附录四:公务员考试基础几何公式
- 格式:pdf
- 大小:65.76 KB
- 文档页数:2
一、基础代数公式1. 平方差公式:(a+b)³(a-b)=a2-b22. 完全平方公式:(a±b)2=a2±2ab+b2完全立方公式:(a±b)3=(a±b)(a2 ab+b2)3. 同底数幂相乘: am³an=am+n(m、n为正整数,a≠0)同底数幂相除:am÷an=am-n(m、n为正整数,a≠0)a0=1(a≠0)a-p=(a≠0,p为正整数)4. 等差数列:(1)sn ==na1+ n(n-1)d;(2)an=a1+(n-1)d;(3)n =+1;(4)若a,A,b成等差数列,则:2A=a+b;(5)若m+n=k+i,则:am+an=ak+ai ;(其中:n为项数,a1为首项,an为末项,d为公差,sn为等差数列前n项的和)5. 等比数列:(1)an=a1q-1;(2)sn =(q 1)(3)若a,G,b成等比数列,则:G2=ab;(4)若m+n=k+i,则:am²an=ak²ai ;(5)am-an=(m-n)d(6)=q(m-n)(其中:n为项数,a1为首项,an为末项,q为公比,sn为等比数列前n项的和)6.一元二次方程求根公式:ax2+bx+c=a(x-x1)(x-x2)其中:x1= ;x2= (b2-4ac 0)根与系数的关系:x1+x2=- ,x1²x2=二、基础几何公式1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
(2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。
(3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。
(4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。
最新公务员考试常用数学公式总结1. 平方差公式:(a +b )·(a -b )=a 2-b 22. 完全平方公式:(a ±b)2=a 2±2ab +b 23. 完全立方公式:(a ±b)3=(a ±b )(a 2 ab+b 2)4. 立方和差公式:a 3+b 3=(a ±b)(a 2+ ab+b 2)5. a m ·a n =a m +n a m ÷a n =a m -n (a m )n =a mn (ab)n =a n ·b n(1)s n =2)(1n a a n +⨯=na 1+21n(n-1)d ;(2)a n =a 1+(n -1)d ; (3)项数n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2 (其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)n 1(2)s n =qq a n -11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nma a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)(1)一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aacb b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b,x 1·x 2=ac(2)ab b a 2≥+ ab b a ≥+2)2(ab b a 222≥+ abc c b a ≥++3)3( (3)abc c b a 3222≥++ abc c b a 33≥++ 推广:n n n x x x n x x x x ......21321≥++++(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。
数学公式汇总一、基础代数公式 1. 平方差公式:(a +b )×(a -b )=a 2-b 2 2. 完全平方公式:(a±b)2=a 2±2ab +b 2 完全立方公式:(a ±b )3=(a±b)(a 2 ab+b 2)3. 同底数幂相乘: a m ×a n =a m +n (m 、n 为正整数,a≠0)同底数幂相除:a m ÷a n =a m -n (m 、n 为正整数,a≠0) a 0=1(a≠0)a -p =pa 1(a≠0,p 为正整数) 4. 等差数列: (1)s n =2)(1n a a n ⨯+=na 1+21n(n-1)d ; (2)a n =a 1+(n -1)d ; (3)n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) 5. 