以a 6=0.又a 7=-2,所以公差d =-2,所以a 9=a 7+2d =-6.5.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( )A .3 690B .3 660C .1 845D .1 830解析:选D.当n =2k 时,a 2k +1+a 2k =4k -1, 当n =2k -1时,a 2k -a 2k -1=4k -3, ∴a 2k +1+a 2k -1=2,∴a 2k +1+a 2k +3=2, ∴a 2k -1=a 2k +3, ∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(4×30-1)=30×(3+119)2=30×61=1 830.6.已知数列{a n }中,a 1=1,a n +1=(-1)n(a n +1),记S n 为{a n }的前n 项和,则S 2 017= . 解析:由a 1=1,a n +1=(-1)n(a n +1)可得该数列是周期为4的数列,且a 1=1,a 2=-2,a 3=-1,a 4=0,a 5=1,所以S 2 017=504(a 1+a 2+a 3+a 4)+a 2 017=504×(-2)+1=-1 007.答案:-1 0077.(2021·江西八所中学联考)在数列{a n }中,已知a 1=1,a n +1+(-1)na n =cos(n +1)π,记S n 为数列{a n }的前n 项和,则S 2 017= .解析:∵a n +1+(-1)na n =cos(n +1)π=(-1)n +1,∴当n =2k 时,a 2k +1+a 2k =-1,k ∈N *,∴S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1+(-1)×1 008=-1 007.答案:-1 0078.等差数列{}a n 的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{}a n 的通项公式; (2)设b n =1a n a n +1,求数列{}b n 的前n 项和T n .解:(1)由a 1=10,a 2为整数,知等差数列{}a n 的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0. 解得-103≤d ≤-52.因此d =-3.数列{}a n 的通项公式为a n =13-3n .(2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n=13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n10(10-3n ).9.(2021·辽宁五校联考)已知等差数列{}a n ,公差d >0,前n 项和为S n ,S 3=6且满足a 3-a 1,2a 2,a 8成等比数列.(1)求{}a n 的通项公式;(2)设b n =1a n ·a n +2,求数列{}b n 的前n 项和T n .解:(1)由S 3=6,得a 2=2. ∵a 3-a 1,2a 2,a 8成等比数列,∴2d ·(2+6d )=42,解得,d =1或d =-43.∵d >0,∴d =1,∴数列{}a n 的通项公式为a n =n . (2)∵b n =1a n ·a n +2=1n (n +2),∴T n =11×3+12×4+13×5+…+1n (n +2)=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=3n 2+5n 4(n +1)(n +2). [B 级 力量突破]1.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不犯难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公认真算相还.”其意思为:有一个人走378里路,第一天健步行走,从其次天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问其次天走了( )A .192里B .96里C .48里D .24里解析:选B.由题意,知每天所走路程形成以a 1为首项,公比为12的等比数列,则a 1⎝ ⎛⎭⎪⎫1-1261-12=378,解得a 1=192,则a 2=96,即其次天走了96里.故选B.2.已知数列5,6,1,-5,…,该数列的特点是从其次项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( )A .5B .6C .7D .16解析:选C.依据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发觉从第7项起,数字重复消灭,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又由于16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.故选C. 3.数列{a n }的通项为a n =(-1)n(2n +1)sin n π2+1,前n 项和为S n ,则S 100= .解析:由a n =(-1)n(2n +1)sinn π2+1可得全部的偶数项为1,奇数项有以下规律:⎩⎪⎨⎪⎧a 1=-2,a 5=-10,a 9=-18,…⎩⎪⎨⎪⎧a 3=8,a 7=16,a 11=24,…所以a 1+a 5+…+a 97=25×(-2)+25×242×(-8)=-2 450,a 3+a 7+…+a 99=25×8+25×242×8=2 600,a 2+a 4+…+a 100=50×1=50 所以S 100=-2 450+2 600+50=200. 答案:2004.(2021·昆明调研)已知等差数列{}a n 中,a 2=4,a 4是a 2与a 8的等比中项. (1)求数列{}a n 的通项公式; (2)若a n +1≠a n ,求数列{}2n -1·a n 的前n 项和.解:(1)由a 2=4,且a 4是a 2,a 8的等比中项可得a 1+d =4,a 24=a 2a 8,即(4+2d )2=4(4+6d ),化简得d 2-2d =0, 则d =0或d =2,由于a 2=4,当d =0时,a n =4; 当d =2时,a 1=2,则a n =2n . (2)∵a n +1≠a n ,∴a n =2n ,则2n -1a n =2n -1·2n =2n ·n ,∵S n =21+2×22+3×23+…+(n -1)·2n -1+n ·2n,(*1)(*1)×2得,2S n =22+2×23+3×24+…+(n -1)·2n+n ·2n +1,(*2)(*1)-(*2)得,-S n =21+22+23+…+2n -n ·2n +1=2(1-2n)1-2-n ·2n +1,∴S n =(n -1)·2n +1+2.5.在等比数列{}a n 中,a 1>0,n ∈N *,且a 3-a 2=8,又a 1、a 5的等比中项为16. (1)求数列{}a n 的通项公式;(2)设b n =log 4a n ,数列{}b n 的前n 项和为S n ,是否存在正整数k ,使得1S 1+1S 2+1S 3+…+1S n<k 对任意n ∈N*恒成立?若存在,求出正整数k 的最小值;不存在,请说明理由.解:(1)设数列{}a n 的公比为q ,由题意可得a 3=16,∵a 3-a 2=8,则a 2=8,∴q =2.∴a n =2n +1.(2)∵b n =log 42n +1=n +12,∴S n =b 1+b 2+…+b n =n (n +3)4.∵1S n=4n (n +3)=43⎝ ⎛⎭⎪⎫1n -1n +3,∴1S 1+1S 2+1S 3+…+1S n=43⎝ ⎛⎭⎪⎫11-14+12-15+13-16+…+1n -1n +3=43⎝⎛⎭⎪⎫1+12+13-1n +1-1n +2-1n +3<43⎝ ⎛⎭⎪⎫1+12+13=229, ∴存在正整数k ,其最小值为3.。
§2等差数列2.1等差数列第1课时等差数列的定义和通项公式课后篇巩固探究1.若{a n}是等差数列,则下列数列中也成等差数列的是()A.{a n2}B.{1a n} C.{3a n} D.{|a n|}解析:设{a n}的公差为d,则3a n+1-3a n=3(a n+1-a n)=3d是常数,故{3a n}一定成等差数列.{a n2},{1a n},{|a n|}都不一定是等差数列,例如当{a n}为{3,1,-1,-3}时.答案:C2.在等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.4解析:∵a1+a5=10=a1+a1+4d=2(a1+2d)=2a3,∴a3=5.故d=a4-a3=7-5=2.答案:B3.已知{a n}是首项a1=2,公差为d=3的等差数列,若a n=2 018,则序号n等于()A.670B.671C.672D.673解析:∵a1=2,d=3,∴a n=2+3(n-1)=3n-1.令3n-1=2018,解得n=673.答案:D4.等差数列{a n}中,a1=8,a5=2,如果在每相邻两项间各插入一个数,使之成为新的等差数列,那么新的等差数列的公差是()A.34B.-34C.-67D.-1解析:设新数列a1,b1,a2,b2,a3,b3,a4,b4,a5,…,公差为d,则a5=a1+8d,所以d=a5-a18=2-88=-68=-34.故选B.答案:B5.已知点(n,a n)(n∈N+)都在直线3x-y-24=0上,则在数列{a n}中有()A.a7+a9>0B.a7+a9<0C.a7+a9=0D.a7·a9=0解析:∵(n,a n)在直线3x-y-24=0,∴a n=3n-24.∴a7=3×7-24=-3,a9=3×9-24=3,∴a7+a9=0.答案:C6.在等差数列{a n }中,若a 1=7,a 7=1,则a 5= . 答案:37.在等差数列{a n }中,已知a 5=10,a 12>31,则公差d 的取值范围是 . 解析:设此数列的首项为a 1,公差为d ,由已知得{a 1+4d =10,a 1+11d >31,①②②-①,得7d>21,所以d>3.答案:d>38.在数列{a n }中,a 1=3,且对任意大于1的正整数n ,点(√a n ,√a n -1)在直线x-y-√3=0上,则数列{a n }的通项公式为a n = .解析:由题意知√a n −√a n -1=√3(n ≥2),∴{√a n }是以√a 1为首项,以√3为公差的等差数列, ∴√a n =√a 1+(n-1)d=√3+√3(n-1)=√3n. ∴a n =3n 2.答案:3n 29.已知数列{a n },{b n }满足{1a n +b n}是等差数列,且b n =n 2,a 2=5,a 8=8,则a 9= .解析:由题意得1a2+b 2=19,1a8+b 8=172,因为{1a n +b n }是等差数列,所以可得该等差数列的公差d=-772×6,所以1a 9+b 9=172−772×6=-1432,所以a 9=-513.答案:-51310.如果在等差数列{3n-1}的每相邻两项之间插入三项后使它们构成一个新的等差数列,那么新数列的第29项是原数列的第 项.解析:设a n =3n-1,公差为d 1,新数列为{b n },公差为d 2,a 1=2,b 1=2,d 1=a n -a n-1=3,d 2=d14=34,则b n =2+34(n-1)=34n+54,b 29=23,令a n =23,即3n-1=23.故n=8. 答案:811.若一个数列{a n }满足a n +a n-1=h ,其中h 为常数,n ≥2且n ∈N +,则称数列{a n }为等和数列,h 为公和.已知等和数列{a n }中,a 1=1,h=-3,则a 2 016= . 解析:易知a n ={1,n 为奇数,-4,n 为偶数,∴a 2016=-4.答案:-412.已知a ,b ,c 成等差数列,且它们的和为33,又lg(a-1),lg(b-5),lg(c-6)也构成等差数列,求a ,b ,c 的值. 解由已知,得{2b =a +c ,a +b +c =33,2lg (b -5)=lg (a -1)+lg (c -6),∴{b =11,a +c =22,(b -5)2=(a -1)(c -6),解得a=4,b=11,c=18或a=13,b=11,c=9. 13.导学号33194005已知无穷等差数列{a n },首项a 1=3,公差d=-5,依次取出项的序号被4除余3的项组成数列{b n }. (1)求b 1和b 2; (2)求{b n }的通项公式;(3){b n }中的第110项是{a n }的第几项? 解(1)∵a 1=3,d=-5,∴a n =3+(n-1)(-5)=8-5n.∵数列{a n }中项的序号被4除余3的项依次是第3项,第7项,第11项,…, ∴{b n }的首项b 1=a 3=-7,b 2=a 7=-27.(2)设{a n }中的第m 项是{b n }的第n 项,即b n =a m , 则m=3+4(n-1)=4n-1,∴b n =a m =a 4n-1=8-5(4n-1)=13-20n (n ∈N +).∴{b n }的通项公式为b n =13-20n (n ∈N +).(3)b 110=13-20×110=-2187,设它是{a n }中的第m 项,则8-5m=-2187,则m=439. 14.导学号33194006已知数列{a n }满足a 1=15,且当n>1,n ∈N +时,有an -1a n=2a n -1+11-2a n,设b n =1a n,n ∈N +.(1)求证:数列{b n }为等差数列.(2)试问a 1a 2是否是数列{a n }中的项?如果是,是第几项?如果不是,请说明理由.(1)证明当n>1,n ∈N +时,an -1a n=2a n -1+11-2a n⇔1-2a n a n=2a n -1+1a n -1⇔1a n-2=2+1an -1⇔1a n−1a n -1=4⇔b n -b n-1=4,且b 1=1a 1=5.∴{b n }是等差数列,且公差为4,首项为5.(2)解由(1)知b n =b 1+(n-1)d=5+4(n-1)=4n+1.∴a n =1b n=14n+1,n ∈N +.∴a 1=15,a 2=19,∴a 1a 2=145.令a n=14n+1=145,∴n=11,即a1a2=a11.∴a1a2是数列{a n}中的项,是第11项.。
习题课——等差数列习题课课时过关·能力提升1在等差数列{a n }中,已知a 1=13,a 1+a 6=4,a n =37,则n 等于() A.50B.49C.56D.51d ,因为a 1+a 6=2a 1+5d=4,a 1=13,所以d=23,所以a n =13+(n-1)×23=37,所以n=56.2在数列{a n }中,已知a 1=15,3a n+1=3a n -2,则该数列中相邻两项的乘积为负值的项是() A.a 21和a 22 B.a 22和a 23 C.a 23和a 24D.a 24和a 25a n+1=a n -23,所以数列{a n }是公差为-23的等差数列.所以a n =15+(n-1)×(-23).因为a 23=13,a 24=-13,所以a 23a 24<0.3已知在等差数列{a n }中,|a 3|=|a 9|,公差d<0,则使数列{a n }的前n 项和S n 取得最大值的自然数n 是()A .4或5B .5或6C .6或7D .不存在d<0,∴a 9<a 3,∵|a 3|=|a 9|,∴a 3=-a 9,∴a 3+a 9=0. 又a 3+a 9=2a 6=0,∴a 5>0.即前5项或前6项的和最大.4若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大正整数n 是() A.4 005B.4 006C.4 007D.4 008a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,且数列{a n }为等差数列,所以数列{a n }是首项为正数,公差为负数的递减的等差数列,且a 2003是绝对值最小的正数,a 2004是绝对值最小的负数(第一个负数),且|a 2003|>|a 2004|.因为在等差数列{a n }中,a 2003+a 2004=a 1+a 4006>0,所以S 4006=4006(a 1+a 4006)2>0.所以使S n >0成立的最大正整数n 是4006.5已知数列{a n }的通项a n =11-2n ,则|a 1|+|a 2|+|a 3|+…+|a 10|=() A.25 B.50 C.52 D.1006已知f (n+1)=f (n )-14(n ∈N +),且f (2)=2,则f (101)=.a n =f (n ),则a n+1-a n =-14,∴数列{a n }为等差数列,且a 2=2.∴a n =a 2-14(n-2)=10-a 4.∴f (101)=a 101=-914. -9147设f (x )+f (1-x )=6,则f (-5)+f (-4)+…+f (0)+f (1)+…+f (6)=.S=f (-5)+f (-4)+…+f (0)+f (1)+…+f (6),①即S=f (6)+f (5)+…+f (1)+f (0)+…+f (-5).②则①+②得2S=[f (-5)+f (6)]+[f (-4)+f (5)]+…+[f (0)+f (1)]+[f (1)+f (0)]+…+[f (6)+f (-5)]=12×6=72.故S=36.8“等和数列”的定义:在一个数列中,如果每一项与它的后一项的和都等于同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5,那么a 18的值为.,可得a n +a n+1=5,所以a n+1+a n+2=5.所以a n+2-a n =0.因为a 1=2,所以a 2=5-a 1=3.所以当n 为偶数时,a n =3;当n 为奇数时,a n =2.所以a 18=3.9在等差数列{a n }中,其前n 项和为100,其后的2n 项和为500,则紧随其后的3n 项和为.,知S n =100,S 3n -S n =500,又S n ,S 2n -S n ,S 3n -S 2n ,…成等差数列,且公差为100.故S 6n -S 3n =(S 6n -S 5n )+(S 5n -S 4n )+(S 4n -S 3n )=600+500+400=1500.10在等差数列{a n }中,a 16+a 17+a 18=a 9=-18,其前n 项和为S n , (1)求S n 的最小值,并求出S n 取最小值时n 的值; (2)求T n =|a 1|+|a 2|+…+|a n |.因为a 16+a 17+a 18=a 9=-18,所以a 17=-6.又a 9=-18, 所以d=a 17-a 917-9=32.首项a 1=a 9-8d=-30.所以a n =32n-632. 若前n 项和S n 最小,则{a a ≤0,a a +1≥0,即{3a2-632≤0,32(a +1)-632≥0,所以n=20或n=21.故当n=20或n=21时,S n 取最小值. 最小值为S 20=S 21=-315. (2)由a n =32n-632≤0,得n ≤21.所以当n ≤21时,T n =-S n =34(41n-n 2), 当n>21时,T n =-a 1-a 2-…-a 21+a 22+…+a n=S n -2S 21=34(n 2-41n )+630.★11设数列{a n}的前n项和为S n,a1=1,a n=a aa+2(n-1)(n∈N+).(1)求数列{a n}的通项公式a n;(2)是否存在正整数n,使得a11+a22+…+a aa-(n-1)2=2 015?若存在,求出n的值;若不存在,说明理由.S n=na n-2(n-1)n.n≥2时,a n=S n-S n-1=na n-2(n-1)n-(n-1)·a n-1+2(n-2)(n-1).∴a n-a n-1=4.∴数列{a n}为a1=1,d=4的等差数列.∴a n=1+(n-1)4=4n-3.(2)由(1),得S n=n(4n-3)-2(n-1)n=(2n-1)n.∴a aa=2n-1.故a11+a22+…+a aa=n2,∴n2-(n-1)2=2015,解得n=1008.故存在n=1008满足题意.★12设数列{a n}的前n项和为S n,点(a,a aa)(n∈N+)均在函数y=3x-2的图象上, (1)求证:数列{a n}为等差数列;(2)T n是数列{3a a a a+1}的前n项和,求证:37≤T n<12.由题意得,a aa=3n-2,即S n=3n2-2n,当n≥2时,a n=S n-S n-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5;当n=1时,a1=S1=1.所以a n=6n-5(n∈N+).又a n-a n-1=6n-5-[6(n-1)-5]=6,故{a n}是等差数列.(2)由(1)知,设b n=3a a a a+1,则b n=3a a a a+1=3(6a-5)[6(a+1)-5]=1 2(16a-5-16a+1),故T n =12[(1-17)+(17-113)+…+(16a -5-16a +1)]=12(1-16a +1),又n ∈N +,所以0<16a +1≤17,故37≤T n <12.。
