XRD技术基础知识讲义
- 格式:doc
- 大小:576.00 KB
- 文档页数:22
一文瞧懂XRD基本原理(必收藏)XRD全称X射线衍射(X-Ray Diffraction),利用X射线在晶体中的衍射现象来获得衍射后X射线信号特征,经过处理得到衍射图谱。
利用谱图信息不仅可以实现常规显微镜的确定物相,并拥有“透视眼”来瞧晶体内部就是否存在缺陷(位错)与晶格缺陷等,下面就让咱们来简要的了解下XRD的原理及应用与分析方法,下面先从XRD原理学习开始。
1X射线衍射仪的基本构造XRD衍射仪的适用性很广,通常用于测量粉末、单晶或多晶体等块体材料,并拥有检测快速、操作简单、数据处理方便等优点,就是一个标标准准的“良心产品”。
在X射线衍射仪的世界里, X射线发生系统(产生X射线)就是“太阳”,测角及探测系统(测量2θ与获得衍射信息)就是其“眼睛”,记录与数据处理系统就是其“大脑”,三者协同工作,输出衍射图谱。
在三者中测角仪就是核心部件,其制作较为复杂,直接影响实验数据的精度,毕竟眼睛就是心灵的窗户嘛!下面就是X射线衍射仪与测角仪的结构简图。
XRD结构简图XRD立式测角仪2X射线产生原理X射线就是一种频率很高的电磁波,其波长为10-8-10-12m远比可见光短得多,因为其穿透力很强,并且其在磁场中的传播方向不受影响。
小提示:X射线具有一定的辐射,对人体有一定的副作用,目前主要铅玻璃来进行屏蔽。
X射线就是由高速运动的电子流或其她高能辐射流(γ射线、中子流等)流与其她物质发生碰撞时骤然减速,且与该物质中的内层原子相互作用而产生的。
X射线管的结构不同的靶材,因为其原子序数不同,外层的电子排布也不一样,所以产生的特征X射线波长不同。
使用波长较长的靶材的XRD所得的衍射图峰位沿2θ轴有规律拉伸;使用短波长靶材的XRD谱沿2θ轴有规律地被压缩。
但需要注意的就是,不管使用何种靶材的X 射线管,从所得到的衍射谱中获得样品面间距d值就是一致的,与靶材无关。
辐射波长对衍射峰强的关系就是:衍射峰强主要取决于晶体结构,但就是样品的质量吸收系数(MAC)与入射线的波长有关,因此同一样品用不同耙获得的图谱上的衍射峰强度会有稍微的差别。
1、什么是X射线,X射线是什么波?X射线,又叫X光,英文简称X-ray,是一种电磁波。
它的波长介于紫外线和伽玛射线之间,它的波长分布在可见光之外,因此肉眼无法观察到。
常用的X射线波长分布在0。
5埃~2。
5埃。
正因为它是一种电磁波,因此它与无线电波、红外线、可见光、伽玛射线等,没有本质区别,只是波长不同而已。
X-ray,X射线电磁波谱图•X射线既然是一种波,因此在特定条件下,会产生X射线干涉和衍射现象,也可以用频率、波长来表征;•X射线还具有料子性,它能产生光电效应、荧光辐射和康普顿散射等现象。
因此我们可以把X射线看成是一个个的光子(光量子),每一个光子都具有特定的能量。
光子数量可以由光电计数器(一种传感器)捕获。
•用于金属探伤的X-ray波长一般在0。
05埃~1。
0埃之间或更短,因为当X-ray波长愈短时,光子能量就愈大,x-ray的穿透能力就愈强,可以检测更厚、更重的材料。
因此有时,我们把波长短的X射线为硬X射线,反之则称为软X射线。
2、XRD是什么,XRD是什么意思?XRD是什么意思?XRD是英文X-ray diffraction或者X-Ray Diffractometer的缩写,即X射线衍射,或X射线衍射仪。
我们经常也把X射线衍射分析技术也直接称为XRD分析,或简称为XRD。
XRD分析手段有很2种,分单晶X射线衍射法,多晶X射线衍射法。
对应地,所用的XRD设备,也分为单晶衍射仪和多晶衍射仪。
3、什么是物相?物相,简称为相,它是有某种晶体结构并能用化学式表征其化学成分(或有一定的成分范围)的固体物质。
化学成分不同的是不同的物相,化学成分相同而内部结构不同的,也是不同的物相。
例如,同样是铁,它能以晶体结构为体心立方结构的Fe、也能以面心立方结构的Fe、还能以体心立方结构的高温Fe,这3种物相形式存在。
随着近代材料科学的迅猛发展,物相的含义不断地扩大。
4、什么是物相分析,什么是X射线衍射分析?什么是物相分析?或者说什么是X射线衍射分析?其实这两者是一个问题。