等比数列:(1)a n =a 1q -1;(2)s n =qq a n -11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nma a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和) 6.一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aacb b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b ,x 1·x 2=ac二、基础几何公式1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
国家公务员常用数学公式汇总!!!【中公教育】分享一、基础代数公式1. 平方差公式:(a+b)³(a-b)=a2-b22. 完全平方公式:(a±b)2=a2±2ab+b2完全立方公式:(a±b)3=(a±b)(a2 ab+b2)3. 同底数幂相乘: am³an=am+n(m、n为正整数,a≠0)同底数幂相除:am÷an=am-n(m、n为正整数,a≠0)a0=1(a≠0)a-p=(a≠0,p为正整数)4. 等差数列:(1)sn ==na1+ n(n-1)d;(2)an=a1+(n-1)d;(3)n =+1;(4)若a,A,b成等差数列,则:2A=a+b;(5)若m+n=k+i,则:am+an=ak+ai ;(其中:n为项数,a1为首项,an为末项,d为公差,sn为等差数列前n项的和)5. 等比数列:(1)an=a1q-1;(2)sn =(q 1)(3)若a,G,b成等比数列,则:G2=ab;(4)若m+n=k+i,则:am²an=ak²ai ;(5)am-an=(m-n)d(6)=q(m-n)(其中:n为项数,a1为首项,an为末项,q为公比,sn为等比数列前n项的和)6.一元二次方程求根公式:ax2+bx+c=a(x-x1)(x-x2)其中:x1= ;x2= (b2-4ac 0)根与系数的关系:x1+x2=- ,x1²x2=二、基础几何公式1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
(2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。
(3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。
一、基础代数公式1. 平方差公式:(a+b)×(a-b)=a2-b22. 完全平方公式:(a±b)2=a2±2ab+b2完全立方公式:(a±b)3=(a±b)(a2 ab+b2)3. 同底数幂相乘: am×an=am+n(m、n为正整数,a≠0)同底数幂相除:am÷an=am-n(m、n为正整数,a≠0)a0=1(a≠0)a-p= (a≠0,p为正整数)4. 等差数列:(1)sn = =na1+ n(n-1)d;(2)an=a1+(n-1)d;(3)n = +1;(4)若a,A,b成等差数列,则:2A=a+b;(5)若m+n=k+i,则:am+an=ak+ai ;(其中:n为项数,a1为首项,an为末项,d为公差,sn为等差数列前n项的和)5. 等比数列:(1)an=a1q-1;(2)sn = (q 1)(3)若a,G,b成等比数列,则:G2=ab;(4)若m+n=k+i,则:am?an=ak?ai ;(5)am-an=(m-n)d(6) =q(m-n)(其中:n为项数,a1为首项,an为末项,q为公比,sn为等比数列前n项的和)6.一元二次方程求根公式:ax2+bx+c=a(x-x1)(x-x2)其中:x1= ;x2= (b2-4ac 0)根与系数的关系:x1+x2=- ,x1?x2=二、基础几何公式1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
(2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。
(3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。
(4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。