第2课时 数列的递推公式和前n 项和公式课后训练巩固提升1.已知数列{a n }的前n 项和S n =2n -1,则a 5=( )A.15B.16C.31D.32解析:依题意,5≥2,故a 5=S 5-S 4=(25-1)-(24-1)=31-15=16.答案:B2.已知数列{a n }满足a n =4a n-1+3,且a 1=0,则此数列的第5项是( )A.15B.255C.20D.8解析:由题意知,a 1=0,a 2=4×0+3=3,a 3=4×3+3=15,a 4=4×15+3=63,a 5=4×63+3=255.答案:B3.(多选题)已知函数f(x)={x +12,x ≤12,2x -1,12<x <1,x -1,x ≥1,若数列{a n }满足a 1=73,a n+1=f(a n ),n ∈N *,则下列说法正确的是( ) A.该数列具有周期性且周期为3B.该数列不具有周期性C.a 4 022+a 4 023=1D.a 4 022+a 4 023=76解析:∵a 2=f (73)=73-1=43;a 3=f (43)=43-1=13;a 4=f (13)=13+12=56; a 5=f (56)=2×56-1=23;a 6=f (23)=2×23-1=13;…… ∴从a 3开始数列{a n }具有周期性且周期为3,但数列{a n }并不具有周期性,故A 错误,B 正确.而a 4022+a 4023=a 5+a 3=1,∴C 正确,D 错误.故选BC.答案:BC4.若数列{a n }满足a n+1=2a n -1,且a 8=16,则a 6= .解析:∵a n+1=2a n -1,∴a 8=2a 7-1=16,解得a 7=172. 又a 7=2a 6-1=172,解得a 6=194. 答案:194 5.已知数列{a n }满足a 1=3,a n+1-a n =2n-8(n ∈N *),则a 8= .解析:在数列{a n }中,a 1=3,a n+1-a n =2n-8(n ∈N *),则a 2=a 1+2-8=-3,a 3=a 2+4-8=-7,a 4=a 3+6-8=-9,a 5=a 4+8-8=-9,a 6=a 5+10-8=-7,a 7=a 6+12-8=-3,a 8=a 7+14-8=3.答案:36.根据下图中的5个图形及相应点的个数的变化规律,猜测第n 个图中有 个点.解析:观察题图中5个图形点的个数分别为1,1×2+1,2×3+1,3×4+1,4×5+1,故第n 个图中点的个数为(n-1)·n+1=n 2-n+1.答案:n 2-n+17.已知数列{a n }的前n 项和S n =2n 2+6n+1,求数列{a n }的通项公式.解:当n=1时,a 1=S 1=9.当n≥2时,a n =S n -S n-1=2n 2+6n+1-[2(n-1)2+6(n-1)+1]=4n+4.当n=1时,a 1=9不适合上式,故a n ={9,n =1,4n +4,n ≥2.8.已知数列{a n }的通项公式为a n =n 2-5n+4.(1)30是不是数列{a n }中的项?70呢?(2)数列中有多少项是负数?(3)当n为何值时,a n有最小值?并求出这个最小值. 解:(1)由n2-5n+4=30,得n2-5n-26=0,解得n=5±√1292.因为n∈N*,所以30不是数列{a n}中的项.由n2-5n+4=70,得n2-5n-66=0,解得n=11或n=-6(舍),故70是数列{a n}中的第11项,即a11=70.(2)由n2-5n+4<0,解得1<n<4.因为n∈N*,所以n=2或3.所以数列{a n}中有两项是负数.(3)因为a n=(n-52)2−94,又n∈N*,所以当n=2或n=3时,a n有最小值,最小值为a2=a3=-2.。
课时规范训练A 组 基础演练1.已知数列{a n },则“a n ,a n +1,a n +2(n ∈N *)成等比数列”是“a 2n +1=a n a n +2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A.明显,n ∈N *,a n ,a n +1,a n +2成等比数列,则a 2n +1=a n a n +2,反之,不肯定成立,举反例,如数列为1,0,0,0,….2.设{}a n 是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( ) A .2 B .-2 C.12D .-12解析:选D.由于等差数列{}a n 的前n 项和为S n =na 1+n (n -1)2d ,所以S 1,S 2,S 4分别为a 1,2a 1-1,4a 1-6.由于S 1,S 2,S 4成等比数列,所以(2a 1-1)2=a 1·(4a 1-6).解得a 1=-12.3.在等比数列{a n }中,若a 4,a 8是方程x 2-3x +2=0的两根,则a 6的值是( ) A .±2 B .- 2 C. 2D .±2解析:选C.由于a 4,a 8是方程的两根,则⎩⎪⎨⎪⎧a 4+a 8=3>0a 4a 8=2>0,∴a 4>0,a 8>0,又a 26=a 4a 8=2,∴a 6= 2.4.已知等比数列{a n }的公比q =2,且2a 4,a 6,48成等差数列,则{a n }的前8项和为( ) A .127 B .255 C .511D .1 023解析:选B.∵2a 6=2a 4+48,即a 6=a 4+24 ∴25a 1=23a 1+24,从而a 1=1.于是S 8=1×(1-28)1-2=28-1=255.5.设数列{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5=( ) A.152 B.314 C.334D.172解析:选B.设此数列的公比为q (q >0),由已知a 2a 4=1,得a 23=1,∴a 3=1,由S 3=7,知a 3+a 3q +a 3q 2=7,即6q 2-q -1=0,解得q =12,从而a 1=4, 所以S 5=4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=314. 6.等比数列{a n }中,S n 表示前n 项和,a 3=2S 2+1,a 4=2S 3+1,则公比q 为________. 解析:由a 3=2S 2+1,a 4=2S 3+1得 a 4-a 3=2(S 3-S 2)=2a 3, ∴a 4=3a 3,∴q =a 4a 3=3.答案:37.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为________.解析:由已知条件得2S n =S n +1+S n +2, 即2S n =2S n +2a n +1+a n +2,即a n +2a n +1=q =-2.答案:-28.等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N *,都有a n +2+a n +1-2a n =0,则S 5=________.解析:由题意知a 3+a 2-2a 1=0,设公比为q ,则a 1(q 2+q -2)=0. 由q 2+q -2=0解得q =-2或q =1(舍去), ∴S 5=a 1(1-q 5)1-q=1-(-2)53=11.答案:119.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列. (1)求数列{a n }的通项公式; (2)求a 1+a 3+…+a 2n +1. 解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列, ∴S n =2n -1,又当n ≥2时,a n =S n -S n -1=2n -2(2-1)=2n -2. 当n =1时,a 1=1,不适合上式. ∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,4为公比的等比数列, ∴a 3+a 5+…+a 2n +1=2(1-4n )1-4=2(4n -1)3.∴a 1+a 3+a 5+…+a 2n +1=2(4n -1)3+1=22n +1+13.10.已知成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5. (1)求数列{b n }的通项公式; (2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列. 解:(1)设成等差数列的三个正数分别为a -d ,a ,a +d .依题意,得a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,有(7-d )(18+d )=100, 解得d =2或d =-13(舍去), ∴b 3=5,公比q =2,因此b 1=54,故b n =54·2n -1=5·2n -3.(2)证明:由(1)知b 1=54,公比q =2,∴S n =54(1-2n)1-2=5·2n -2-54,则S n +54=5·2n -2,因此S 1+54=52,S n +54S n -1+54=5·2n -25·2n -3=2(n ≥2). ∴数列⎩⎨⎧⎭⎬⎫S n +54是以52为首项,公比为2的等比数列.B 组 力量突破1.已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为( ) A .-2 B .2 C .-3D .3解析:选B.设公比为q ,若q =1,则S 2mS m=2, 与题中条件冲突,故q ≠1.∵S 2m S m =a 1(1-q 2m )1-q a 1(1-q m )1-q=q m +1=9,∴q m=8. ∴a 2m a m =a 1q 2m -1a 1q m -1=q m=8=5m +1m -1, ∴m =3,∴q 3=8,∴q =2.2.等比数列{a n }中,|a 1|=1,a 5=-8a 2.a 5>a 2,则a n 等于( ) A .(-2)n -1 B .-(-2)n -1 C .(-2)nD .-(-2)n解析:选A.∵|a 1|=1,∴a 1=1或a 1=-1. ∵a 5=-8a 2=a 2·q 3,∴q 3=-8,∴q =-2. 又a 5>a 2,即a 2q 3>a 2,∴a 2<0.而a 2=a 1q =a 1·(-2)<0,∴a 1=1. 故a n =a 1·(-2)n -1=(-2)n -1.3.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 33+…+a 2n 等于( )A .(3n -1)2 B.12(9n -1) C .9n-1D.14(3n-1)解析:选B.∵a 1+a 2+…+a n =3n -1,n ∈N *, n ≥2时,a 1+a 2+…+a n -1=3n -1-1, ∴当n ≥2时,a n =3n -3n -1=2·3n -1, 又n =1时,a 1=2适合上式,∴a n =2·3n -1, 故数列{a 2n }是首项为4,公比为9的等比数列. 因此a 21+a 22+…+a 2n =4(1-9n )1-9=12(9n -1). 4.已知等比数列{a n }满足a 1+a 2+a 3=-8,a 4+a 5+a 6=1,则a 11-q =__________.解析:∵a 4+a 5+a 6a 1+a 2+a 3=q 3=-18,∴q =-12,把q =-12代入a 1+a 2+a 3=-8, 解得a 1=-323,∴a 11-q =-649.答案:-6495.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2), ∴a n +1+2a na n +2a n -1=3(n ≥2), ∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n , 则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1, 即a n =2×(-2)n -1+3n (n ∈N *).。
高等数学第六版课后习题及答案 第一章第二节 习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限:(1)n n x 21=; 解 当n →∞时, nn x 21=→0, 021lim =∞→n n . (2)nx n n 1)1(-=; 解 当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n . (3)212nx n +=; 解 当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→n n . (4)11+-=n n x n ; 解 当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n . (5) x n =n (-1)n.解 当n →∞时, x n =n (-1)n 没有极限. 2. 设数列{x n }的一般项nn x n 2cos π=. 问n n x ∞→lim =? 求出N , 使当n >N 时, x n 与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N . 解 0lim =∞→n n x . n n n x n 1|2cos ||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000. 3. 根据数列极限的定义证明:(1)01lim 2=∞→nn ; 分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim 2=∞→n n . (2)231213lim =++∞→n n n ; 分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n . 证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n . (3)1lim 22=+∞→na n n ; 分析 要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >. 证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n . (4)19 999.0lim =⋅⋅⋅∞→个n n . 分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n . 证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而 ||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→. 数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x . 证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M . 又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有M y n ε<||. 从而当n >N 时, 有 εε=⋅<≤=-M M y M y x y x n n n n n |||||0|, 所以0lim =∞→n n n y x .6. 对于数列{x n }, 若x 2k -1→a (k →∞), x 2k →a (k →∞), 证明: x n →a (n →∞).证明 因为x 2k -1→a (k →∞), x 2k →a (k →∞), 所以∀ε>0, ∃K 1, 当2k -1>2K 1-1时, 有| x 2k -1-a |<ε ; ∃K 2, 当2k >2K 2时, 有|x 2k -a |<ε . 取N =max{2K 1-1, 2K 2}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞).。
计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。
二、表达方式:常用n S 来表示 。
三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。
对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++L11002993985051=++++++++L 1444444442444444443共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++L L L 和=1+和倍和即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。
四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
譬如:① 48123236436922091800+++++=+⨯÷=⨯=L (),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=L (),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。
例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。
(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
(完整word版)第⼀章求极限练习题答案1.求下列极限:(1) 2221lim (1)n n n n →∞++- 解:原式=2221lim 21n n n n n →∞++-+=22112lim 211n n n n n→∞++-+=2 (2) 20lim(1)x x x →+解:原式=12lim[(1)]x x x →+=2e(3) 32lim3x x →- 解:原式=3x →=x →=14(4) 1lim (1)x x x e →∞-解:原式=1(1)lim1xx e x→∞-=1(5) 0x ≠当时,求lim cos cos cos 242n n x x x→∞L .解:原式=cos cos (2cos sin )2422lim2sin 2n n n n x x x x x →∞L =1cos sin22lim 2sin 2n n nx x x →∞-=sin lim 2sin 2n nn x x →∞ =sin 2lim()sin 2n n n x x x x →∞g =sin x x(6) 21sinlim x x 解:原式=21limx x g=limx=limx=(7)22212lim()12n nn n n n n n n→∞+++++++++L 解:令2221212n ny n n n n n n n=+++++++++L 因 2222(1)(1)12122211n n n n n n ny n n n n n n n n n n ++++++++=≤≤=++++++++L L ⽽2(1)12lim 2n n n n n n →∞+=++, 2(1) 12lim 12n n n n n →∞+=++,故222121n n n n n n n n n →∞+++=++++++L(8) n →∞解:原式=2n n →∞→∞==1.3 函数的极限作业1. 根据函数极限的定义,验证下列极限: (1) 3 1lim0x x→∞= 解: 0ε?>,要使3311|0|||x x ε-=<,即||x >只要取X =,则当||x X >时,恒有 31|0|x ε-<, 所以31lim 0x x →∞=.(2) 42x →= 解: 0ε?>,要使|4||2|2x ε-=<<,则当0|4|x δ<-<时,恒有|2|ε<,所以42x →=. 2. 求下列数列极限:(1) 22212lim()12n nn n n n n n n→∞+++++++++L 解:令2221212n ny n n n n n n n =+++++++++L 因 2222(1)(1)12122211n n n n n n ny n n n n n n n n n n ++++++++=≤≤=++++++++L L ⽽2(1)12lim 2n n n n n n →∞+=++, 2(1) 12lim 12n n n n n →∞+=++,故222121lim()122n n n n n n n n n →∞+++=++++++L(2) n →∞解:原式=2n n →∞→∞==3.求下列函数极限:(1) 225lim 3x x x →+- 解:原式=-9(2) 224lim 2x x x →-- 解:原式=2 lim(2)x x →+=4(3) 21lim1x x →-解:原式=14x x →→==-(4) x →∞ 解:原式=0x =(5) 2(21)(32)lim (21)x x x x →∞--+ 解:原式=226723lim4412x x x x x →∞-+=++ (6) 2121lim()11x x x →--- 解:原式=211(1)11lim lim 112x x x x x →→---==--+ 4. 设23 2 0() 1 01 1 x>11x x f x x x x ?