第二章 稳态极化曲线的测量和应用
- 格式:ppt
- 大小:5.32 MB
- 文档页数:31
实验八 极化曲线的测定一、实验目的1、掌握稳态恒电势法测定金属极化曲线的基本原理和测试方法。
2、了解极化曲线的意义和应用。
3、掌握恒电势仪的使用方法。
二、实验原理1、极化现象与极化曲线当电极处于平衡状态,电极上无电流通过时,这时的电极电势称为平衡电势。
当有电流明显地通过电极时,电极的平衡状态被破坏,电极电势偏离平衡值,而且随着电极上电流密度的增加,电极反应的不可逆程度也随之增大,电极电势将越来越偏离平衡电势。
这种由于有电流存在而造成电极电势偏离平衡电极电势的现象称为电极的极化。
在某一电流密度下,实际发生电解的电极电势与平衡电极电势之间的差值称为超电势。
阳极上由于超电势使电极电势变大,阴极上由于超电势使电极电势变小。
超电势的大小与流经电极的电流密度有关,电极电势(或超电势)与电流密度的关系曲线称为极化曲线,极化曲线的形状和变化规律反映了电化学过程的动力学特征。
除电流密度外,影响超电势的因素还有很多,如电极材料,电极的表面状态,温度,电解质的性质、浓度及溶液中的杂质等。
金属的阳极过程是指金属作为阳极时在一定的外电势下发生的阳极溶解过程,如下式所示:M →M n++n e此过程只有在电极电势正于其热力学电势时才能发生。
阳极的溶解速度(用电流密度表示)随电势变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变正反而大幅度降低,这种现象称为金属的钝化现象。
图3-8-1为钢在硫酸溶液中的阳极极化曲线。
图中曲线表明,从A 点开始,随着电势向正方向移动,电流密度也随之增加,电势超过B点后,电流密度随电势增加迅速减至最小,这是因为在金属表面生产了一层电阻高,耐腐蚀的钝化膜。
B 点对应的电势称为临界钝化电势,对应的电流称为临界钝化电流。
电势到达C点以后,随着电势的继续增加,电流却保持在一个基本不变的很小的数值上,该电流称为维钝电流,直到电势升到D 点,电流才有随着电势的上升而增大,表示阳极又发生了氧化过程,可能是高价金属离子产生也可能是水分子放电析出氧气,DE 段称为过钝化区。
极化曲线的测定极化曲线的测定⼀、实验⽬的掌握恒电位测定极化曲线的⽅法,测定碳钢(圆型钢筋)在碱性溶液中的恒电位阳极极化曲线及其极化电位。
⼆、实验原理实际的电化学过程并不是在热⼒学可逆条件下进⾏的。
在电流通过电极时,电极电位会偏离其平衡值,这种现象称为极化。
在外电流的作⽤下,阴极电位会偏离其平衡位置向负的⽅向移动,称为阴极极化;⽽阳极电位会偏离其平衡位置向正的⽅向移动,称为阳极极化。
在电化学研究中,常常测定极化曲线,即电极电位与电流密度的关系。
铁在硫酸溶液中典型的阳极极化曲线如图23.1所⽰,该曲线分为四个区域:电流密度i 阳极电位φ+图23.1 阳极极化曲线1.从点a 到点b 的电位范围称⾦属活化区。
此区域内的ab 线段是⾦属的正常阳极溶解,以铁电极为例,此时铁以⼆价形式进⼊溶液,即Fe → Fe 2+ + 2e-。
a 点即为⾦属的⾃然腐蚀电位。
2.从b 点到c 点称为钝化过渡区。
bc 线是由活化态到钝化态的转变过程,b 点所对应的电位称为致钝电位,其对应的电流密度ib 称为致钝电流密度,此时Fe 2+离⼦与溶液中的-24SO 离⼦形成4FeSO 沉淀层,阻碍了阳极反应进⾏,导致电流密度开始下降。
由于+H 不容易到达4FeSO 沉淀层的内部,因此铁表⾯的pH 逐步增⼤。
3.从c 点到d 点的电位范围称为钝化区。