公考常用数学公式一、基础代数公式 1. 等差数列: (1)s n =2)(1na a n ⨯+=na 1+21n(n-1)d ; (2)a n =a 1+(n -1)d ;(3)n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ;(5)若m+n=k+i ,则:a m +a n =a k +a i ;(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) 2. 等比数列: (1)a n =a 1qn -1; (2)s n =qq a n-11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nm a a =q (m-n)(其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和) 二、基础几何公式 1. 三角形:内心:角平分线的交点叫做内心;内心到三角形三边的距离相等。
重心:中线的交点叫做重心;重心到每边中点的距离等于这边中线的三分之一。
垂线:高线的交点叫做垂线;三角形的一个顶点与垂心连线必垂直于对边。
外心:三角形三边的垂直平分线的交点,叫做三角形的外心。
外心到三角形的三个顶点的距离相等。
2. 面积公式:正方形=边长×边长; 长方形= 长×宽; 三角形=21× 底×高;梯形 =2高(上底+下底)⨯; 圆形 =πR 2 平行四边形=底×高扇形 =360n πR 2正方体=6×边长×边长 长方体=2×(长×宽+宽×高+长×高); 圆柱体=2πr 2+2πrh ; 球的表面积=4πR 2 3. 体积公式正方体=边长×边长×边长; 长方体=长×宽×高;圆柱体=底面积×高=Sh =πr 2h圆锥=31πr 2h 球=334R π4. 与圆有关的公式圆周长公式:C =2πR =πd (其中R 为圆半径,d 为圆直径,π≈3.1415926≈10);n的圆心角所对的弧长l 公式:l =180R n π;扇形的面积: (1)S 扇=360n πR 2; (2)S 扇=21lR ;若圆锥的底面半径为r ,母线长为l ,则它的侧面积:S 侧=πr l ; 圆锥的体积:V =31Sh =31πr 2h 。
以下公务员常用数学公式汇总,引用自:数学公式大全一、基础代数公式1. 平方差公式:(a+b)×(a-b)=a2-b22. 完全平方公式:(a±b)2=a2±2ab+b2完全立方公式:(a±b)3=(a±b)(a2 ab b2)3. 同底数幂相乘: am×an=am+n(m、n为正整数,a≠0)同底数幂相除:am÷an=am-n(m、n为正整数,a≠0)a0=1(a≠0)a-p=(a≠0,p为正整数)4. 等差数列:(1)sn ==na1 n(n-1)d;(2)an=a1+(n-1)d;(3)n =+1;(4)若a,A,b成等差数列,则:2A=a b;(5)若m n=k i,则:am an=ak ai ;(其中:n为项数,a1为首项,an为末项,d为公役,sn为等差数列前n项的和)5. 等比数列:(1)an=a1q-1;(2)sn =(q 1)(3)若a,G,b成等比数列,则:G2=ab;(4)若m n=k i,则:am·an=ak·ai ;(5)am-an=(m-n)d(6)=q(m-n)(其中:n为项数,a1为首项,an为末项,q为公比,sn为等比数列前n项的和)6.一元二次方程求根公式:ax2 bx c=a(x-x1)(x-x2)其中:x1= ;x2= (b2-4ac 0)根与系数的瓜葛:x1 x2=- ,x1·x2=二、基础几何公式1. 三角学形:不在同一直线上的三点可以构成1个三角学形;三角学形内角和等于180°;三角学形中任两边之和大于第三边、任双方之差小于第三边;(1)角等分线:三角学形1个的角的等分线和这个角的对于边相交,这个角的顶点和相交的点之间的线段,叫做三角学形的角的等分线。
(2)三角学形的中线:保持三角学形1个顶点和它对于边中点的线段叫做三角学形的中线。
(3)三化学公式角学形的高:三角学形1个顶点到它的对于边所在直线的垂线段,叫做三角学形的高。
国家公务员| 事业单位 | 村官 | 选调生 | 教师招聘 | 银行招聘 | 信用社 | 乡镇公务员| 各省公务员公务员行测知几何华图教育 孟程程 历年公务员录用考试《行政能力测验》中数学运算中的几何问题是考察的重点题型之一,几何问题也是考生得分的重点题型。
在这里华图公务员考试研究中心简要介绍几何问题的基本解法。
一、几何问题的基本公式、基本的几何特性和定理(一)几何问题基本公式1.常用周长计算公式正方形周长4C a =正方形; 长方形周长2()C a b =+长方形 圆形周长2C R π=圆; 扇形周长R R n c 22360+⋅=π扇 2.常用面积计算公式正方形面积2S a = ;长方形面积S ab = ; 圆形面积2O S R π=;三角形面积12S ah ∆=; 平行四边形面积S ah =; 梯形面积()12S a b h =+梯形; 扇形面积2360n S R π=︒扇形 3.常用表面积计算公式国家公务员| 事业单位 | 村官 | 选调生 | 教师招聘 | 银行招聘 | 信用社 | 乡镇公务员| 各省公务员正方体的表面积26a = ;长方体的表面积222ab bc ac =++; 球的表面积224R D ππ== ;圆柱的表面积222Rh R ππ=+,侧面积2Rh π=; 4.常用的体积公式 正方体的体积3a =;长方体的体积abc =; 球的体积334136R D ππ==; 圆柱的体积2R h π=; 圆锥的体积213R h π= (二)基本的几何特性和定理1.三角形的性质三角形的两边之和大于第三边,三角形的两边之差小于第三边。