第七章:固体X射线衍射7.1基础知识7.1.1 晶体结构和Bravais晶体晶体中的原子是周期性排列的。
为了描述这种高度的有序结构,总可以选取适当的结构单元,整个晶体结构可以看成是由结构单元在空间中的周期性重复排列而成,相互间既无空隙有无交叠。
这种结构单元称为基元。
基元可以是一个原子,分子或原子团。
为了描述晶体结构的几何规律,可以把基元用一个几何点表示。
这些点的无限集合形成空间点阵,可以看成是空间格子,称为晶格。
显然,这些点在空间是周期性排列的,并且与晶体的周期性相同。
这种由基元代表点在空间周期性排列所形成的晶格成为Bravais晶格。
这样,晶体的结构就是将基元放在Bravais晶格中每一个格点上构成的。
图1-1为NaCl晶体的晶胞,如果将一个Na离子和一个Cl离子看成一个基元,其Bravais晶格变成如图1-2所示的结构,称为面心立方结构。
图1-1 NaCl晶体的晶胞结构图1-2 NaCl的Bravais晶格的晶胞结构,Na, ClBravais晶格的格点都是周期性排列的,所有格点可以用数学公式来统一表示。
如图1-3所示,以任一格点为原点,沿三个不共面的方向连接最近邻的格点作为基矢a1、a2、a3,矢量的长度为该方向的格点周期。
则任一格点的位置矢量R都可以表示为:图1-3,Bravais晶格R=n1a1+n2a2+n3a3(1-1) 其中n1, n2, n3为整数根据点群的旋转对称操作,所有Bravais晶格可分为7大类,称作7大晶系:三斜晶系,单斜晶系,正交晶系,四方晶系,三方晶系,六方晶系和立方晶系。
立方的对称性最高。
反映每一晶系对称性特点的晶胞形状也不相同,每个晶系按其晶胞在面心或体心是否有格点又可分为几种不同的形式。
这样,7个晶系共有14种类型的Bravais晶胞,如图1-4所示。
图1-4,十四种Bravais晶格(1)简单三斜,(2)简单单斜,(3)底心单斜,(4)简单正交,(5)底心正交,(6)体心正交,(7)面心正交,(8)简单四方,(9)体心四方,(10)六方,(11)三方,(12)简单立方,(13)体心立方,(14)面心立方。
四、X射线衍射分析(X-ray diffraction,简称XRD)(X-ray fluorescent)1、X射线衍射原理及应用①原理:特征X射线及其衍射X射线是一种波长很短(约为20~0.06 nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。
在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。
考虑到X射线的波长和晶体内部原子间的距离(10^(-8)cm)相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束X射线通过晶体时将会发生衍射;衍射波叠加的结果使射线的强度在某些方向上增强、而在其它方向上减弱;分析在照相底片上获得的衍射花样,便可确定晶体结构。
这一预见随后为实验所验证。
1913年英国物理学家布拉格父(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式——布拉格定律:2d sinθ=nλ,式中,λ为X射线的波长,衍射的级数n为任何正整数。
当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一具有d点阵平面间距的原子面上时,在满足布拉格方程时,会在反射方向上获得一组因叠加而加强的衍射线。
概念1、立体光栅定义:“光栅”是物理光学中产生光的衍射效应的光学元件,立体光栅具有周期性,仅这点与物理光栅相同,确切地说,立体光栅应该叫分光元件,属几何光学的范畴。
利用衍射光栅精确的定向分光性能,才能设计出性能更优良的立体光栅。
我们生产的各种立体光栅看立体画面不需要接触任何物质就可以看到立体;狭缝立体光栅比柱镜立体光栅具有更好的分光性能,但由于对光能的衰减,背面要比柱镜立体光栅亮,适合应用在对清晰度、立体感要求高的图像上;大部分实用于室内。
概念2、衍射的实质是干涉:衍射是无数个干涉的综合效果,在大学物理里面,衍射的数学公式就是通过干涉的数学公式推导出来的,是一个两点干涉数学公式的积分,积分范围就是衍射孔的上下边缘;然后再解释关于条件和无条件。