+≤=+<≤-? ,分别讨论()f x 在0x →,1x →和2x →时的极限是否存在.解:0lim ()2x f x -→=,0lim ()1x f x +lim ()x f x →不存在. 1lim ()2x f x -→=,1lim ()x f x +→趋向⽆穷⼤,故1lim ()x f x →不存在. 2lim ()1x f x -→=,2lim ()1x f x +→=,故2lim ()1x f x →=.1.43.求下列函数极限:(1) 225lim 3x x x →+-=-9(3) 224lim 2x x x →--=2lim(2)x x →+=4 1x →14x x →→==-(7) 000h h h →→→===(9) x →∞=0x =(11) 2(21)(32)lim (21)x x x x →∞--+=226723lim 4412x x x x x →∞-+=++(13) limlim0x x == (15) 2121lim()11x x x →---=211(1)11lim lim 112x x x x x →→---==--+ 2. 设10100()01112x x x f x x x x -?==<极限,并说明这两点的极限是否存在. 解:001lim ()lim11x x f x x --→→-==-,00lim ()lim 0x x f x x ++→→==,00lim ()lim ()x x f x f x -+→→≠ 故lim ()x f x →不存在.11lim ()lim 1x x f x x --→→==,11lim ()lim11x x f x ++→→== 11lim ()lim ()x x f x f x -+→→= 1lim ()1x f x →=. 1.51.求下列极限:(1) 0sin 3sin 3lim lim 333x x x xx x→→=?=00tan 333(3)limlim sin 444x x x x x x →→==222200022sin 222(5)lim 2sin 224()2x x x x x x x xx→→→?===? 注:在0(0,)U δ,2sin 02x ≥.222000222(5)lim 2sin24x x x x x x x →→→===(7) 02cos lim sin 2x x x →解: 原式=2021sin cos lim sin cos )2x x x x=2002sin sin lim sin 2x x x x x x →→+g =2021sin sin lim2()2x x x xx →+220sin sin 2lim ()x x x x x →=+=4 注意: 代数和中的⼀部分不能⽤⽆穷⼩替换. 错原式=0x →220212lim 1cos )4x x x x x →+ (8) 01sin cos lim1sin cos x x xx xββ→+-+-解: 原式=2022sin cos 2sin 222lim 2sin cos 2sin 222x x x x x x x βββ→++=0sin (cos sin ) 222lim sin (cos sin )222x x x x x x x βββ→++=00sin cos sin 222limlim sin cos sin222x x x x x x x x βββ→→++g =02lim 12x x x β→g =1β注意: 代数和的⼀部分不能⽤⽆穷⼩替换.错 01sin cos lim 1sin cos x x x x x ββ→+-+-=202112lim 12x x x x x βββ→+=+ 33333(9)lim(1)lim[(1)]xx x x e x x →∞→∞+=+=244424(11)lim()lim[(1)]22x x x x x e x x +---→∞→∞--=+=++330(13)lim(13)lim[(13)]x x x x x x e →→+=+=4. 当0x →时,下列函数中哪些是x 的⾼阶⽆穷⼩,哪些是x 的同阶⽆穷⼩,哪些是x的低阶⽆穷⼩?32(1)1000x x +322001000lim lim (1000)0x x x x x x x→→+=+=解:因为 321000()x x o x +=所以3(2)2sin x 32002sin sin lim lim 2sin 0x x x x x x x→→=?=解:因为 3sin ()x o x =所以(3) ln(1)x +解: 100ln(1)limlim ln(1)1x x x x x x→→+=+=因为ln(1)~x x +所以 (4) 1cos x -解: 2002sin sin1cos 22limlim lim(sin )022x x x x xxx xxx →→→-===g 因为,1cos ()x o x -=所以(5) sin x x + 解: 因为 0sin limx x x x →+=0sin lim(1)x xx→+=2,故sin x x +是x 的同阶⽆穷⼩.(6): 因为0x →=1312033sin 11lim[())cos x x xx x →g g =∞,故是x的低阶⽆穷⼩.或:因为0x →=0x →0x →x 的低阶⽆穷⼩. 思考题:1.11331lim (39)lim 9(1)3x x xx xx x x x →+∞→+∞+=+g g =1331lim 9[(1)]3x xx x x →+∞+g =90e =9 2.0arccot limx x x →=∞,因为当0x →时,arccot 2 x π→.习题2.2 1.求下列函数的导数:2(1)cos y x x =+解:'sin 2y x x =-+=2cos (sin )()'222x x x -g g =2cos (sin )22x x -gcos sin 22x x -g(7)sin 3y x =解:'3cos3y x =2(9)sin(1)y x x =++解:2'(21)cos(1)y x x x =+++3(11)ln y x =解:1139'(ln )'(3ln )'222y x x x x x=+=+=(6) 6(21)y x =+解:5'6(21)2y x =+g =512(21)x + (10) ln(ln )y x =解:1'(ln )'ln y x x ==11ln x x g(11)ln ln(sin )y x =解:1'(sin )'sin y x x =+1cos sin x x +g2.在下列⽅程中,求隐函数的导数: (1)cos()y x y =+解:'sin()(1')y x y y =-+?+(2)222333x y a +=解:113322x y y --+=3. 求反函数的导数:(1)ln y x x =+解:1111dx dy dy dx x==+(2) arcsin x y e =解:sin ln x y =,故1cos ln dx y dyy=?=4. 求下列函数的导数(1) 2sin y x x =解:'y =22sin cos x x x x + 3(3)ln y x x=23221'3ln 3ln y x x x x x x x=+=+解: (5) 1ln 1ln xy x-=+解:21ln 1ln '(1ln )x xx x y x +---=+211ln y x=-++ 22212'0(1ln )(1ln )y x x x x =-=-++ (7) 21cosy x x=解1'2cos y x x =+2x 1(sinx -12cos x x +2x 1(sin)x -(9)ln(y x ='y x =+==解:(10)12(0)xxy x e a =->解:112'2xxy xe x e =+g g(ln (x x a a a --(11) arccos ln x y x = -arccos ln(1ln xy x x=--解:1'y x=-+2arccos 1x x x =-+2arccos x x =- ln (13)x y x =2ln ln (ln )x x x y e e ?==解: ln ln 11'2ln 2ln x x y x x x x x-=??=? (14) cos (sin )xy x =解:ln cos lnsin y x x =Q ,对该式两边求导数得11'sin ln sin cos cos sin y x x x x y x=-+cos '(sin )(sin ln sin cos tan )x y x x x x x ∴=-+ (15) y x =11ln ln ln(1)ln(1)22y x x x =+--+Q ,对该式两边求导数得1111'2(1)2(1)y yxx x =---+arcsin lnx y x =-解:'[ln(1(ln )'y x =++(11x +(2)x -1x +1x4. 求反函数的导数:(1)ln y x x =+解:1111dx dy dydx x==+arcsin x y e =解:sin ln x y =,故=?=求下列参数⽅程的导数'y : 211(1)(1)x t t y t ?=?+?=+242(1)2(1)'()1(1)1'()1(1)t t t dy y t t t dx x t t t +-?+-+===+-+解:(2)3233131at x t at y t ?=??+??=?+? 解:322332323326(1)333(2)(1)3(1)333(12)(1)at t at t dydy at t t dt dx a x at t dxa t dt t +-?-+===+-?-+(3)2ln(1)arctan x t y t t ?=+?=-? 解:222111221dy dyt dt tdx t dx t dt t-+===+2.若()F x 在点a 连续,且()0F x ≠。
等差数列及其前n 项和【课前回顾】1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.4.与等差数列各项的和有关的性质(1)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12. (2)若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)关于等差数列奇数项和与偶数项和的性质. ①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1. ②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=n n -1. (4)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为a n b n=S 2n -1T 2n -1.【课前快练】1.在等差数列{}a n 中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6解析:选B ∵{}a n 为等差数列,∴2a 4=a 2+a 6,∴a 6=2a 4-a 2=2×2-4=0.2.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8 解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.3.已知数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 1=1,a 4=4,则a 10=( )A .-45B .-54C.413D.134解析:选A 设等差数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,由题意可知,1a 4=1a 1+3d =14,解得d =-14,所以1a 10=1a 1+9d =-54,所以a 10=-45. 4.已知等差数列{a n }的公差d ≠0,且a 3+a 9=a 10-a 8,若a n =0,则n =________. 解析:因为a 3+a 9=a 10-a 8,所以a 1+2d +a 1+8d =a 1+9d -(a 1+7d ), 解得a 1=-4d ,所以a n =-4d +(n -1)d =(n -5)d , 令(n -5)d =0(d ≠0),可解得n =5. 答案:55.在等差数列{a n }中,a n >0,a 7=12a 4+4,S n 为数列{a n }的前n 项和,则S 19=________.解析:设等差数列{a n }的公差为d ,由a 7=12a 4+4,得a 1+6d =12(a 1+3d )+4,即a 1+9d =8,所以a 10=8,因此S 19=19(a 1+a 19)2=19×a 10=19×8=152. 答案:152考点一 等差数列的基本运算1.等差数列运算中方程思想的应用(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.[易错提醒] 在求解数列基本量运算中,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.2.等差数列前n 项和公式的应用方法根据不同的已知条件选用两个求和公式,若已知首项和公差,则使用公式S n =na 1+n (n -1)2d ;若已知通项公式,则使用公式S n =n (a 1+a n )2,同时注意与性质“a 1+a n =a 2+a n -1=a 3+a n -2=…”的结合使用.【典型例题】1.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 设等差数列{a n }的公差为d , 由S 5=5(a 2+a 4)2,得5(3+a 4)2=25,解得a 4=7,所以7=3+2d ,解得d =2,所以a 7=a 4+3d =7+3×2=13.2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.3.(2018·福州质检)设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( )A .5B .6C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9,或k =0(舍去),故选C.4.设S n 为等差数列{a n }的前n 项和,若a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d , 由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. ∴S 16=16×3+16×152×(-1)=-72.答案:-72考点二 等差数列的判定与证明等差数列的判定与证明方法用定义证明等差数列时,容易漏掉对起始项的检验,从而产生错解.比如,对于满足a n -a n -1=1(n ≥3)的数列{a n }而言并不能判定其为等差数列,因为不能确定起始项a 2-a 1是否等于1.【典型例题】(2018·贵州适应性考试)已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n . (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.[思维路径](1)要求数列的项,可根据已知首项和递推关系式,令n =1,2可解得.(2)证明⎩⎨⎧⎭⎬⎫a n n 是等差数列,其关键应推出a n +1n +1-a n n 为常数,对所给条件进行必要的变形即可.解:(1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)证明:由已知na n +1-(n +1)a n =2n 2+2n , 得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项a 11=1,公差d =2的等差数列.则a nn =1+2(n -1)=2n -1,所以a n =2n 2-n .【针对训练】1.(2018·陕西质检)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R)且a 2=3,a 6=11,则S 7等于( )A .13B .49C .35D .63解析:选B 由S n =an 2+bn (a ,b ∈R)可知数列{a n }是等差数列,所以S 7=7(a 1+a 7)2=7(a 2+a 6)2=49.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1(n ≥2), ∴a n +1=2-1a n.∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.考点三 等差数列的性质及前n 项和的最值1.应用等差数列的性质解题的2个注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m =12(a m -n +a m +n )转化为求a m -n ,a m +n 或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .3.理清等差数列的前n 项和与函数的关系 等差数列的前n 项和公式为S n =na 1+n (n -1)2d 可变形为S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,令A =d2,B =a 1-d2,则S n =An 2+Bn .当A ≠0,即d ≠0时,S n 是关于n 的二次函数,(n ,S n )在二次函数y =Ax 2+Bx 的图象上,即为抛物线y =Ax 2+Bx 上一群孤立的点.利用此性质可解决前n 项和S n 的最值问题.【典型例题】1.在等差数列{a n}中,a1=29,S10=S20,则数列{a n}的前n项和S n的最大值为() A.S15B.S16C.S15或S16D.S17解析:选A∵a1=29,S10=S20,∴10a1+10×92d=20a1+20×192d,解得d=-2,∴S n=29n+n(n-1)2×(-2)=-n2+30n=-(n-15)2+225.∴当n=15时,S n取得最大值.2.已知函数f(x)的图象关于直线x=-1对称,且f(x)在(-1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则数列{a n}的前100项的和为() A.-200 B.-100C.-50 D.0[学审题]①由函数的对称性及单调性知f(x)在(-∞,-1)上也单调;②结合函数的性质知a50+a51=-2.解析:选B因为函数f(x)的图象关于直线x=-1对称,又函数f(x)在(-1,+∞)上单调,所以f(x)在(-∞,-1)上也单调,且数列{a n}是公差不为0的等差数列.又f(a50)=f(a51),所以a50+a51=-2,所以S100=100(a1+a100)2=50(a50+a51)=-100.【针对训练】1.(2018·岳阳模拟)在等差数列{a n}中,如果a1+a2=40,a3+a4=60,那么a7+a8=() A.95B.100C.135 D.80解析:选B由等差数列的性质可知,a1+a2,a3+a4,a5+a6,a7+a8构成新的等差数列,于是a7+a8=(a1+a2)+(4-1)[(a3+a4)-(a1+a2)]=40+3×20=100.2.设等差数列{a n}的前n项和为S n,且a1>0,a3+a10>0,a6a7<0,则满足S n>0的最大自然数n的值为()A.6 B.7C.12 D.13解析:选C因为a1>0,a6a7<0,所以a6>0,a7<0,等差数列的公差小于零,又a3+a10=a1+a12>0,a1+a13=2a7<0,所以S12>0,S13<0,所以满足S n>0的最大自然数n的值为12.3.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18【课后演练】1.已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( ) A .36 B .72 C .144D .288解析:选B 法一:∵a 8+a 10=2a 1+16d =28,a 1=2, ∴d =32,∴S 9=9×2+9×82×32=72.法二:∵a 8+a 10=2a 9=28,∴a 9=14, ∴S 9=9(a 1+a 9)2=72. 2.若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( )A .20B .36C .24D .72解析:选C 由a 2+S 3=4及a 3+S 5=12,得⎩⎪⎨⎪⎧ 4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24.3.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23D .24解析:选C 由3a n +1=3a n -2⇒a n +1-a n =-23⇒{a n }是等差数列,则a n =473-23n .∵a k ·a k+1<0,∴⎝⎛⎭⎫473-23k ⎝⎛⎭⎫453-23k <0,∴452<k <472,又∵k ∈N *,∴k =23.4.