由于⾦属表⾯状态发⽣变化,阳极溶解过程的过电位升⾼,⾦属的溶解速率急剧下降。
在此区域内的电流密度很⼩,基本上不随电位的变化⽽改变。
此时的电流密度称为维持钝化电流密度i m 。
对铁电极⽽⾔,此时32O Fe 在铁表⾯⽣成,形成致密的氧化膜,极⼤地阻碍了铁的溶解,出现钝化现象。
4.de 段的电位范围称为过钝化区。
在此区阳极电流密度⼜重新随电位增⼤⽽增⼤,⾦属的溶解速度⼜开始增⼤,这种在⼀定电位下使钝化了的⾦属⼜重新溶解的现象叫做过钝化。
电流密度增⼤的原因可能是产⽣了⾼价离⼦(如,铁以⾼价转⼊溶液),或者达到了氧的析出电位,析出氧⽓。
实验八 极化曲线的测定一、实验目的1、掌握稳态恒电势法测定金属极化曲线的基本原理和测试方法。
2、了解极化曲线的意义和应用。
3、掌握恒电势仪的使用方法。
二、实验原理1、极化现象与极化曲线当电极处于平衡状态,电极上无电流通过时,这时的电极电势称为平衡电势。
当有电流明显地通过电极时,电极的平衡状态被破坏,电极电势偏离平衡值,而且随着电极上电流密度的增加,电极反应的不可逆程度也随之增大,电极电势将越来越偏离平衡电势。
这种由于有电流存在而造成电极电势偏离平衡电极电势的现象称为电极的极化。
在某一电流密度下,实际发生电解的电极电势与平衡电极电势之间的差值称为超电势。
阳极上由于超电势使电极电势变大,阴极上由于超电势使电极电势变小。
超电势的大小与流经电极的电流密度有关,电极电势(或超电势)与电流密度的关系曲线称为极化曲线,极化曲线的形状和变化规律反映了电化学过程的动力学特征。
除电流密度外,影响超电势的因素还有很多,如电极材料,电极的表面状态,温度,电解质的性质、浓度及溶液中的杂质等。
金属的阳极过程是指金属作为阳极时在一定的外电势下发生的阳极溶解过程,如下式所示:M →M n++n e此过程只有在电极电势正于其热力学电势时才能发生。
阳极的溶解速度(用电流密度表示)随电势变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变正反而大幅度降低,这种现象称为金属的钝化现象。
图3-8-1为钢在硫酸溶液中的阳极极化曲线。
图中曲线表明,从A 点开始,随着电势向正方向移动,电流密度也随之增加,电势超过B点后,电流密度随电势增加迅速减至最小,这是因为在金属表面生产了一层电阻高,耐腐蚀的钝化膜。
B 点对应的电势称为临界钝化电势,对应的电流称为临界钝化电流。
电势到达C点以后,随着电势的继续增加,电流却保持在一个基本不变的很小的数值上,该电流称为维钝电流,直到电势升到D 点,电流才有随着电势的上升而增大,表示阳极又发生了氧化过程,可能是高价金属离子产生也可能是水分子放电析出氧气,DE 段称为过钝化区。
实验八极化曲线的测定一、实验目的1、掌握稳态恒电势法测定金属极化曲线的基本原理和测试方法。
2、了解极化曲线的意义和应用。
3、掌握恒电势仪的使用方法。
二、实验原理1、极化现象与极化曲线当电极处于平衡状态,电极上无电流通过时,这时的电极电势称为平衡电势。
当有电流明显地通过电极时,电极的平衡状态被破坏,电极电势偏离平衡值,而且随着电极上电流密度的增加,电极反应的不可逆程度也随之增大,电极电势将越来越偏离平衡电势。
这种由于有电流存在而造成电极电势偏离平衡电极电势的现象称为电极的极化。
在某一电流密度下,实际发生电解的电极电势与平衡电极电势之间的差值称为超电势。
阳极上由于超电势使电极电势变大,阴极上由于超电势使电极电势变小。
超电势的大小与流经电极的电流密度有关,电极电势(或超电势)与电流密度的关系曲线称为极化曲线,极化曲线的形状和变化规律反映了电化学过程的动力学特征。