其实,所谓的条件和无条件,用数学方法表示,是最明确的,简单的说,干涉的数学公式,是运用更基本的数学原理推导出来的,即是两个波函数的相互叠加(数学形式就是两个三角函数的代数学的运算),这个干涉数学公式,是不依靠衍射公式推导的,也不依靠物理条件推导的,纯粹是数学推导。
(注意:高中范围里面的干涉定义,在物理学上,是不严谨的,是适用于高中知识范围的简单模型,请你注意,所谓干涉的条件,都有限定词,就是明显的干涉是有条件的,实际上,干涉是没有物理条件限制的)。
然后,衍射公式是由干涉公式的积分推导,所以,在这个意义上来说,衍射的本质是干涉。
物理学上的干涉概念,是一个理想的物理模型(就像高中物理运动学里面点运动模型),它的模型建构在两个点光源相互叠加上面,其实点光源是不可能存在我们这个物理世界里面的,它是一个数学化的物理存在,因而,干涉模型,是不受物理条件限制的(包括上面频率啊,等相位啊,等距离啊),干涉模型的建立,纯粹就是讨论数学上面的两个波函数的叠加问题,并且做为光学里面,讨论其他多光源相互作用的数学基础。
(单光源运动作用问题的数学基础就是点光源的波函数,早期是牛顿的粒子说和惠更斯原理)。
那么,现在就可以回头看衍射了,衍射的小孔或障碍物,都是有物理尺寸的,所以,它必然受到物理条件限制的,它必然不能是数学模型,(如果它没有物理尺寸,就是点光源了,那问题就成了点光源的传播问题了,你说是牛顿用粒子说解释对呢,还是惠更斯用波动说解释对呢,呵呵),实质上,衍射问题就被处理成为,无穷多个点光源(把那个有物理长度的孔,线分割成无穷个点)的相互叠加的问题,物理学家偷懒,就再简化为无穷个两点干涉问题,这样,他们就用上了已经推导出的两点干涉公式了。
在这个意义上说,衍射实质还是干涉。
因为干涉是普适的模型,而衍射是实际的物理问题。
高中的书不能讲透(没有学微积分),其实可以这样理解“一切物理学的本质是数学,物理世界的物理限制就是条件,而物理学要做的就是,在给定数学公式和条件的基础上,解数学题,得出一个或一堆符合现实世界的答案”。
概念3、简易的衍射实验:拿一根头发丝,对着光,你会看到斑斓的色彩,那就是衍射造成的。
概念4、简易的干涉实验:你在一张白纸上,相距0.5mm开两个极细的缝,然后在相距这个1cm左右放上另一张白纸(不需要裁减,当光屏),然后让太阳光,或这是白炽灯光从缝中透过,两条缝透过的光有着相同的频率构成将发生干涉,在光屏上出现七彩的条纹。
在简单一点也可以,你吹个肥皂泡,它上面的五颜六色就来自于光的干涉。
所谓干涉,是由于光扰动的相干叠加性而引起的光强重性分布,形成明暗相间的条纹的现象。
所谓衍射,即绕过障碍物。
同时光强重新分布。
概念5、干涉与衍射的联系与区别:联系:都是光束的叠加形成的,都说明光具有波动性。
(1)衍射是干涉的基础,没有衍射从双缝中射出的光就不能叠加也就产生不了干涉现象。
(2)衍射又是干涉的体现,衍射条纹的产生实质上是光发生干涉。
区别:(1)形成条件不同:干涉是两束光线叠加形成的。
衍射是无数光线叠加形成的。
(2)分布规律不同:干涉:中央明条纹,两边等间距的明暗条纹。
衍射:中央是一条亮度大的明条纹,其他条纹的间距不等。
概念6、衍射又称为绕射,光线照射到物体边沿后通过散射继续在空间发射的现象。
如果采用单色平行光,则衍射后将产生干涉结果。
相干波在空间某处相遇后,因位相不同,相互之间产生干涉作用,引起相互加强或减弱的物理现象。
衍射的条件,一是相干波(点光源发出的波),二是光栅。
衍射的结果是产生明暗相间的衍射花纹,代表着衍射方向(角度)和强度。
根据衍射花纹可以反过来推测光源和光珊的情况。
为了使光能产生明显的偏向,必须使“光栅间隔”具有与光的波长相同的数量级。
用于可见光谱的光栅每毫米要刻有约500到500条线。
1913年,劳厄想到,如果晶体中的原子排列是有规则的,那么晶体可以当作是X射线的三维衍射光栅。
X射线波长的数量级是10-8cm ,这与固体中的原子间距大致相同。
果然试验取得了成功,这就是最早的X射线衍射。
显然,在X射线一定的情况下,根据衍射的花样可以分析晶体的性质。
但为此必须事先建立X射线衍射的方向和强度与晶体结构之间的对应关系。
概念7、光栅是利用多缝衍射原理使光发生色散的一种光学元件,它实际上是一组数目极多、平行等距、紧密排列的等宽狭缝。