已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=7b 4=7×(-2-14)=-112,又a 1=3,所以a 8=-109.5.在数列{a n }中,a 1=3,a n +1=3a na n +3,则a 4=( ) A.34 B .1 C.43D.32解析:选A 依题意得1a n +1=a n +33a n =1a n +13,1a n +1-1a n =13,故数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=13为首项、13为公差的等差数列,则1a n =13+n -13=n 3,a n =3n ,a 4=34.6.已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( ) A .9 B .15 C .18D .30解析:选C 由a n +1-a n =2可得数列{a n }是等差数列,公差d =2,又a 1=-5,所以a n =2n -7,所以|a 1|+|a 2|+|a 3|+|a 4|+|a 5|+|a 6|=5+3+1+1+3+5=18.7.(2016·北京高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6×6-30=6.答案:68.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 59.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13=________.解析:因为S 17=a 1+a 172×17=17a 9=51,所以a 9=3. 根据等差数列的性质知a 5+a 13=a 7+a 11, 所以a 5-a 7+a 9-a 11+a 13=a 9=3. 答案:310.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910, a 1+a 99=a 1+a 100-d =25,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10. 答案:1011.已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( ) A .72 B .88 C .92D .98解析:选C 法一:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,又a 4+a 5=23=2a 1+7d =2a 1+21,∴a 1=1,S 8=8a 1+8×72d =92.法二:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,S 8=8(a 1+a 8)2=8(a 4+a 5)2=92. 12.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢( )A .8日B .9日C .12日D .16日解析:选B 设n 日相逢,则依题意得103n +n (n -1)2×13+97n +n (n -1)2×⎝⎛⎭⎫-12=1125×2,整理得n 2+31n -360=0, 解得n =9(负值舍去),故选B.13.等差数列{a n }的前n 项和为S n ,其中n ∈N *,则下列命题错误的是( ) A .若a n >0,则S n >0 B .若S n >0,则a n >0C .若a n >0,则{S n }是单调递增数列D .若{S n }是单调递增数列,则a n >0解析:选D 由等差数列的性质可得:∀n ∈N *,a n >0,则S n >0,反之也成立.a n >0,d >0,则{S n }是单调递增数列.因此A 、B 、C 正确.对于D ,{S n }是单调递增数列,则d >0,而a n >0不一定成立.14.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧ d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧ d <0,7+7d >0,7+8d <0,解得-1<d <-78. 答案:⎝⎛⎭⎫-1,-78 15.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =________. 解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3, 所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m -1=5,即2a 1+2m -1=5,所以a 1=3-m .由S m =(3-m )m +m (m -1)2×1=0, 解得m =5.答案:516.已知数列{a n }的前n 项和为S n ,且S n =2n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n .解:(1)当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=2-1=1,满足a n =2n -1, ∴数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)由(1)得,b n =log 4a n +1=n +12, 则b n +1-b n =n +22-n +12=12, ∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n (n -1)2d =n 2+3n 4. 17.已知递增等差数列{a n }的前n 项和为S n ,且a 2a 3=15,S 4=16.(1)求数列{a n }的通项公式以及S n 的表达式;(2)若数列{b n }满足:b 1=1,b n +1-b n =1a n a n +1,求数列{b n }的通项公式. 解:(1)设数列{a n }的公差为d (d >0), 则⎩⎪⎨⎪⎧ a 2a 3=(a 1+d )(a 1+2d )=15,S 4=4a 1+6d =16, 解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧a 1=7,d =-2(舍去), ∴a n =1+2(n -1)=2n -1,S n =n (1+2n -1)2=n 2,n ∈N *. (2)由(1)知,b n +1-b n =1a n a n +1=1(2n -1)(2n +1)=12⎛⎭⎫12n -1-12n +1, b n -b 1=(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -3-12n -1=12⎝⎛⎭⎫1-12n -1=n -12n -1(n ≥2),∴b n =3n -22n -1. 当n =1时,b 1=1也符合上式, ∴b n =3n -22n -1(n ∈N *). 18.已知数列{a n }满足,a n +1+a n =4n -3(n ∈N *).(1)若数列{a n }是等差数列,求a 1的值;(2)当a 1=2时,求数列{a n }的前n 项和S n . 解:(1)法一:∵数列{a n }是等差数列, ∴a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3,得a 1+nd +a 1+(n -1)d =4n -3, ∴2dn +(2a 1-d )=4n -3,即2d =4,2a 1-d =-3,解得d =2,a 1=-12. 法二:在等差数列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1,∴2d =a n +2-a n =4n +1-(4n -3)=4,∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=1,∴a 1=-12. (2)由题意知,①当n 为奇数时, S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52. ②当n 为偶数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7)=2n 2-3n 2. 综上,S n =⎩⎨⎧2n 2-3n +52,n 为奇数,2n 2-3n 2,n 为偶数.。
高中数学必修 5 课后习题答案[ 人教版]高中数学必修5 课后习题答案第1页共34 页2.1 数列的概念与简单表示法练习(P31)2、前5项分别是:1,0, 1,0, 1.I*(n 2m,m N )3、例 1(1)a n n1 *(n 2m 1,m N )说明:此题是通项公式不唯一的题目, 能的通项公式表达形式不唯一的例子.习题2.1 A 组(P33)1、 ( 1)2,3,5,7,11,13,17,19;(2) 2, .6,2、2,3, .10,2 •.3, . 14, . 15,4,3、2 ;(3) 1,1.7,1.73,1.732,…1.732050; 2,1.8,1.74,1.733,…,1.732051.1111 2、 (1) 1,1,1,1,1 ;(2) 2, 5,10, 17,26.4 9 16 253、 (1) (1), 4, 9, ( 16 ), 25, ( 36) , 49;a . ( 1)n 1 n 2 ;(2) 1,运,U3 ), 2, , U6 ),万; a n 蘇.4、 (1) ^,3,13,53,213 ;(2) 丄,5,4,丄,5.24545、 对应的答案分别是:(1) 16,21; a n 5n 4 ; (2) 10,13;可 3n 2 (3) 24,35; a . n 26、 15,21,28;a n a . 1 n .习题2.1 B 组(P34)1、前 5 项是 1,9,73,585,4681.第二章数列(2) a n2(n 2m,m N *)*0(n 2m 1,m N )鼓励学生14'(1)an丹 Z);⑵a n£(n(3) a nL (n2n .a 3 10 (1 0.72 罚3 10.217559 ;2 3 5 8 13厶, 55 52 3 5 82.2 等差数列练习(P39)1、 表格第一行依次应填:0.5,15.5,3.75;表格第二行依次应填:15, 11, 24.2、 a n 15 2(n 1) 2n 13, a 10 33.3、c n 4n4、 ( 1)是,首项是a m 1a 1md ,公差不变,仍为d ;(2)是,首项是耳,公差2d ;(3)仍然是等差数列;首项是a 7色6d ;公差为7d . 5、 ( 1)因为a 5 a 3 a 7a 5,所以2a 5a 3 a 7.同理有2a 5aa 9也成立;(2)2a n a . 1 a . 1(n 1)成立;2a . a n k a . k (n k 0)也成立.习题2.2 A 组(P40)1、( 1) a n 29 ; (2)n 10 ; (3) d 3 ; (4) a ! 10. 2、略. 3、60 .4、2C ;11C ; 37 C .5、( 1) s 9.8t ;(2) 588 cm , 5 s习题2.2 B 组(P40)1、 ( 1)从表中的数据看,基本上是一个等差数列,公差约为2000,a 2010 a 2002 8 d 0.26 105再加上原有的沙化面积9 105,答案为9.26 105 ; (2) 2021年底,沙化面积开始小于8 105 hm 2. 2、 略.该数列的递推公式是: 8“ 1a n 1 1 8a n ,印1.通项公式是:a n a 2 10 (1 0.72 罚2 10.144518;2、a 110 (1 0.72 罚 10.072 ; a n 10 (1 0.72 罚n .3、(1) 123,5,8;(2)2.3 等差数列的前n 项和1、(1) 88 ;59,n 2、a n126n !练习(P45) (2) 604.5.1125,n 13、元素个数是30,元素和为900.习题2.3 A 组(P46) 1、( 1) n(n 1) ; (2)n (3)180 个,和为 98550; (4)900个,和为 494550.2、( 1) 20,a n 54,S n999代入 S n n(a1 an) 并解得 27 ; 20,a n 54,n 27代入a n d (n 1)d 并解得(2)1 —,n 3 37,S n 629代入a n 印 (n 1)d S n n(a 1 17 13 . a n )a 1a n 得 37(a ,212 a n );解这个方程组,得 629a 1 11,a n 23. (3) 将a 1 将a t5,d6 5訐i ,Sn 1 6,n5代入S n 15代入a na 1 (n (4)2,n15,a n10代入a n(n 将a 138,a n 10, n 15 代入 S n43、4.55 1 04m.4、4.n (n 1)d ,并解得1)d 1)d n(an 15 ;得a n并解得 an),得S n25、这些数的通项公式:7(n 1) 2,项数是14,和为665. 习题2.3 B 组(P46)1、 ................................ 每个月的维修费实际上是呈等 ................. 共的维修费,即再加上购买费,除以天数即可 .2、 本题的解法有很多,可以直接代入公式化简, 现提供2个证明方法供参考.38;360.6、1472.等差数列的.代入等差数列前 答案:292元. 但是这种比较繁琐 n 项和公式,求出 5年内的总(1)由 S 6 6a t 15d , S 2 12a t 66d ,S 18 1可得S (S 18S12) 2(S 2 S 6). ⑵S 12 (印a 2 L a 12) (a 1 a 2 La 6)a 7 a 8 La12(印6d) (a 2 6d) L 包6d)(印a 2 La 6) 36d153dS 6 36d同样可得:S 18$2 S 6 72d ,因此 S 6 (S i8 02)2(S 2 閒•3、( 1)首先求出最后一辆车出发的时间 4时20分; 所以到下午6时,最后一辆车行驶了 1小时40分.(2)先求出15辆车总共的行驶时间,第一辆车共行驶 4小时,以后车辆行驶时间依次递减,最后一辆行驶1小时40分.各辆车的行驶时间呈等差数列分布, 代入前n 项和公式,这乘以车速60 km/h ,得行驶总路程为2550 km.4、数列1 的通项公式为 a n 1 1 1 n(n n(n 1) n n 11)所以S n(11111 -)( )(-1) .1 1 .. 1 n L() 1-1 22 3 3 4n n 1n 1 n 1类似地,我们可以求出通项公式为 a n11 (11)的数列的前n 项和n(n k) k n n k2.4 等比数列练习(P52)2、 由题意可知,每一轮被感染的计算机台数构成一个首项为 印80,公比为q 20的等比 数列,则第5轮被感染的计算机台数a 5为a 5 a ,q 4 80 204 1.28 107.3、 ( 1)将数列a n 中的前k 项去掉,剩余的数列为3「忌2丄.令b a —i 1,2丄,则数列 a k 1,a k 2,L 可视为 ddL .因为Lq(i > 1),所以,b n 是等比数列,即丄是等比数列.b ia k i(2) a n 中的所有奇数列是a !,a 3,a 5,L ,则 邑邑LL q 2(k > 1).a1a3a2k 1所以,数列q,a 3,a 5,L 是以耳为首项,q 2为公比的等比数列.个车队所有车的行驶时间为121585h.(3)a n中每隔10项取出一项组成的数列是a1,a12,a23丄,则空屯L电!L q11(k > 1)a i a12a11k 10所以,数列Q,a12,a23丄是以3为首项,q11为公比的等比数列.猜想:在数列a n中每隔m ( m是一个正整数)取出一项,组成一个新的数列,这个数列是以a1为首项,q m1为公比的等比数列.4、( 1)设a n 的公比为q,则a;(aq4)2a:q8,而a3 a? aq2ag6 a:q8所以a;a3 a?,同理a f 印a?(2)用上面的方法不难证明a2 a n 1 a n,n 1).由此得出,a.是a n 1和a n 1的等比中项• 同理:可证明,a:a n k a. k(n k 0).由此得出,a.是a. k和a. k的等比中项(n k 0).5、( 1)设n年后这辆车的价值为a.,则a. 13.5(1 10型.(2) a413.5(1 10写488573 (元).用满4年后卖掉这辆车,能得到约88573元.习题2.4 A 组(P53)2高中数学必修5课后习题答案[人教版]4,解得61、(1)可由 a 4a/,得a 11, a 7a 1q 6 ( 1) (3)6 729. 也可由a 76a 1q, a4a 1q,得a73a 4q27 3)3729⑵由ae 3ae188,解得8 27 2 327 2 3还可由a 5,a 7,a 9也成等比数列,即a 5a 9,得 a 92a7a57 9.(4)由4ag 3aga 15L L ① a 1q 6L L ②(3)由4 ae 6ae高中数学必修5课后习题答案[人教版]①的两边分别除以②的两边,得-,由此解得q -或q 2.q 22当 q -时,d 16.此时 a 3 a^q 24.当 q 2 时,a 1.此时 a 3 a^2 4.2、 设n 年后,需退耕a n ,贝V a n 是一个等比数列,其中d 8(1 10罚,q 0.1. 那么2005年需退耕a 5 a(1 q)5 8(1 10写5 13 (万公顷)3、 若a n 是各项均为正数的等比数列,则首项印和公比q 都是正数.n 11由 a n aq n 1,得..a ?..町.可 2,a ?(q 2)(n 1).1那么数列a n 是以、..乳为首项,q 2为公比的等比数列.4、 这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05X 2 mm ,再对折后厚度为0.05X 22 mm ,再对折后厚度为0.05X 23 mm.设a 。
习题课 数列求和[学习目标] 1.能由简洁的递推公式求出数列的通项公式.2.把握数列求和的几种基本方法.[预习导引] 1.基本求和公式(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .(2)等比数列前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n)1-q =a 1-a n q1-q.2.数列{a n }的a n 与S n 的关系:数列{a n }的前n 项和S n =a 1+a 2+a 3+…+a n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.3.裂项相消求和经常用到下列拆项公式 (1)1n (n +1)=1n -1n +1; (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n .要点一 分组分解求和例1 求和:S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2. 解 当x ≠±1时,S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2 =⎝⎛⎭⎫x 2+2+1x 2+⎝⎛⎭⎫x 4+2+1x 4+…+⎝⎛⎭⎫x 2n +2+1x 2n =(x 2+x 4+…+x 2n )+2n +⎝⎛⎭⎫1x 2+1x 4+…+1x 2n =x 2(x 2n -1)x 2-1+x -2(1-x -2n )1-x -2+2n=(x 2n -1)(x 2n +2+1)x 2n (x 2-1)+2n ;当x =±1时,S n =4n .综上知,S n=⎩⎪⎨⎪⎧4n , x =±1,(x 2n-1)(x 2n +2+1)x 2n(x 2-1)+2n ,x ≠±1.规律方法 某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列的求和公式分别求和,从而得出原数列的和.跟踪演练1 求数列1,1+a,1+a +a 2,…,1+a +a 2+…+a n -1,…的前n 项和S n (其中a ≠0). 解 当a =1时,则a n =n ,于是S n =1+2+3+…+n =n (n +1)2. 当a ≠1时,a n =1-a n 1-a =11-a (1-a n ).∴S n =11-a[n -(a +a 2+…+a n )]=11-a ⎣⎢⎡⎦⎥⎤n -a (1-a n)1-a =n1-a -a (1-a n )(1-a )2. ∴S n=⎩⎪⎨⎪⎧n (n +1)2 (a =1),n1-a -a (1-a n )(1-a )2(a ≠1).要点二 错位相减法求和例2 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n . 解 (1)设{a n }的公差为d ,则由已知得⎩⎪⎨⎪⎧ a 1+a 2+a 3=6,a 1+a 2+…+a 8=-4,即⎩⎪⎨⎪⎧3a 1+3d =6,8a 1+28d =-4,解得a 1=3,d =-1.故a n =3+(n -1)(-1)=4-n . (2)由(1),可得b n =n ·q n -1,于是S n =1·q 0+2·q 1+3·q 2+…+(n -1)·q n -2+n ·q n -1. ①若q ≠1,将上式两边同乘以q ,得: qS n=1·q 1+2·q 2+3·q 3+…+(n -1)·q n -1+n ·q n .