2.几何特性若将一个图形尺度扩大N 倍,则:对应角度不变;对应周长变为原来的N 倍;面积变为原来的2N 倍;体积变为原来的3N 倍。
3.几何最值定理平面图形中,若周长一定,越接近于圆,面积越大;若面积一定,越接近于圆,周长越小。
立体图形中,若表面积一定,越接近于球,体积越大;若体积一定,越接近于球,表面积越小。
常用数学公式汇总(精华版)一、基础代数公式1.平方差公式:(a+b)×(a-b)=a 2-b 22.完全平方公式:(a±b)2=a 2±2ab+b2完全立方公式:(a±b)3=(a±b)(a 2 ab+b 2)3.同底数幂相乘:a m ×a n =a m+n (m、n 为正整数,a≠0)同底数幂相除:a m÷a n=am-n(m、n 为正整数,a≠0)a 0=1(a≠0)a -p =p a1(a≠0,p 为正整数)4.等差数列:(1)s n =2)(1n a a n ⨯+=na 1+21n(n-1)d;(2)a n =a 1+(n-1)d;(3)n =da a n 1-+1;(4)若a,A,b 成等差数列,则:2A=a+b;(5)若m+n=k+i,则:a m +a n =a k +a i ;(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)5.等比数列:(1)a n =a 1q -1;(2)s n =qq a n -11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab;(4)若m+n=k+i,则:a m ·a n =a k ·a i ;(5)a m -a n =(m-n)d(6)nm a a =q(m-n)(其中:n 为项数,a1为首项,an 为末项,q 为公比,sn 为等比数列前n 项的和)6.一元二次方程求根公式:ax2+bx+c=a(x-x1)(x-x2)其中:x1=a ac b b 242-+-;x2=a acb b 242---(b2-4ac ≥0)根与系数的关系:x1+x2=-a b ,x1·x2=a c二、基础几何公式1.三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
国考常用公式每年,全国的学生们都会参加国家公务员考试,以期获得一份有活力的政府工作。
为了通过国家公务员考试,考生们需要熟知一些常用的数学公式,这也是考生们备考的重要环节。
下面,就为大家总结一下国考数学考试中常用的公式。
1.间公式:(1)椭球面积公式:S=4πa2b其中,a为长轴,b为短轴。
(2)长短轴距公式:c2=a2+b2其中,a,b分别为长轴长、短轴长,c为长短轴距。
2. 三角函数公式:(1)正弦定理:a=b sin C其中,a为与夹角C对应的边,b为与夹角C相邻的边。
(2)余弦定理:a2=b2+c2-2bc cosA其中,a,b,c为三角形的三边,A为两个边的夹角。
(3)三角形面积公式:S=1/2bc sin A其中,b,c为三角形的两边长,A为两边的夹角。
(4)反余弦定理:cosC=(a2+b2-c2)/ 2ab其中,a,b,c分别为三角形的三边长,C为两个边的夹角。
3.何公式:(1)圆的面积公式:S=πr2其中,r为圆的半径。
(2)正方形的面积公式:S=a2其中,a为正方形的边长。
(3)矩形的面积公式:S=ab其中,a,b分别为矩形的长和宽。
(4)梯形的面积公式:S=(a+b)/2h其中,a,b分别为梯形的上底和下底,h为梯形的高。
4.积分公式:(1)求导公式:f(x)=limh→0 (f(x + h) - f(x))/h其中,f(x)代表x处函数f(x)的导数,h是一个极小的正数,表示x和x+h点的距离。
(2)极限公式:limx→a f(x) = L其中,f(x)代表x处的函数值,a表示x趋近的值,L表示当x 趋近于a时,函数f(x)的极限值。
(3)积分公式:∫f(x)dx=F(x)+C其中,f(x)为待求积函数,F(x)为积分的变量,C为积分的常数。
以上就是国考数学考试常用的公式,考生们应该熟练掌握这些公式,运用在考试中。
只有彻底掌握了这些公式,才能确保考试时不会遇到瓶颈。
所以,考生们可以在平时多进行练习,以免因熟练度不够而影响最终的考试成绩。