通常分为透射光栅和反射光栅。
概念8、平面衍射光栅概念9、关于光栅常数演示概念10、关于光栅方程概念11、衍射的概念:衍射又称为绕射,光线照射到物体边沿后通过散射继续在空间发射的现象。
如果采用单色平行光,则衍射后将产生干涉结果。
相干波在空间某处相遇后,因位相不同,相互之间产生干涉作用,引起相互加强或减弱的物理现象。
衍射的条件,一是相干波(点光源发出的波),二是光栅。
衍射的结果是产生明暗相间的衍射花纹,代表着衍射方向(角度)和强度。
根据衍射花纹可以反过来推测光源和光珊的情况。
为了使光能产生明显的偏向,必须使“光栅间隔”具有与光的波长相同的数量级。
用于可见光谱的光栅每毫米要刻有约500到500条线。
1913年,劳厄想到,如果晶体中的原子排列是有规则的,那么晶体可以当作是X射线的三维衍射光栅。
X射线波长的数量级是10-8cm ,这与固体中的原子间距大致相同。
果然试验取得了成功,这就是最早的X射线衍射。
显然,在X射线一定的情况下,根据衍射的花样可以分析晶体的性质。
但为此必须事先建立X射线衍射的方向和强度与晶体结构之间的对应关系。
1、X射线衍射方向衍射方向问题实际上就是衍射条件问题。
怎样建立衍射条件呢?根据几何光学的做法只要计算光程差就可以了。
让我们来看一下布拉格是如何建立衍射条件的。
波长为λ的入射束P,Q 分别照射到处于相邻晶面的A、A'两原子上,晶面间距为d,在与入射角相等的反射方向上其散射线为P’、Q’。
光程差δ=A’e+A’f=2dsinθ。
由于干涉加强(即发生“衍射”)的条件是δ等于波长的整数倍nλ,因此可以写出衍射条件式为:2dsinθ=nλ上述方程是英国物理学家布拉格父子于1912年导出,故称布拉格方程。
2、布拉格方程的意义。
①选择反射X射线在晶体中的衍实质上是晶体中各原子散射波之间的干涉结果,只是由于衍射线的方向恰好等于原子面对射入射线的反射,所以才借用镜面反射规律来描述X射线的衍射几何。
必须注意,X射线的原子面反射和可见光的镜面反射不同。
一束可见光以任意角度透射到镜面上都可以产生反射,而原子面对X射线的反射并不是任意的,只有当λ、θ和d三者之间满足布拉格方程时才能发生反射,所以将X射线的这种反射称为选择反射。
②产生衍射的极限条件从方程式中可以看出,由于sinθ不能大于1,因此nλ/(2d)=sinθ≤1,即nλ<2d。
对衍射而言,n 的最小值为1(n=0相当于透射方向上的衍射线束无法观测),所以在任何可观测的衍射角下,产生衍射的条件为λ<2d。
这就是说,能够被晶体衍射的电磁波的波长必须小于参加反射的晶体中最大面间距的2倍,否则不会产生衍射。
当X射线的波长一定时,晶体中有可能参加反射的晶面族也是有限的,它们必须满足d>λ/2,即只有晶面间距大于入入X射线波长一半的晶面才能发生衍射。
因此可以用这个关系来判断一定条件下所能出现的衍射数目的多少。
③反射级数n为整数,称为反射级数。
若n=1,晶体的衍射称为一级衍射,n=2则称为二级衍射,依此类推。
布拉格方程把晶体周期性的特点d、X射线的本质λ与衍射规律θ结合起来,利用衍射实验只要知道其中两个,就可以计算出第三个。
在实际工作中有两种使用此方程的方法。
已知λ,在实验中测定θ,计算d可以确定晶体的周期结构,这是所谓的晶体结构分析。
已知d,在实验中测定θ,计算出λ,可以研究产生X射线特征波长,从而确定该物质是由何种元素组成的,含量多少。
这种方法称为X射线波谱分析。
3、X射线的衍射强度根据布拉格方程,在λ一定后,对于一定晶体而言,θ与d有一一对应关系。
如果画出示意图应该有如下定性关系:(请大家根据布拉格方程思考衍射曲线的形状)通过比较实际衍射曲线,我们可能产生两个疑问:①为什么衍射峰有一定宽度(为什么在偏离布拉格角的一个小范围内也有衍射强度)?②X 射线衍射强度与哪些因素有关?在研究衍射方向时,是把晶体看作理想完整的,但实际晶体并非如此。
既使一个小的单晶体也会有亚结构存在,他们是由许多位相差很小的亚晶块组成。
另外,实际X射线也并非严格单色(具有一个狭长的波长范围),也不严格平行(或多或少有一定发散度),使得晶体中稍有位相差的各个亚晶块有机会满足衍射条件,在θ±Δθ范围内发生衍射,从而使衍射强度并不集中于布拉格角θ处,而是有一定的角分布。