将上面两式相减得:(q -1)S n =nq n-(1+q +q 2+…+qn -1)=nq n-q n -1q -1,于是S n =nq n +1-(n +1)q n +1(q -1)2.②若q =1,则S n =1+2+3+…+n =n (n +1)2.所以,S n=⎩⎪⎨⎪⎧n (n +1)2, q =1.nqn +1-(n +1)q n +1(q -1)2,q ≠1.规律方法 用错位相减法求和时,应留意(1)要擅长识别题目类型,特殊是等比数列公比为负数的情形; (2)在写出“S n ”与“qS n ”的表达式时应特殊留意将两式“错项对齐”以便下一步精确 写出“S n -qS n ”的表达式.若公比是个参数(字母),则应先对参数加以争辩,一般状况下分等于1和不等于1两种状况分别求和.跟踪演练2 已知等比数列{a n }中,a 1=2,a 3+2是a 2和a 4的等差中项. (1)求数列{a n }的通项公式;(2)记b n =a n log 2a n ,求数列{b n }的前n 项和S n . 解 (1)设数列{a n }的公比为q , 由题意知:2(a 3+2)=a 2+a 4,∴q 3-2q 2+q -2=0,即(q -2)(q 2+1)=0. ∴q =2,即a n =2·2n -1=2n . (2)b n =n ·2n ,∴S n =1·2+2·22+3·23+…+n ·2n .①2S n =1·22+2·23+3·24+…+(n -1)·2n +n ·2n +1.②①-②得-S n =21+22+23+24+…+2n -n ·2n +1=-2-(n -1)·2n +1.∴S n =2+(n -1)·2n +1. 要点三 裂项相消求和例3 求和:122-1+132-1+142-1+…+1n 2-1,n ≥2.解 ∵1n 2-1=1(n -1)(n +1)=12⎝ ⎛⎭⎪⎫1n -1-1n +1, ∴原式=12⎣⎡⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+⎝⎛⎭⎫13-15⎦⎥⎤+…+⎝ ⎛⎭⎪⎫1n -1-1n +1=12⎝ ⎛⎭⎪⎫1+12-1n -1n +1 =34-2n +12n (n +1). 规律方法 假如数列的通项公式可转化为f (n +1)-f (n )的形式,常接受裂项求和法. 跟踪演练3 求和:1+11+2+11+2+3+…+11+2+3+…+n . 解 ∵a n =11+2+…+n =2n (n +1)=2⎝⎛⎭⎪⎫1n -1n +1,∴S n =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2nn +1. 要点四 奇偶并项求和例4 求和:S n =-1+3-5+7-…+(-1)n (2n -1). 解 当n 为奇数时,S n =(-1+3)+(-5+7)+(-9+11)+…+ [(-2n +5)+(2n -3)]+(-2n +1)=2·n -12+(-2n +1)=-n .当n 为偶数时,S n =(-1+3)+(-5+7)+…+[(-2n +3)+(2n -1)]=2·n2=n .∴S n =(-1)n n (n ∈N *).跟踪演练4 已知数列-1,4,-7,10,…,(-1)n ·(3n -2),…,求其前n 项和S n . 解 当n 为偶数时,令n =2k (k ∈N *), S n =S 2k =-1+4-7+10+…+(-1)n (3n -2) =(-1+4)+(-7+10)+…+[(-6k +5)+(6k -2)] =3k =32n ;当n 为奇数时,令n =2k +1 (k ∈N *). S n =S 2k +1=S 2k +a 2k +1=3k -(6k +1)=-3n +12.∴S n=⎩⎪⎨⎪⎧-3n +12 (n 为奇数),3n 2 (n 为偶数).1.数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1 B.56C.16D.130答案 B解析 ∵a n =1n (n +1)=1n -1n +1,∴S 5=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫15-16 =1-16=56.2.数列112,214,318,4116,…的前n 项和为( )A.12(n 2+n +2)-12nB.12n (n +1)+1-12n -1 C.12(n 2-n +2)-12n D.12n (n +1)+2⎝⎛⎭⎫1-12n 答案 A解析 112+214+318+…+⎝⎛⎭⎫n +12n =(1+2+…+n )+⎝⎛⎭⎫12+14+…+12n =n (n +1)2+12⎝⎛⎭⎫1-12n 1-12=12(n 2+n )+1-12n =12(n 2+n +2)-12n . 3.数列{a n }的通项公式a n =1n +n +1,若前n 项的和为10,则项数为( ) A .11 B .99 C .120 D .121答案 C 解析 ∵a n =1n +n +1=n +1-n ,∴S n =n +1-1=10,∴n =120.4.若数列{a n }的前n 项和为S n =23a n +13,则数列{a n }的通项公式是a n =________.答案 (-2)n -1解析 当n =1时,a 1=S 1=23a 1+13,解得a 1=1.当n ≥2时,a n =S n -S n -1=(23a n +13)-(23a n -1+13)=23a n -23a n -1, 整理可得13a n =-23a n -1,即a n a n -1=-2,故数列{a n }是以1为首项,-2为公比的等比数列,故a n =(-2)n -1.求数列前n 项和,一般有下列几种方法.1.错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和. 2.分组求和:把一个数列分成几个可以直接求和的数列.3.裂项相消:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和. 4.奇偶并项:当数列通项中消灭(-1)n 或(-1)n +1时,经常需要对n 取值的奇偶性进行分类争辩. 5.倒序相加:例如,等差数列前n 项和公式的推导方法.一、基础达标1.数列12·5,15·8,18·11,…,1(3n -1)·(3n +2),…的前n 项和为( )A.n 3n +2B.n 6n +4C.3n6n +4 D.n +1n +2 答案 B解析 由数列通项公式,得1(3n -1)·(3n +2)=13⎝ ⎛⎭⎪⎫13n -1-13n +2, 得前n 项和S n =13(12-15+15-18+18-111+…+13n -1-13n +2)=13⎝⎛⎭⎪⎫12-13n +2=n 6n +4. 2.已知数列{a n }的通项a n =2n +1,由b n =a 1+a 2+a 3+…+a n n 所确定的数列{b n }的前n 项之和是( )A .n (n +2) B.12n (n +4) C.12n (n +5) D.12n (n +7) 答案 C解析 a 1+a 2+…+a n =n2(2n +4)=n 2+2n .∴b n =n +2,∴b n 的前n 项和S n =n (n +5)2.3.已知数列{a n }的前n 项和为S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15+S 22-S 31的值是( ) A .13 B .-76 C .46 D .76 答案 B解析 S 15=-4×7+a 15=-28+57=29,S 22=-4×11=-44,S 31=-4×15+a 31=-4×15+121=61,S 15+S 22-S 31=29-44-61=-76.故选B.4.若等比数列{a n }满足a n a n +1=16n ,则公比为( ) A .2 B .4 C .8 D .16 答案 B解析 由已知得a 1a 2=16 ①,a 2a 3=162 ②,②÷①得a 3a 1=16=q 2,∴q =4.5.数列{1+2n -1}的前n 项和为( ) A .1+2n B .2+2n C .n +2n-1 D .n +2+2n答案 C 解析 S n=(1+1)+(1+2)+(1+22)+(1+23)+…+(1+2n -1)=n +(1+2+22+…+2n -1)=n +(1-2n )1-2=n +2n -1,故选C.6.数列1,11+2,11+2+3,…的前n 项和S n =________.答案2n n +1解析 由于数列的通项a n =11+2+3+…+n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,∴S n =2⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. 7.已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .解 (1)设等差数列{a n }的首项为a 1,公差为d .由于a 3=7,a 5+a 7=26,所以⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得⎩⎪⎨⎪⎧a 1=3,d =2.所以a n =3+2(n -1)=2n +1,S n =3n +n (n -1)2×2=n 2+2n .所以,a n =2n +1,S n =n 2+2n .(2)由(1)知a n =2n +1,所以b n =1a 2n -1=1(2n +1)2-1=14·1n (n +1)=14·⎝ ⎛⎭⎪⎫1n -1n +1, 所以T n =14·(1-12+12-13+…+1n -1n +1)=14·(1-1n +1)=n4(n +1), 即数列{b n }的前n 项和T n =n 4(n +1).8.已知数列{a n }满足a 1=1,a n +1=2a n +1. (1)求证:数列{a n +1}是等比数列; (2)求数列{a n }的通项公式a n 和前n 项和S n .(1)证明 ∵a n +1=2a n +1,∴a n +1+1a n +1=(2a n +1)+1a n +1=2a n +2a n +1=2(a n +1)a n +1=2,∴数列{a n }是等比数列,公比为2,首项为a 1+1=2. (2)解 由(1)知{a n +1}为等比数列, ∴a n +1=(a 1+1)·2n -1=2n,∴a n =2n -1. ∴S n =a 1+a 2+…+a n=(21-1)+(22-1)+(23-1)+…+(2n -1) =(21+22+…+2n )-n =2(1-2n )1-2-n =2n +1-n -2.二、力量提升9.设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n 等( ) A.n 24+7n 4 B.n 23+5n 3 C.n 22+3n4 D .n 2+n 答案 A解析 由题意设等差数列的公差为d ,则a 1=2,a 3=2+2d ,a 6=2+5d .又∵a 1,a 3,a 6成等比数列,∴a 23=a 1a 6,即(2+2d )2=2(2+5d ),整理得2d 2-d =0.∵d ≠0,∴d =12,∴S n =na 1+n (n -1)2d =n 24+74n .10.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n答案 A解析 ∵a n +1=a n +ln ⎝⎛⎭⎫1+1n , ∴a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n =ln(n +1)-ln n . 又a 1=2,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=2+[ln 2-ln 1+ln 3-ln 2+ln 4-ln 3+…+ln n -ln(n -1)]=2+ln n -ln 1=2+ln n .11.在等比数列{a n }中,若a 1=12,a 4=-4,则|a 1|+|a 2|+|a 3|+…+|a n |=________.答案 2n -12解析 ∵{a n }为等比数列,且a 1=12,a 4=-4,∴q 3=a 4a 1=-8,∴q =-2,∴a n =12(-2)n -1,∴|a n |=2n -2,∴|a 1|+|a 2|+|a 3|+…+|a n | =12(1-2n )1-2=2n -12.12.设数列{a n }满足a 1=2,a n +1-a n =3·22n -1. (1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .解 (1)由已知,当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1.而a 1=2,符合上式,所以数列{a n }的通项公式为a n =22n -1. (2)由b n =na n =n ·22n -1知S n =1·2+2·23+3·25+…+n ·22n -1,① 从而22·S n =1·23+2·25+3·27+…+n ·22n +1.② ①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1, 即S n =19[(3n -1)22n +1+2].三、探究与创新13.设数列{a n }满足a 1=0且11-a n +1-11-a n =1.(1)求{a n }的通项公式;(2)设b n =1-a n +1n,记S n =b 1+b 2+…+b n ,证明S n <1.(1)解 由题设11-a n +1-11-a n =1知,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫11-a n 是公差为1的等差数列, 又11-a 1=1,故11-a n=n , ∴a n =1-1n.(2)证明 由(1)得b n =1-a n +1n=n +1-n n +1·n=1n-1n +1,∴S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1<1.。
数学选修1-1课后习题答案数学选修1-1课后习题答案在学习数学的过程中,课后习题是巩固知识、提高能力的重要环节。
数学选修1-1课后习题涵盖了多个知识点,包括数列、函数、极限等。
在这篇文章中,我将为大家提供数学选修1-1课后习题的答案,并对其中一些重要的题目进行解析。
1. 数列的概念和性质第一节课后习题中,有一道关于数列的题目。
题目如下:已知数列{an}的通项公式为an = 3n + 2,求数列的前10项。
解答:根据题目中给出的通项公式,我们可以逐一计算数列的前10项。
依次代入n的值,即可得到数列的前10项:5,8,11,14,17,20,23,26,29,32。
2. 函数的定义和性质第二节课后习题中,有一道关于函数的题目。
题目如下:已知函数f(x) = 2x + 1,求函数f(x)的值域。
解答:要求函数f(x)的值域,我们需要找到函数f(x)的所有可能取值。
根据函数的定义,我们可以发现函数f(x)是一个线性函数,斜率为2,截距为1。
因此,函数f(x)的图像是一条直线,斜率为正,向上倾斜。
根据直线的性质,我们可以得出函数f(x)的值域为全体实数。
3. 极限的概念和性质第三节课后习题中,有一道关于极限的题目。
题目如下:已知函数f(x) = (x^2 - 1) / (x - 1),求lim(x->1)f(x)的值。
解答:要求lim(x->1)f(x)的值,我们需要计算函数f(x)在x趋近于1时的极限。
根据题目中给出的函数表达式,我们可以发现当x趋近于1时,分子和分母都会趋近于0。
因此,我们可以使用洛必达法则来计算这个极限。
对函数的分子和分母分别求导,并计算导数的极限。
经过计算,我们得到lim(x->1)f(x)的值为2。
通过以上三个例子,我们可以看到数学选修1-1课后习题的内容涵盖了数列、函数和极限等重要的数学概念和性质。
通过解答这些习题,我们不仅可以巩固和提高自己的数学知识,还可以培养自己的逻辑思维和问题解决能力。
【解析分类汇编系列二:北京2013(一模)数学理】5数列1.(2013届北京丰台区一模理科)设n S 为等比数列{}n a 的前n 项和,3420a a +=,则31S a ( ) A .2 B .3 C .4D .5【答案】B在等比数列中,由3420a a +=得432a q a =-=,所以331118311(2)S q a q -+===---,选B.2.(2013届北京西城区一模理科)等比数列{}n a 中,10a >,则“13a a <”是“36a a <”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B由13a a <得211a a q <,且30a >,解得21q >,即1q >或1q <-。
3363(1)a a a q -=-,所以当1q >时,3363(1)0a a a q -=-<,得36a a <。
当1q <-时,3363(1)0a a a q -=->,得36a a >。
若36a a <,则2511a q a q <,即31q <,所以1q >,此时2311a a q a =>,所以“13a a <”是“36a a <”的必要而不充分条件,选B.3.(2013届东城区一模理科)已知数列{}n a 中,12a =,120n n a a +-=,2log n n b a =,那么数列{}n b 的前10项和等于 ( )A .130B .120C .55D .50【答案】C由120n n a a +-=得12n n a a +=,所以数列{}n a 为公比数列,公比2q =,所以111222n n n n a a q --==⨯=,所以22log log 2n n n b a n ===,为等差数列。
数列习题及答案详解一、选择题1.在数列{a n }中,a 1=1,a n =2a n -1+1,则a 5的值为( ). A .30 B .31 C .32 D .33解析 a 5=2a 4+1=2(2a 3+1)+1=22a 3+2+1=23a 2+22+2+1=24a 1+23+22+2+1=31. 答案 B2.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ). A .15 B .16 C .49 D .64解析 由于S n =n 2,∴a 1=S 1=1.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,又a 1=1适合上式. ∴a n =2n -1,∴a 8=2×8-1=15. 答案 A3.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ).A .31B .32C .33D .34解析 由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎨⎧a 1=263,d =-43.∴S 8=8a 1+8×72d =32.答案 B4.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ).A .-12B .-2C .2 D.12解析 由题意知:q 3=a 5a 2=18,∴q =12.答案 D5.在等比数列{a n }中,a 4=4,则a 2·a 6等于( ). A .4 B .8 C .16 D .32解析 由等比数列的性质得:a 2a 6=a 24=16. 答案 C6.设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n =( ). A.n 24+7n 4 B.n 23+5n 3 C.n 22+3n4D .n 2+n 7.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=( ).A .-11B .-8C .5D .11解析 设等比数列的首项为a 1,公比为q .因为8a 2+a 5=0,所以8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2,∴S5S 2=)1(11)1(2151q a q q q a --⋅-- =1-q 51-q 2=-11. 答案 A8.等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( ).A .120B .70C .75D .100 解析 ∵)2(2)123(+=++=n n n n S n ,S n n=n +2.∴数列⎩⎨⎧⎭⎬⎫S n n 前10项的和为:(1+2+…+10)+20=75.答案 C9.设数列{(-1)n}的前n 项和为S n ,则对任意正整数n ,S n =( ).A.2]1)1[(--nn B.2]1)1[(1+--n C.2]1)1[(+-nD.2]1)1[(--n解析 因为数列{(-1)n}是首项与公比均为-1的等比数列,所以S n =)1(1])1(1)[1(------n=2]1)1[(--n.答案 D10.