公务员考试基础几何公式
1.常用周长公式:
1、三角形(一般三角形,海伦公式)周长L=a+b+c(a,b,c为三角形的三个边的长)
2、长方形周长L=2(a+b)(a,b为长方形相邻边的长)
3、正方形周长L=4a
4、梯形周长L=a+b+c+d(a:上底,b:下底,c,d两个腰的长,下同)
5、圆周长L=2πr(π:圆周率,r:圆的半径)
6、若半径为R,扇形所对的圆心角为n°,那么扇形周长:C=2R+nπR÷180
7、半圆的周长=πr+2r=πd/2+d
注意:处理三角形周长问题时要注意“三角形两边和大于第三边,两边差小于第三边。
”
2.常用面积公式:
长方形:S=ab{长方形面积=长×宽}
正方形:S=a²{正方形面积=边长×边长}
平行四边形:S=ab{平行四边形面积=底×高}
三角形:S=ab÷2{三角形面积=底×高÷2}
梯形:S=(a+b)×h÷2{梯形面积=(上底+下底)×高÷2}
圆形(正圆):S=∏r²{圆形(正圆)面积=圆周率×半径×半径}
扇形:S=∏r²×n/360{扇形面积=圆周率×半径×半径×扇形角度/360}
长方体表面积:S=2(ab+ac+bc){长方体表面积=(长×宽+长×高+宽×高)×2}
正方体表面积:S=6a²{正方体表面积=棱长×棱长×6}
球体(正球)表面积:S=4∏r²{球体(正球)表面积=圆周率×半径×半径×4}
椭圆S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).
3.常用角度公式:
三角形内角和180°,N边形内角和为(N-2)×180°
4.常用表面积公式:
正方体表面积=6a²;长方体表面积=2ab+2bc+2ac;球的表面积;
圆柱的表面积,侧面积,底面积
5.常用体积公式:
正方体的体积=a³;长方体的体积=abc;球的体积;
圆柱的体积;圆锥的体积
6.与圆有关的公式
设圆的半径为r,点到圆心的距离为d,则有:
(1)d﹤r:点在圆内(即圆的内部是到圆心的距离小于半径的点的集合);
(2)d=r:点在圆上(即圆上部分是到圆心的距离等于半径的点的集合);
(3)d﹥r:点在圆外(即圆的外部是到圆心的距离大于半径的点的集合);
线与圆的位置关系的性质和判定:
如果⊙O的半径为r,圆心O到直线的距离为d,那么:
(1)直线与⊙O相交:d﹤r;
(2)直线与⊙O相切:d=r;
(3)直线与⊙O相离:d﹥r;
圆周长公式:C=2πR=πd(其中R为圆半径,d为圆直径,π≈3.1415926≈);
圆心角所对的弧长的计算公式:
若圆锥的底面半径为r,母线长为l,则它的侧面积:S侧=πr;
圆锥的体积:V=Sh=πr2h。
7.三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两
边之和大于第三边、任两边之差小于第三边;
(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
(2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。
(3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。
(4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。
(5)内心:角平分线的交点叫做内心;内心到三角形三边的距离相等。
重心:中线的交点叫做重心;重心到每边中点的距离等于这边中线的三分之一。
垂线:高线的交点叫做垂线;三角形的一个顶点与垂心连线必垂直于对边。
外心:三角形三边的垂直平分线的交点,叫做三角形的外心。
外心到三角形的三个顶点的距离相等。
直角三角形:有一个角为90度的三角形,就是直角三角形。
直角三角形的性质:
(1)直角三角形两个锐角互余;
(2)直角三角形斜边上的中线等于斜边的一半;
(3)直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;
(4)直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角是30°;
(5)直角三角形中,c²=a²+b²(其中:a、b为两直角边长,c为斜边长);
(6)直角三角形的外接圆半径,同时也是斜边上的中线;
直角三角形的判定:
(1)有一个角为90°;
(2)边上的中线等于这条边长的一半;
(3)若c²=a²+b²,则以a、b、c为边的三角形是直角三角形;
8.常用几何性质:
若将一个图形扩大N倍,则:对应角度仍为原来1倍;对应长度变为原来的N+1倍;面积变为原来的(N+1)²倍;体积变为原来的(N+1)³倍。
不规则图形常用解题技巧:割补法公式法。