除电流密度外,影响超电势的因素还有很多,如电极材料,电极的表面状态,温度,电解质的性质、浓度及溶液中的杂质等。
金属的阳极过程是指金属作为阳极时在一定的外电势下发生的阳极溶解过程,如下式所示:M →M n++ne此过程只有在电极电势正于其热力学电势时才能发生。
阳极的溶解速度(用电流密度表示)随电势变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变正反而大幅度降低,这种现象称为金属的钝化现象。
图3-8-1为钢在硫酸溶液中的阳极极化曲线。
图中曲线表明,从A 点开始,随着电势向正方向移动,电流密度也随之增加,电势超过B点后,电流密度随电势增加迅速减至最小,这是因为在金属表面生产了一层电阻高,耐腐蚀的钝化膜。
B 点对应的电势称为临界钝化电势,对应的电流称为临界钝化电流。
电势到达C 点以后,随着电势的继续增加,电流却保持在一个基本不变的很小的数值上,该电流称为维钝电流,直到电势升到D 点,电流才有随着电势的上升而增大,表示阳极又发生了氧化过程,可能是高价金属离子产生也可能是水分子放电析出氧气,DE 段称为过钝化区。
实验九极化曲线的测定【目的要求】1. 掌握稳态恒电位法测定金属极化曲线的基本原理和测试方法。
2. 了解极化曲线的意义和应用。
3. 掌握恒电位仪的使用方法。
【实验原理】1. 极化现象与极化曲线为了探索电极过程机理及影响电极过程的各种因素,必须对电极过程进行研究,其中极化曲线的测定是重要方法之一。
我们知道在研究可逆电池的电动势和电池反应时,电极上几乎没有电流通过,每个电极反应都是在接近于平衡状态下进行的,因此电极反应是可逆的。
但当有电流明显地通过电池时,电极的平衡状态被破坏,电极电势偏离平衡值,电极反应处于不可逆状态,而且随着电极上电流密度的增加,电极反应的不可逆程度也随之增大。
由于电流通过电极而导致电极电势偏离平衡值的现象称为电极的极化,描述电流密度与电极电势之间关系的曲线称作极化曲线,如图2-19-1所示。
图2-19-1 极化曲线A-B:活性溶解区;B:临界钝化点B-C:过渡钝化区;C-D:稳定钝化区D-E:超(过)钝化区金属的阳极过程是指金属作为阳极时在一定的外电势下发生的阳极溶解过程,如下式所示:M→M n++n e此过程只有在电极电势正于其热力学电势时才能发生。
阳极的溶解速度随电位变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变正反而大幅度降低,这种现象称为金属的钝化现象。
图2-19-1中曲线表明,从A点开始,随着电位向正方向移动,电流密度也随之增加,电势超过B点后,电流密度随电势增加迅速减至最小,这是因为在金属表面生产了一层电阻高,耐腐蚀的钝化膜。
B点对应的电势称为临界钝化电势,对应的电流称为临界钝化电流。
电势到达C点以后,随着电势的继续增加,电流却保持在一个基本不变的很小的数值上,该电流称为维钝电流,直到电势升到D点,电流才有随着电势的上升而增大,表示阳极又发生了氧化过程,可能是高价金属离子产生也可能是水分子放电析出氧气,DE段称为过钝化区。
实验八 极化曲线的测定一、实验目的1、掌握稳态恒电势法测定金属极化曲线的基本原理和测试方法。
2、了解极化曲线的意义和应用。
3、掌握恒电势仪的使用方法。
二、实验原理1、极化现象与极化曲线当电极处于平衡状态,电极上无电流通过时,这时的电极电势称为平衡电势。
当有电流明显地通过电极时,电极的平衡状态被破坏,电极电势偏离平衡值,而且随着电极上电流密度的增加,电极反应的不可逆程度也随之增大,电极电势将越来越偏离平衡电势。