等比数列{a n }的前n 项和为S n ,若a 1=1,且4a 1,2a 2,a 3成等差数列,则S 4=( ). A .7 B .8 C .15 D .16解析 设数列{a n }的公比为q ,则4a 2=4a 1+a 3,∴4a 1q =4a 1+a 1q 2,即q 2-4q +4=0,∴q=2.∴S 4=1-241-2=15.答案 C 11.已知数列{a n }是各项均为正数的等比数列,数列{b n }是等差数列,且a 6=b 7,则有( ). A .a 3+a 9≤b 4+b 10 B .a 3+a 9≥b 4+b 10 C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小关系不确定解析 10476518218218121932222)(b b b a q a q q a q q a q a q a a a +====≥+=+=+12.已知等差数列{}n a 的前n 项和为)(*∈N n S n ,且7,373=-=S S ,那么数列{}n a 的公差=d ( ) A .1 B .2 C .3 D .4答案 A二、填空题13.若S n =1-2+3-4+…+(-1)n -1·n ,S 50=________. 解析 S 50=1-2+3-4+…+49-50 =(-1)×25=-25. 答案 -2514.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________.解析 设{a n }的公差为d ,由S 9=S 4及a 1=1,得9×1+9×82d =4×1+4×32d ,所以d =-16.又a k +a 4=0,所以0)]61)(14(1[)]61)(1(1[=--++--+k ,即k =10.答案 1015.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.解析 设竹子从上到下的容积依次为a 1,a 2,…,a 9,由题意可得a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,设等差数列{a n }的公差为d ,则有4a 1+6d =3①,3a 1+21d =4②,由①②可得d=766,a 1=1322a 5=a 1+4d =1322+4×766=6766. 答案 676616. 已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________. 解析 当n =1时,a 1=S 1=3×12-2×1+1=2;当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.答案 a n =⎩⎪⎨⎪⎧2,n =16n -5,n ≥217. 等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.答案 -2 2n -1-12三、解答题18. 知数列{a n }的前n 项和S n 是n 的二次函数,且a 1=-2,a 2=2,S 3=6. (1)求S n ;(2)证明:数列{a n }是等差数列.(1)解 设S n =An 2+Bn +C (A ≠0),则⎩⎪⎨⎪⎧-2=A +B +C ,0=4A +2B +C ,6=9A +3B +C ,解得:A =2,B =-4,C =0.∴S n =2n 2-4n .(2)证明 当n =1时,a 1=S 1=-2.当n ≥2时,a n =S n -S n -1=2n 2-4n -[2(n -1)2-4(n -1)] =4n -6.∴a n =4n -6(n ∈N *).当n =1时符合上式,故a n =4n -6, ∴a n +1-a n =4,∴数列{a n }成等差数列.19. 知数列{a n }的前n 项和S n =-n 2+24n (n ∈N *). (1)求{a n }的通项公式;(2)当n 为何值时,S n 达到最大?最大值是多少? 解 (1)n =1时,a 1=S 1=23.n ≥2时,a n =S n -S n -1=-n 2+24n +(n -1)2-24(n -1)=-2n +25.经验证,a 1=23符合a n =-2n +25,∴a n =-2n +25(n ∈N *).(2)法一 ∵S n =-n 2+24n ,∴n =12时,S n 最大且S n =144. 法二 ∵a n =-2n +25,∴a n =-2n +25>0,有n <252.∴a 12>0,a 13<0,故S 12最大,最大值为144.20. d 为非零实数,a n =1n[C 1n d +2C 2n d 2+…+(n -1)C n -1n d n -1+n C n n d n ](n ∈N *).(1)写出a 1,a 2,a 3并判断{a n }是否为等比数列.若是,给出证明;若不是,说明理由; (2)设b n =nda n (n ∈N *),求数列{b n }的前n 项和S n . 解 (1)由已知可得a 1=d ,a 2=d (1+d ),a 3=d (1+d )2.当n ≥2,k ≥1时,k nC k n =C k -1n -1,因此 a n =∑n k =1k n C k n d k =∑n k =1C k -1n -1d k =d ∑n -1k =0C k n -1d k =d (d +1)n -1. 由此可见,当d ≠-1时,{a n }是以d 为首项,d +1为公比的等比数列; 当d =-1时,a 1=-1,a n =0(n ≥2),此时{a n }不是等比数列. (2)由(1)可知,a n =d (d +1)n -1,从而b n =nd 2(d +1)n -1S n =d 2[1+2(d +1)+3(d +1)2+…+(n -1)(d +1)n -2+n (d +1)n -1].①当d =-1时,S n =d 2=1.当d ≠-1时,①式两边同乘d +1得(d +1)S n =d 2[(d +1)+2(d +1)2+…+(n -1)(d +1)n -1+n (d +1)n ].② ①,②式相减可得-dS n =d 2[1+(d +1)+(d +1)2+…+(d +1)n -1-n (d +1)n ]=⎥⎦⎤⎢⎣⎡+--+n n d n d d d )1(1)1(2. 化简即得S n =(d +1)n(nd -1)+1. 综上,S n =(d +1)n (nd -1)+1.21. 知数列{a n }是首项为a 1=14,公比q =14的等比数列,设n n a b 41log32=+ (n ∈N *),数列{c n }满足c n =a n ·b n .(1)求数列{b n }的通项公式; (2)求数列{c n }的前n 项和S n .[尝试解答] (1)由题意,知a n =⎝⎛⎭⎫14n (n ∈N *),又2log 341-=n n a b ,故b n =3n -2(n ∈N *).(2)由(1),知a n =⎝⎛⎭⎫14n ,b n =3n -2(n ∈N *),∴c n =(3n -2)×⎝⎛⎭⎫14n (n ∈N *). ∴S n =1×14+4×⎝⎛⎭⎫142+7×⎝⎛⎭⎫143+…+(3n -5)×⎝⎛⎭⎫14n -1+(3n -2)×⎝⎛⎭⎫14n , 于是14S n =1×⎝⎛⎭⎫142+4×⎝⎛⎭⎫143+7×⎝⎛⎭⎫144+…+(3n -5)×⎝⎛⎭⎫14n +(3n -2)×⎝⎛⎭⎫14n +1, 两式相减,得 34S n =14+3⎣⎡⎦⎤⎝⎛⎭⎫142+⎝⎛⎭⎫143+…+⎝⎛⎭⎫14n -(3n -2)×⎝⎛14n +1=12-(3n +2)×⎝⎛⎭⎫14n +1, ∴S n =23-3n +23×⎝⎛⎭⎫14n (n ∈N *).22. 数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1). (1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且T 3=15, 又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,求T n .解 (1)由a n +1=2S n +1,可得a n =2S n -1+1(n ≥2), 两式相减得a n +1-a n =2a n ,则a n +1=3a n (n ≥2). 又a 2=2S 1+1=3,∴a 2=3a 1.故{a n }是首项为1,公比为3的等比数列,∴a n =3n -1. (2)设{b n }的公差为d ,由T 3=15,b 1+b 2+b 3=15,可得b 2=5,故可设b 1=5-d ,b 3=5+d ,又a 1=1,a 2=3,a 3=9, 由题意可得(5-d +1)(5+d +9)=(5+3)2, 解得d 1=2,d 2=-10.∵等差数列{b n }的各项为正,∴d >0,∴d =2,b 1=3,∴T n =3n +n n -1 2×2=n 2+2n .。
第2讲 等差数列及其前n 项和,)1.等差数列的有关概念 (1)定义假如一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2.3.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). (2)若k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }的公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.1.辨明两个易误点(1)要留意概念中的“从第2项起”.假如一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.(2)留意区分等差数列定义中同一个常数与常数的区分. 2.妙设等差数列中的项若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d ;若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元. 3.等差数列的四种推断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列. (3)通项公式法:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(4)前n 项和公式法:S n =An 2+Bn (A 、B 为常数)⇔{a n }是等差数列.1.教材习题改编 等差数列11,8,5,…,中-49是它的第几项( ) A .第19项 B .第20项 C .第21项D .第22项C a 1=11,d =8-11=-3, 所以a n =11+(n -1)×(-3)=-3n +14. 由-3n +14=-49,得n =21.故选C.2.教材习题改编 已知p :数列{a n }是等差数列,q :数列{a n }的通项公式a n =k 1n +k 2(k 1,k 2均为常数),则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件C 若{a n }是等差数列,不妨设公差为d . 所以a n =a 1+(n -1)d =dn +a 1-d , 令k 1=d ,k 2=a 1-d ,则a n =k 1n +k 2,若数列{a n }的通项公式a n =k 1n +k 2(k 1,k 2为常数,n ∈N *), 则当n ≥2且n ∈N *时,a n -1=k 1(n -1)+k 2, 所以a n -a n -1=k 1(常数)(n ≥2且n ∈N *), 所以{a n }为等差数列, 所以p 是q 的充要条件.3.教材习题改编 等差数列{a n }的前n 项之和为S n ,若a 5=6,则S 9为( ) A .45 B .54 C .63D .27B 法一:由于S 9=9(a 1+a 9)2=9a 5=9×6=54.故选B.法二:由a 5=6,得a 1+4d =6,所以S 9=9a 1+9×82d =9(a 1+4d )=9×6=54,故选B.4.(2021·金丽衢十二校联考)已知等差数列{a n }满足:a 3=13,a 13=33,则数列{a n }的公差为________.设等差数列{a n }的公差为d ,则d =a 13-a 313-3=33-1310=2.25.设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9d ×82=-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. 所以S 16=16×3+16×152×(-1)=-72.-72等差数列的基本运算(高频考点)等差数列基本量的计算是高考的常考内容,多消灭在选择题、填空题或解答题的第(1)问中,属简洁题. 高考对等差数列基本量计算的考查主要有以下三个命题角度: (1)求公差d 、项数n 或首项a 1; (2)求通项或特定项; (3)求前n 项和.(1)(2021·高考全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A .172B .192C .10D .12(2)设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( ) A .5B .6C .7D .8【解析】 (1)由于公差为1,所以S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.由于 S 8=4S 4,所以8a 1+28=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192,故选B.(2)法一:由题知S n =na 1+n (n -1)2d =n +n (n -1)=n 2,S n +2=(n +2)2,由S n +2-S n =36得,(n +2)2-n 2=4n +4=36,所以n =8.法二:S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8. 【答案】 (1)B (2)D等差数列基本运算的解题方法(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.角度一 求公差d 、项数n 或首项a 11.(2021·豫东、豫北十所名校联考)已知等差数列{a n }中,a 5=13,S 5=35,则公差d =( ) A .-2 B .-1 C .1D .3D 依题意,得⎩⎪⎨⎪⎧a 1+4d =13,5a 1+10d =35,解得⎩⎪⎨⎪⎧a 1=1,d =3,故选D.角度二 求通项或特定项2.(2022·高考全国卷乙)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97C 设等差数列{a n }的公差为d ,由于{a n }为等差数列,且S 9=9a 5=27,所以a 5=3.又a 10=8,解得5d =a 10-a 5=5,所以d =1,所以a 100=a 5+95d =98,选C.角度三 求前n 项和3.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27. 27等差数列的判定与证明已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.【解】 (1)证明:由题设知a n a n +1=λS n -1,a n +1a n +2=λS n +1-1,两式相减得a n +1(a n +2-a n )=λa n +1, 由于a n +1≠0, 所以a n +2-a n =λ.(2)由题设知a 1=1,a 1a 2=λS 1-1, 可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4. 故a n +2-a n =4,由此可得{a 2n -1}是首项为1, 公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2, 因此存在λ=4, 使得数列{a n }为等差数列.(1)推断证明一个数列是否是等差数列的解答题,常用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简洁推断.(2)用定义证明等差数列时,常接受两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必需加上“n ≥2”,否则n =1时,a 0无定义.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *).设b n =1a n -1(n ∈N *),求证:数列{b n }是等差数列.由于a n =2-1a n -1,所以a n +1=2-1a n.所以b n +1-b n =1a n +1-1-1a n -1,=12-1a n-1-1a n -1,=a n -1a n -1=1, 所以{b n }是首项为b 1=12-1=1,公差为1的等差数列.等差数列的性质及最值(1)在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( ) A .18 B .99 C .198D .297(2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________.(3)在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.【解析】 (1)由于a 3+a 9=27-a 6,2a 6=a 3+a 9,所以3a 6=27,所以a 6=9,所以S 11=112(a 1+a 11)=11a 6=99.(2)由于{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21.(3)当且仅当n =8时,S n 取得最大值,说明⎩⎪⎨⎪⎧a 8>0,a 9<0.所以⎩⎪⎨⎪⎧7+7d >0,7+8d <0.所以-1<d <-78.【答案】 (1)B (2)21 (3)⎝⎛⎭⎪⎫-1,-78应用等差数列的性质应留意的两点(1)在等差数列{a n }中,若m +n =p +q =2k (m 、n 、p 、q 、k ∈N *),则a m +a n =a p +a q =2a k 是常用的性质. (2)把握等差数列的性质,悉心争辩每共性质的使用条件及应用方法,认真分析项数、序号、项的值的特征,这是解题的突破口.1.已知等差数列{a n }的公差为2,项数是偶数,全部奇数项之和为15,全部偶数项之和为25,则这个数列的项数为( )A .10B .20C .30D .40A 设这个数列有2n 项,则由等差数列的性质可知:偶数项之和减去奇数项之和等于nd ,即25-15=2n ,故2n =10,即数列的项数为10.2.在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15B .S 16C .S 15或S 16D .S 17A 设{a n }的公差为d , 由于a 1=29,S 10=S 20,所以10a 1+10×92d =20a 1+20×192d ,解得d =-2,所以S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.所以当n =15时,S n 取得最大值.3.(2021·陕西省五校模拟)等差数列{a n }中,假如 a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66C 由等差数列的性质可知,2(a 2+a 5+a 8)=(a 1+a 4+a 7)+(a 3+a 6+a 9)=39+27=66, 所以a 2+a 5+a 8=33,所以数列{a n }前9项的和为66+33=99.,)——整体思想在等差数列中的应用在等差数列{a n }中,S 10=100,S 100=10,则S 110=________. 【解析】 法一:设数列{a n }的公差为d ,首项为a 1,则⎩⎪⎨⎪⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎪⎨⎪⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.法二:法一中两方程相减得 -90a 1-100×99-902d =90,所以a 1+110-12d =-1,所以S 110=110a 1+110(110-1)2d =-110.法三:由于S 100-S 10=(a 11+a 100)×902=-90,所以a 11+a 100=-2,所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110.【答案】 -110(1)法一是利用等差数列的前n 项和公式求解基本量,然后求和,是等差数列运算问题的常规思路.而法二、法三都突出了整体思想,分别把a 1+110-12d 、a 11+a 100看成了一个整体,解起来都很便利.(2)整体思想是一种重要的解题方法和技巧,这就要求同学要娴熟把握公式,理解其结构特征.已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________.法一:设数列{a n }的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D . 