这种由于有电流存在而造成电极电势偏离平衡电极电势的现象称为电极的极化。
在某一电流密度下,实际发生电解的电极电势与平衡电极电势之间的差值称为超电势。
阳极上由于超电势使电极电势变大,阴极上由于超电势使电极电势变小。
超电势的大小与流经电极的电流密度有关,电极电势(或超电势)与电流密度的关系曲线称为极化曲线,极化曲线的形状和变化规律反映了电化学过程的动力学特征。
除电流密度外,影响超电势的因素还有很多,如电极材料,电极的表面状态,温度,电解质的性质、浓度及溶液中的杂质等。
金属的阳极过程是指金属作为阳极时在一定的外电势下发生的阳极溶解过程,如下式所示:M →M n++n e此过程只有在电极电势正于其热力学电势时才能发生。
阳极的溶解速度(用电流密度表示)随电势变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变正反而大幅度降低,这种现象称为金属的钝化现象。
图3-8-1为钢在硫酸溶液中的阳极极化曲线。
图中曲线表明,从A 点开始,随着电势向正方向移动,电流密度也随之增加,电势超过B点后,电流密度随电势增加迅速减至最小,这是因为在金属表面生产了一层电阻高,耐腐蚀的钝化膜。
B 点对应的电势称为临界钝化电势,对应的电流称为临界钝化电流。
电势到达C点以后,随着电势的继续增加,电流却保持在一个基本不变的很小的数值上,该电流称为维钝电流,直到电势升到D 点,电流才有随着电势的上升而增大,表示阳极又发生了氧化过程,可能是高价金属离子产生也可能是水分子放电析出氧气,DE 段称为过钝化区。
§2-1 稳态法的特点??§2-2 控制电流法与控制电位法??§2-3 三电极体系与电流和电位的测定??§2-4 稳态极化曲线的测定??§2-5 旋转圆盘电极及其应用??§2-6 稳态极化曲线的应用本章重点??基本概念:稳态法、控制电流法、控制电位法、阶跃法、慢扫描法等??恒电位仪控制电位的基本原理,恒电位仪性能评定??测量电池设计的基本要求??阶跃法与慢扫描法的测量电路图及其特点??如何选择电位测量仪器??旋转圆盘电极的特点及应用第一节稳态法的特点??一.概念??稳态:在给定的时间间隔内,电化学系统的参量(如电位、电流、浓度分布、电极表面状态等)趋于稳定,即体系的各参数变化甚微时,该体系的状态叫做电化学稳态,简称稳态。
??稳态法:在电化学过程达到稳态后,测定电流密度与电极电位(过电位)之间关系的实验研究方法。
第一节稳态法的特点??二.稳态法的特点??1.稳态法中数据测量间隔时间长为了测定稳态极化曲线,必须等电化学过程达到稳态时才可测量。
而要使电极过程达到稳态,往往需要一段时间,这个时间长短视体系和实验条件而定。
通常取决于:??双电层充电??传质过程??电极表面状态第一节稳态法的特点??2.稳态测量时,通过电极/溶液界面的外电流全部消耗于电极反应i外i反i充0;稳态法中,外电流与双电层充电、吸脱附无关,稳态电流全部由电极反应所产生,所以极化曲线完全反映电极反应过程的规律。
??3.扩散(传质)过程对稳态测量有重要影响。
第一节稳态法的特点??三.稳态测试方法分类:??按自变量的控制方式分:控制电流法与控制电位法??按自变量的给定方式分:手动逐点式、阶跃法与慢扫描法第二节控制电流法与控制电位法一.控制电流法(恒电流法)??控制流过研究电极的电流,使其按指定的规律变化,同时测量相应的电极电位的方法。
??实现稳态恒电流法的关键:对给定的每一电流值应维持恒定,使其不受电解池阻抗变化的影响。