所以5+2D =10, 所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. 20,)1.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15B 设{a n }的公差为d ,由S 5=(a 2+a 4)·52⇒25=(3+a 4)·52⇒a 4=7,所以7=3+2d ⇒d =2,所以a 7=a 4+3d =7+3×2=13.2.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0C .14D .12B 由题知,a 2+a 4=2a 3=2, 又由于a 2a 4=34,数列{a n }单调递增,所以a 2=12,a 4=32.所以公差d =a 4-a 22=12.所以a 1=a 2-d =0. 3.在等差数列{a n }中,a 3+a 5+a 11+a 17=4,且其前n 项和为S n ,则S 17为( ) A .20 B .17 C .42D .84B 由a 3+a 5+a 11+a 17=4⇒2(a 4+a 14)=4⇒a 1+a 17=2,故S 17=17(a 1+a 17)2=17.4.(2021·东北三校联考(一))已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121B 设等差数列{b n }的公差为d ,则d =-14,由于a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=72=-112,则a 8=-109. 5.(2021·黄冈质检)在等差数列{a n }中,假如a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)=40+3×20=100.6.(2021·杭州重点中学联考)设S n 为等差数列{a n }的前n 项和,若a 4<0,a 5>|a 4|,则使S n >0成立的最小正整数n 为( )A .6B .7C .8D .9C 在等差数列{a n }中 ,由于a 4<0,a 5>|a 4|,所以a 5>0,a 5+a 4>0,S 7=7(a 1+a 7)2=7×2a 42=7a 4<0,S 8=8(a 1+a 8)2=8(a 4+a 5)2=4(a 4+a 5)>0.所以使S n >0成立的最小正整数n 为8,故选C.7.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为________. a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37. 所以m =37. 378.设S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=__________. 设{a n }的公差为d ,由题意知 ⎩⎪⎨⎪⎧2a 1+d =6a 1+6×52d ,a 1+3d =1,解得⎩⎪⎨⎪⎧a 1=7,d =-2,所以a 5=a 4+d =1+(-2)=-1.-19.若两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n n +3,则a 5b 5等于________.由于a 5=a 1+a 92,b 5=b 1+b 92,所以a 5b 5=a 1+a 92b 1+b 92=9(a 1+a 9)29(b 1+b 9)2=S 9T 9=7×99+3=214.21410.记等差数列{a n }的前n 项和为S n ,当k ≥2时,若S k -1=8,S k =0,S k +1=-10,则S n 的最大值为________. 当k ≥2时,a k =S k -S k -1=-8,a k +1=S k +1-S k =-10,公差d =a k +1-a k =-2,S k =k (a 1+a k )2=0,所以a 1+a k =0,所以a 1=8,所以a n =-2n +10,由a n =0得n =5,所以S 4=S 5=20最大.2011.已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式.(1)证明:由于b n =1a n ,且a n =a n -12a n -1+1,所以b n +1=1a n +1=1a n2a n +1=2a n +1a n,所以b n +1-b n =2a n +1a n -1a n=2.又b 1=1a 1=1,所以数列{b n }是以1为首项,2为公差的等差数列.(2)由(1)知数列{b n }的通项公式为b n =1+(n -1)×2=2n -1,又b n =1a n ,所以a n =1b n =12n -1.所以数列{a n }的通项公式为a n =12n -1.12.已知等差数列{a n }中,S n 是前n 项的和,a 1=-2 017,S 2 0172 017-S 2 0152 015=2,则S 2 019的值为________.由S 2 0172 017-S 2 0152 015=a 1 009-a 1 008=2. 即{a n }的公差d =2,又a 1=-2 017,所以S 2 019=2 019×(-2 017)+2 019×2 0182×2=2 019.2 01913.各项均为正数的数列{a n }满足a 2n =4S n -2a n -1(n ∈N *),其中S n 为{a n }的前n 项和. (1)求a 1,a 2的值; (2)求数列{a n }的通项公式. (1)当n =1时,a 21=4S 1-2a 1-1, 即(a 1-1)2=0,解得a 1=1.当n =2时,a 22=4S 2-2a 2-1=4a 1+2a 2-1=3+2a 2, 解得a 2=3或a 2=-1(舍去). (2)a 2n =4S n -2a n -1,①a 2n +1=4S n +1-2a n +1-1.②②-①得a 2n +1-a 2n =4a n +1-2a n +1+2a n =2(a n +1+a n ), 即(a n +1-a n )(a n +1+a n )=2(a n +1+a n ).由于数列{a n }各项均为正数,所以a n +1+a n >0,a n +1-a n =2, 所以数列{a n }是首项为1,公差为2的等差数列. 所以a n =2n -1.14.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n -30,设数列{b n }的前n 项和为T n ,求T n 的最小值.由于2a n +1=a n +a n +2,所以a n +1-a n =a n +2-a n +1, 故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎪⎨⎪⎧a 1+2d =10,6a 1+15d =72,解得a 1=2,d =4. 所以a n =4n -2,则b n =12a n -30=2n -31,令⎩⎪⎨⎪⎧b n ≤0,b n +1≥0,即⎩⎪⎨⎪⎧2n -31≤0,2(n +1)-31≥0, 解得292≤n ≤312,由于n ∈N *,所以n =15,即数列{b n }的前15项均为负值,所以T 15最小. 由于数列{b n }的首项是-29,公差为2, 所以T 15=15(-29+2×15-31)2=-225.。
第四节 数列求和[考点要求] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法.(对应学生用书第108页)1.公式法(1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d ; (2)等比数列的前n 项和公式:S n =⎩⎨⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消(注意消项规律),从而求得前n 项和.裂项时常用的三种变形:①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1; ③1n +n +1=n +1-n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.(5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.一、思考辨析(正确的打“√”,错误的打“×”)(1)已知等差数列{a n }的公差为d ,则有1a n a n +1=1d ⎝⎛⎭⎪⎫1a n -1a n +1.( ) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( )(3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)利用倒序相加法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 二、教材改编1.数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1B .56C .16D .1302.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( ) A .2n +n 2-1 B .2n +1+n 2-1 C .2n +1+n 2-2D .2n +n -23.S n =12+12+38+…+n2n 等于( ) A .2n -n -12n B .2n +1-n -22nC .2n -n +12nD .2n +1-n +22n4.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=________.(对应学生用书第109页)考点1 分组转化法求和 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,则可采用分组求和法求{a n }的前n 项和. (2)通项公式为a n =⎩⎨⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.提醒:注意在含有字母的数列中对字母的分类讨论.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.[母题探究] 在本例(2)中,若条件不变求数列{b n }的前n 项和T n . [解] 由本例(1)知b n =2n +(-1)n n . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n 2-2; 当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ] =2n +1-2+n -12-n =2n +1-n 2-52.所以T n =⎩⎪⎨⎪⎧2n +1+n2-2,n 为偶数,2n +1-n 2-52,n 为奇数.常用并项求和法解答形如(-1)n a n 的数列求和问题,注意当n 奇偶性不定时,要对n 分奇数和偶数两种情况分别求解.对n 为奇数、偶数讨论数列求和时,一般先求n 为偶数时前n 项和T n .n 为奇数可用T n =T n -1+b n (n ≥2)或T n =T n +1-b n +1最好.已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5. (1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n . 考点2 裂项相消法求和形如a n =1n (n +k )(k 为非零常数)型a n =1n (n +k )=1k ⎝ ⎛⎭⎪⎫1n -1n +k .提醒:求和抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(2019·厦门一模)已知数列{a n }是公差为2的等差数列,数列{b n }满足b 1=6,b 1+b 22+b 33+…+b nn =a n +1.(1)求{a n },{b n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a n b n 的前n 项和.本例第(1)问在求{b n }的通项公式时灵活运用了数列前n 项和与项的关系,注意通项公式是否包含n =1的情况;第(2)问在求解中运用了裂项法,即若{a n }是等差数列,则1a n a n +1=1d ⎝⎛⎭⎪⎫1a n -1a n +1. [教师备选例题](2019·唐山五校联考)已知数列{a n }满足:1a 1+2a 2+…+n a n=38(32n -1),n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =log 3a n n ,求1b 1b 2+1b 2b 3+…+1b n b n +1.[解] 1a 1=38(32-1)=3,当n ≥2时,因为n a n =⎝ ⎛⎭⎪⎫1a 1+2a 2+…+n a n -⎝ ⎛⎭⎪⎫1a 1+2a 2+…+n -1a n -1 =38(32n -1)-38(32n -2-1) =32n -1,当n =1时,na n=32n -1也成立,所以a n =n32n -1.(2)b n =log 3a nn =-(2n -1), 因为1b n b n +1=1(2n -1)(2n +1)=12(12n -1-12n +1), 所以1b 1b 2+1b 2b 3+…+1b n b n +1=12[⎝⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1. (2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑nk =11S k =________.形如1n +k +n(k 为非零常数)型a n =1n +k +n=1k (n +k -n ).已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *,记数列{a n }的前n 项和为S n ,则S 2 019=( )A . 2 018-1B . 2 019-1C . 2 020-1D . 2 020+1运用分母有理化对分式1n +1+n正确变形并发现其前后项之间的抵消关系是求解本题的关键.求和S =11+3+13+5+…+1119+121=( ) A .5 B .4 C .10 D .9形如b n =(q -1)a n(a n +k )(a n +1+k )(q 为等比数列{a n }的公比)型b n =(q -1)a n (a n +k )(a n +1+k )=1a n +k -1a n +1+k.(2019·郑州模拟)已知数列{a n }的前n 项和为S n ,且a 2=8,S n =a n +12-n -1.(1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2×3n a n a n +1的前n 项和T n .本例第(1)问在求解通项公式时运用了构造法,形如a n +1=λa n +μ的数列递推关系求通项公式都可以采用此法;第(2)问运用了裂项相消法求和.已知 {a n }是等比数列,且a 2=12,a 5=116,若b n =a n +1(a n +1)(a n +1+1),则数列{b n }的前n 项和为( )A .2n -12(2n +1)B .2n -12n +1C .12n +1D .2n -12n +2形如a n =n +1n 2(n +2)2型a n =n +1n 2(n +2)2=14⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2. 正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564. (1)与不等式相结合考查裂项相消法求和问题应分两步:第一步,求和;第二步,利用作差法、放缩法、单调性等证明不等式.(2)放缩法常见的放缩技巧有: ①1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.②1k -1k +1<1k 2<1k -1-1k .③2(n +1-n )<1n<2(n -n -1).已知等比数列{a n }的前n 项和为S n ,满足S 4=2a 4-1,S 3=2a 3-1. (1)求{a n }的通项公式;(2)记b n =log 2(a n ·a n +1),数列{b n }的前n 项和为T n ,求证:1T 1+1T 2+…+1T n<2.考点3 错位相减法求和错位相减法求和的具体步骤 步骤1→写出S n =c 1+c 2+…+c n .步骤2→等式两边同乘等比数列的公比q ,即qS n =qc 1+qc 2+…+qc n . 步骤3→两式错位相减转化成等比数列求和.步骤4→两边同除以1-q ,求出S n .同时注意对q 是否为1进行讨论.(2019·莆田模拟)设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=2S n +1,数列{b n }满足a 1=b 1,点P (b n ,b n +1)在直线x -y +2=0上,n ∈N *.(1)求数列{a n },{b n }的通项公式; (2)设c n =b na n,求数列{c n }的前n 项和T n .本例巧妙地将数列{a n }及其前n 项和为S n ,数列与函数的关系等知识融合在一起,难度适中.求解的关键是将所给条件合理转化,并运用错位相减法求和.(2019·烟台一模)已知等差数列{a n }的公差是1,且a 1,a 3,a 9成等比数列. (1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2a n 的前n 项和T n .课外素养提升⑥ 数学建模—— 数列中等量关系的建立(对应学生用书第111页)2019全国卷Ⅰ理科21题将数列与概率知识巧妙的融合在一起,在考查概率知识的同时,突出考查学生借用数列的递推关系将实际问题转化为数学问题的能力.数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题,这就要求考生除熟练运用数列的有关概念外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解题的速度.直接借助等差(等比)数列的知识建立等量关系【例1】 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少15,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14.(1)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式; (2)至少经过几年,旅游业的总收入才能超过总投入? [解] (1)第1年投入为800万元, 第2年投入为800×⎝ ⎛⎭⎪⎫1-15万元,…,第n 年投入为800×⎝ ⎛⎭⎪⎫1-15n -1万元,所以,n 年内的总投入为:a n =800+800×⎝ ⎛⎭⎪⎫1-15+…+800×⎝ ⎛⎭⎪⎫1-15n -1=4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n ,第1年旅游业收入为400万元, 第2年旅游业收入为400×⎝ ⎛⎭⎪⎫1+14万元,…,第n 年旅游业收入400×⎝ ⎛⎭⎪⎫1+14n -1万元.所以,n 年内的旅游业总收入为b n =400+400×⎝ ⎛⎭⎪⎫1+14+…+400×⎝ ⎛⎭⎪⎫1+14n -1=1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1.(2)设至少经过n 年旅游业的总收入才能超过总投入,由此b n -a n >0, 化简得5×(45)n +2×(54)n -7>0,即1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1-4000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n >0,令x =⎝ ⎛⎭⎪⎫45n,代入上式得:5x 2-7x +2>0.解得x <25,或x >1(舍去). 即⎝ ⎛⎭⎪⎫45n <25,由此得n ≥5. ∴至少经过5年,旅游业的总收入才能超过总投入.[评析] 本题以函数思想为指导,以数列知识为工具,涉及函数建模、数列求和、不等式的解法等知识点,正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧.【素养提升练习】 公民在就业的第一年就交纳养老储备金a 1,以后每年交纳的数目均比上一年增加d (d >0),历年所交纳的储备金数目a 1,a 2,…,是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.如果固定年利率为r (r >0),那么,在第n 年末,第一年所交纳的储备金就变为a 1(1+r )n -1,第二年所交纳的储备金就变为a 2(1+r )n -2,…,以T n 表示到第n 年末所累计的储备金总额.求证:T n =A n +B n ,其中{A n }是一个等比数列,{B n }是一个等差数列. [解] T 1=a 1,对n ≥2反复使用上述关系式,得 T n =T n -1(1+r )+a n=T n -2(1+r )2+a n -1(1+r )+a n=a 1(1+r )n -1+a 2(1+r )n -2+…+a n -1(1+r )+a n ,① 在①式两端同乘1+r ,得(1+r )T n =a 1(1+r )n +a 2(1+r )n -1+…+a n -1(1+r )2+a n (1+r ),② ②-①,得rT n =a 1(1+r )n +d [(1+r )n -1+(1+r )n -2+…+(1+r )]-a n =dr [(1+r )n -1-r ]+a 1(1+r )n -a n . 即T n =a 1r +d r 2(1+r )n -dr n -a 1r +d r 2.如果记A n =a 1r +d r 2(1+r )n,B n =-a 1r +d r 2-d r n ,则T n =A n +B n ,其中{A n }是以a 1r +dr 2(1+r )为首项,以1+r (r >0)为公比的等比数列;{B n }是以-a 1r +d r 2-d r 为首项,-dr 为公差的等差数列.借助数列的递推关系建立等量关系【例2】 大学生自主创业已成为当代潮流.某大学大三学生夏某今年一月初向银行贷款两万元作开店资金,全部用作批发某种商品.银行贷款的年利率为6%,约定一年后一次还清贷款.已知夏某每月月底获得的利润是该月月初投入资金的15%,每月月底需要交纳个人所得税为该月所获利润的20%,当月房租等其他开支1 500元,余款作为资金全部投入批发该商品再经营,如此继续,假定每月月底该商品能全部卖出.(1)设夏某第n 个月月底余a n 元,第n +1个月月底余a n +1元,写出a 1的值并建立a n +1与a n 的递推关系;(2)预计年底夏某还清银行贷款后的纯收入.(参考数据:1.1211≈3.48,1.1212≈3.90,0.1211≈7.43×10-11,0.1212≈8.92×10-12) [解] (1)依题意,a 1=20 000(1+15%)-20 000×15%×20%-1 500=20 900(元), a n +1=a n (1+15%)-a n ×15%×20%-1 500 =1.12a n -1500(n ∈N *,1≤n ≤11). (2)令a n +1+λ=1.12(a n +λ),则 a n +1=1.12a n +0.12λ,对比(1)中的递推公式,得λ=-12 500. 则a n -12 500=(20 900-12 500)1.12n -1, 即a n =8 400×1.12n -1+12 500.则a 12=8 400×1.1211+12 500≈41 732(元).又年底偿还银行本利总计20 000(1+6%)=21 200(元), 故该生还清银行贷款后纯收入41 732-21 200=20 532(元).[评析] (1)先求出a 1的值,并依据题设条件得出a n +1与a n 的递推关系;(2)利用构造法求得{a n }的通项公式并求出相应值.【素养提升练习】 如图,P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n ),…,是曲线C :y 2=12x (y ≥0)上的点,A 1(a 1,0),A 2(a 2,0),…,A n (a n ,0),…,是x 轴正半轴上的点,且△A 0A 1P 1,△A 1A 2P 2,…,△A n -1A n P n ,…,均为斜边在x 轴上的等腰直角三角形(A 0为坐标原点).(1)写出a n -1、a n 和x n 之间的等量关系,以及a n -1、a n 和y n 之间的等量关系; (2)用数学归纳法证明a n =n (n +1)2(n ∈N *);(3)设b n =1a n +1+1a n +2+1a n +3+…+1a 2n,对所有n ∈N *,b n <log 8t 恒成立,求实数t 的取值范围.[解] (1)依题意,△A 0A 1P 1,△A 1A 2P 2,…,△A n -1A n P n ,…,均为斜边在x 轴上的等腰直角三角形(A 0为坐标原点),故有x n =a n -1+a n 2,y n =a n -a n -12.(2)证明:①当n =1时,可求得a 1=1=1×22,命题成立; ②假设当n =k 时,命题成立,即有a k =k (k +1)2. 则当n =k +1时,由归纳假设及(a k -a k -1)2=a k -1+a k , 得⎣⎢⎡⎦⎥⎤a k +1-k (k +1)22=k (k +1)2+a k +1.即(a k +1)2-(k 2+k +1)a k +1+k (k -1)2·(k +1)(k +2)2=0,解得a k +1=(k +1)(k +2)2(a k +1=k (k -1)2<a k ,不合题意,舍去),即当n =k +1时,命题成立.综上所述,对所有n ∈N *,a n =n (n +1)2. (3)b n =1a n +1+1a n +2+1a n +3+…+1a 2n=2(n +1)(n +2)+2(n +2)(n +3)+…+22n (2n +1)=2n +1-22n +1=2n 2n 2+3n +1=2⎝ ⎛⎭⎪⎫2n +1n +3.因为函数f (x )=2x +1x 在区间[1,+∞)上单调递增,所以当n =1时,b n 最大为13,即b n ≤13. 由题意,有13<log 8t ,所以t >2,所以,t ∈(2,+∞).。
第三节等比数列☆☆☆2021考纲考题考情☆☆☆考纲要求真题举例命题角度1.理解等比数列的概念;2.把握等比数列的通项公式与前n项和公式;3.了解等比数列与指数函数的关系。
2022,全国卷Ⅲ,17,12分(等比数列的证明、通项公式)2022,全国卷Ⅰ,15,5分(等比数列有关最值问题)2021,全国卷Ⅱ,4,5分(等比数列的计算)2021,全国卷Ⅱ,17,12分(等比数列的判定、基本运算与性质)主要以选择题、填空题的形式考查等比数列的基本运算与简洁性质。
解答题往往与等差数列、数列求和、不等式等问题综合考查。
微学问小题练自|主|排|查1.等比数列的有关概念(1)定义:①文字语言:从第2项起,每一项与它的前一项的比都等于同一个常数。
②符号语言:a n+1a n=q(n∈N*,q为非零常数)。
(2)等比中项:假如a,G,b成等比数列,那么G叫做a与b的等比中项。
即:G是a与b的等比中项⇔a,G,b成等比数列⇒G2=ab。
2.等比数列的有关公式(1)通项公式:a n=a1q n-1。
(2)前n项和公式:S n=⎩⎪⎨⎪⎧na1,q=1,a11-q n1-q=a1-a n q1-q,q≠1。
3.等比数列的性质(1)通项公式的推广:a n=a m·q n-m(m,n∈N*)。
(2)对任意的正整数m,n,p,q,若m+n=p+q,则a m·a n=a p·a q。
特殊地,若m+n=2p,则a m·a n=a2p。
(3)若等比数列前n项和为S n,则S m,S2m-S m,S3m-S2m仍成等比数列,即(S2m-S m)2=S m(S3m-S2m)(m∈N*,公比q≠-1)。
(4)数列{a n}是等比数列,则数列{pa n}(p≠0,p是常数)也是等比数列。
(5)在等比数列{a n}中,等距离取出若干项也构成一个等比数列,即a n,a n+k,a n+2k,a n+3k,…为等比数列,公比为q k。
大学数学课后习题答案(本文根据“大学数学课后习题答案”的题目要求,采用课后习题答案的格式来进行撰写)第一章:数列与数学归纳法1. 设数列{an}的通项公式为an = 2n + 1,求该数列的前五项。
答案:a1 = 2 * 1 + 1 = 3a2 = 2 * 2 + 1 = 5a3 = 2 * 3 + 1 = 7a4 = 2 * 4 + 1 = 9a5 = 2 * 5 + 1 = 112. 若数列{an}的首项为2,公差为3,求该数列的前四项的和。
答案:a1 = 2d = 3前四项和S4 = (2 + 2 + 3 * (4-1)) * 4 / 2 = (2 + 2 + 9) * 4 / 2 = 143. 等差数列{an}的前n项和Sn = 3n² + 2n,求该等差数列的首项和公差。
答案:Sn = 3n² + 2n对Sn进行展开得到:Sn = 3n² + 2n = (an - 2d)n / 2化简得:2an = 3n² + 2n + 4dn根据等差数列的通项公式an = a1 + (n-1)d,代入得:2(a1 + (n-1)d) = 3n² + 2n + 4dn化简得:2a1 - 2d = 3n² + 2n + 4dn由于等差数列的首项和公差与n无关,所以需要满足2a1 - 2d = 0解得:a1 = d第二章:函数与极限1. 求函数f(x) = 2x² - 3x + 1的零点。
答案:令f(x) = 0,解方程2x² - 3x + 1 = 0使用配方法,得到x = 1/2 和 x = 1。
2. 若函数f(x)的导函数为f'(x) = 3x² + 2x + 1,求f(x)的原函数表达式。
答案:由导函数的定义可知,原函数f(x)的导数为f'(x)即f(x) = ∫(3x² + 2x + 1) dx对f'(x)进行积分得到:f(x) = x³ + x² + x + C,其中C为任意常数。
数列习题及答案详解一、 选择题1.在数列{a n }中,a 1=1,a n =2a n -1+1,则a 5的值为( ). A .30 B .31 C .32 D .33解析 a 5=2a 4+1=2(2a 3+1)+1=22a 3+2+1=23a 2+22+2+1=24a 1+23+22+2+1=31. 答案 B2.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ). A .15 B .16 C .49 D .64 解析 由于S n =n 2,∴a 1=S 1=1.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,又a 1=1适合上式. ∴a n =2n -1,∴a 8=2×8-1=15. 答案 A3.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ).A .31B .32C .33D .34解析 由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎨⎧a 1=263,d =-43.∴S 8=8a 1+8×72d =32.答案 B4.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ).A .-12B .-2C .2 D.12解析 由题意知:q 3=a 5a 2=18,∴q =12.答案 D5.在等比数列{a n }中,a 4=4,则a 2·a 6等于( ). A .4 B .8 C .16 D .32 解析 由等比数列的性质得:a 2a 6=a 24=16. 答案 C6.设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n =( ). A.n 24+7n 4 B.n 23+5n 3 C.n 22+3n4D .n 2+n 7.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=( ).A .-11B .-8C .5D .11解析 设等比数列的首项为a 1,公比为q .因为8a 2+a 5=0,所以8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2,∴S 5S 2=)1(11)1(2151q a q q q a --⋅-- =1-q 51-q 2=-11. 答案 A8.等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( ).A .120B .70C .75D .100 解析 ∵)2(2)123(+=++=n n n n S n ,S nn =n +2.∴数列⎩⎨⎧⎭⎬⎫S n n 前10项的和为:(1+2+…+10)+20=75.答案 C9.设数列{(-1)n }的前n 项和为S n ,则对任意正整数n ,S n =( ).A.2]1)1[(--n nB. 2]1)1[(1+--n C. 2]1)1[(+-n D. 2]1)1[(--n解析 因为数列{(-1)n }是首项与公比均为-1的等比数列,所以S n =)1(1])1(1)[1(------n=2]1)1[(--n . 答案 D10.等比数列{a n }的前n 项和为S n ,若a 1=1,且4a 1,2a 2,a 3成等差数列,则S 4=( ). A .7 B .8 C .15 D .16解析 设数列{a n }的公比为q ,则4a 2=4a 1+a 3,∴4a 1q =4a 1+a 1q 2,即q 2-4q +4=0,∴q=2.∴S 4=1-241-2=15.答案 C 11.已知数列{a n }是各项均为正数的等比数列,数列{b n }是等差数列,且a 6=b 7,则有( ). A .a 3+a 9≤b 4+b 10 B .a 3+a 9≥b 4+b 10 C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小关系不确定解析 10476518218218121932222)(b b b a q a q q a q q a q a q a a a +====≥+=+=+12.已知等差数列{}n a 的前n 项和为)(*∈N n S n ,且7,373=-=S S ,那么数列{}n a 的公差=d ( ) A .1 B .2 C .3 D .4答案 A二、填空题13.若S n =1-2+3-4+…+(-1)n -1·n ,S 50=________. 解析 S 50=1-2+3-4+…+49-50 =(-1)×25=-25. 答案 -2514.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________.解析 设{a n }的公差为d ,由S 9=S 4及a 1=1,得9×1+9×82d =4×1+4×32d ,所以d =-16.又a k +a 4=0,所以0)]61)(14(1[)]61)(1(1[=--++--+k ,即k =10.答案 1015.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.解析 设竹子从上到下的容积依次为a 1,a 2,…,a 9,由题意可得a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,设等差数列{a n }的公差为d ,则有4a 1+6d =3①,3a 1+21d =4②,由①②可得d=766,a 1=1322,所以a 5=a 1+4d =1322+4×766=6766. 答案 676616. 已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________. 解析 当n =1时,a 1=S 1=3×12-2×1+1=2;当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.答案 a n =⎩⎪⎨⎪⎧2,n =16n -5,n ≥217. 等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.答案 -2 2n -1-12三、解答题18. 知数列{a n }的前n 项和S n 是n 的二次函数,且a 1=-2,a 2=2,S 3=6. (1)求S n ;(2)证明:数列{a n }是等差数列.(1)解 设S n =An 2+Bn +C (A ≠0),则⎩⎪⎨⎪⎧-2=A +B +C ,0=4A +2B +C ,6=9A +3B +C ,解得:A =2,B =-4,C =0.∴S n =2n 2-4n .(2)证明 当n =1时,a 1=S 1=-2.当n ≥2时,a n =S n -S n -1=2n 2-4n -[2(n -1)2-4(n -1)] =4n -6.∴a n =4n -6(n ∈N *).当n =1时符合上式,故a n =4n -6, ∴a n +1-a n =4,∴数列{a n }成等差数列.19. 知数列{a n }的前n 项和S n =-n 2+24n (n ∈N *). (1)求{a n }的通项公式;(2)当n 为何值时,S n 达到最大?最大值是多少? 解 (1)n =1时,a 1=S 1=23.n ≥2时,a n =S n -S n -1=-n 2+24n +(n -1)2-24(n -1)=-2n +25.经验证,a 1=23符合a n =-2n +25,∴a n =-2n +25(n ∈N *).(2)法一 ∵S n =-n 2+24n ,∴n =12时,S n 最大且S n =144. 法二 ∵a n =-2n +25,∴a n =-2n +25>0,有n <252.∴a 12>0,a 13<0,故S 12最大,最大值为144.20. d 为非零实数,a n =1n[C 1n d +2C 2n d 2+…+(n -1)C n -1n d n -1+n C n n d n ](n ∈N *). (1)写出a 1,a 2,a 3并判断{a n }是否为等比数列.若是,给出证明;若不是,说明理由; (2)设b n =nda n (n ∈N *),求数列{b n }的前n 项和S n . 解 (1)由已知可得a 1=d ,a 2=d (1+d ),a 3=d (1+d )2.当n ≥2,k ≥1时,k nC k n =C k -1n -1,因此 a n =∑n k =1k n C k n d k =∑n k =1C k -1n -1d k =d ∑n -1k =0C k n -1d k =d (d +1)n -1. 由此可见,当d ≠-1时,{a n }是以d 为首项,d +1为公比的等比数列; 当d =-1时,a 1=-1,a n =0(n ≥2),此时{a n }不是等比数列.(2)由(1)可知,a n =d (d +1)n -1,从而b n =nd 2(d +1)n -1S n =d 2[1+2(d +1)+3(d +1)2+…+(n -1)(d +1)n -2+n (d +1)n -1].① 当d =-1时,S n =d 2=1.当d ≠-1时,①式两边同乘d +1得(d +1)S n =d 2[(d +1)+2(d +1)2+…+(n -1)(d +1)n -1+n (d +1)n ].② ①,②式相减可得-dS n =d 2[1+(d +1)+(d +1)2+…+(d +1)n -1-n (d +1)n ]=⎥⎦⎤⎢⎣⎡+--+n n d n d d d )1(1)1(2.化简即得S n =(d +1)n (nd -1)+1.综上,S n =(d +1)n (nd -1)+1.21. 知数列{a n }是首项为a 1=14,公比q =14的等比数列,设n n a b 41log 32=+ (n ∈N *),数列{c n }满足c n =a n ·b n .(1)求数列{b n }的通项公式; (2)求数列{c n }的前n 项和S n .[尝试解答] (1)由题意,知a n =⎝⎛⎭⎫14n(n ∈N *), 又2log 341-=n n a b ,故b n =3n -2(n ∈N *).(2)由(1),知a n =⎝⎛⎭⎫14n,b n =3n -2(n ∈N *),∴c n =(3n -2)×⎝⎛⎭⎫14n (n ∈N *). ∴S n =1×14+4×⎝⎛⎭⎫142+7×⎝⎛⎭⎫143+…+(3n -5)×⎝⎛⎭⎫14n -1+(3n -2)×⎝⎛⎭⎫14n , 于是14S n =1×⎝⎛⎭⎫142+4×⎝⎛⎭⎫143+7×⎝⎛⎭⎫144+…+(3n -5)×⎝⎛⎭⎫14n +(3n -2)×⎝⎛⎭⎫14n +1, 两式相减,得 34S n =14+3⎣⎡⎦⎤⎝⎛⎭⎫142+⎝⎛⎭⎫143+…+⎝⎛⎭⎫14n -(3n -2)×⎝⎛⎭⎫14n +1=12-(3n +2)×⎝⎛⎭⎫14n +1, ∴S n =23-3n +23×⎝⎛⎭⎫14n(n ∈N *). 22. 数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1). (1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且T 3=15, 又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,求T n .解 (1)由a n +1=2S n +1,可得a n =2S n -1+1(n ≥2), 两式相减得a n +1-a n =2a n ,则a n +1=3a n (n ≥2). 又a 2=2S 1+1=3,∴a 2=3a 1.故{a n}是首项为1,公比为3的等比数列,∴a n=3n-1.(2)设{b n}的公差为d,由T3=15,b1+b2+b3=15,可得b2=5,故可设b1=5-d,b3=5+d,又a1=1,a2=3,a3=9,由题意可得(5-d+1)(5+d+9)=(5+3)2,解得d1=2,d2=-10.∵等差数列{b n}的各项为正,∴d>0,∴d=2,b1=3,∴T n=3n+n n-12×2=n2+2n.。