5.5 磁介质中磁场的基本方程
- 格式:ppt
- 大小:610.00 KB
- 文档页数:55
十四、磁 场1、磁场(1>磁场的来源①磁体的周围存在磁场②电流的周围存在磁场:丹麦物理学家奥斯特首先发现电流周围也存在着磁场。
把一条导线平行地放在小磁针的上方,给导线中通入电流。
当导线中通入电流,导线下方的小磁针发生转动。
(2>磁体与电流间的相互作用通过磁场来完成(3>磁场一、知识网络二、画龙点睛概念①磁场:磁体和电流周围,运动电荷周围存在的一种特殊物质,叫磁场。
②磁场的基本性质:对处于其中的磁极或电流有力的作用。
③磁场的物质性:虽然磁场看不见摸不着,对于我们初学者感到很抽象,其实磁场和电场一样是客观存在的,是物质存在的一种特殊形式。
b5E2RGbCAP2、磁场的方向磁感线(1>磁场的方向:物理学规定,在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是该点的磁场方向。
p1EanqFDPw(2>磁感线:①磁感线所谓磁感线,是在磁场中画出的一些有方向的曲线,在这些曲线上,每一点的切线方向都在该点的磁场方向上。
DXDiTa9E3d②磁感线的可以用实验来模拟(3>几种典型磁体周围的磁感线分布①条形磁铁磁场的磁感线②条形磁铁磁场的磁感线③直线电流磁场的磁感线直线电流磁场的磁感线是一些以导线上各点为圆心的同心圆,这些同心圆都在跟导线垂直的平面上。
直线电流的方向和磁感线方向之间的关系可用安培定则(也叫右手螺旋定则>来判定:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。
RTCrpUDGiT④环形电流磁场的磁感线环形电流磁场的磁感线是一些围绕环形导线的闭合曲线。
在环形导线的中心轴线上,磁感线和环形导线的平面垂直。
5PCzVD7HxA环形电流的方向跟中心轴线上的磁感线方向之间的关系也可以用安培定则来判定:让右手弯曲的四指和和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向。
第15章磁介质一、物质的磁化1、磁介质中的磁场设真空中的磁感应强度为的磁场中,放进了某种磁介质,在磁场和磁介质的相互作用下,磁介质产生了附加磁场,这时磁场中任意一点处的磁感应强度2、磁导率由于磁介质产生了附加磁场磁介质中的磁场不再等于原来真空中的磁场,定义和的比值为相对磁导率:介质中的磁导率:式中为真空中的磁导率3、三种磁介质(1)顺磁质:顺磁质产生的与方向相同,且。
略大于1(2)抗磁质:抗磁质产生的与方向相反,且。
略小于1(3)铁磁质:铁磁质产生的与方向相同,且。
远大于1二、磁化强度1、磁化强度定义为单位体积中分子磁矩的矢量和即:2、磁化强度与分子面电流密度的关系:式中为磁介质外法线方向上的单位矢量。
3、磁化强度的环流即磁化强度对闭合回路的线积分等于通过回路所包围面积内的总分子电流三、磁介质中的安培环路定律1、安培环流定律在有磁介质条件下的应用即:2、磁场强度定义为:3、磁介质中的安培环路定律:4、应用磁介质中的安培环路定律的注意点:(1)的环流只与传导电流有关,与介质(或分子电流)无关。
(2)的本身()既有传导电流也与分子电流有关。
既描写了传导电流磁场的性质也描写了介质对磁场的影响。
(3)要应用磁介质中的安培环路定律来计算磁场强度时,传导电流和磁介质的分布都必须具有特殊的对称性。
5、磁介质中的几个参量间的关系:(1)磁化率(2)与的关系(3)与等之间的关系四、磁场的边界条件(界面上无传导电流)ေ、壁介蔨分界面伤边磁感应强度的法向分量连廭,即Ҩ2、磁介谨分界面两龹的磁场强嚦纄切向分量连续,即:Ƞ3 磃感应线的折射定律ā*怎义如图15-1所示)五、铁磁物贩q、磁畴:电子ꇪ旋磁矩取向相同的對区域。
2、磁化曲线(图55-2中曲线)ေ磁导率曲线(图15-2中??曲线)4、磁滞回线ေ图17耩3)图中乺矫끽嚛㠂5、铁磁质与非铁㳁质的主要区别:铁磁物质产生的附加磁场错误!未定义书签。
的比原来真空中的磁场大得多。
《电磁场与电磁波》教学大纲一、课程基本信息课程名称:电磁场与电磁波课程编码:58083004课程类别:专业教育必修适用专业:通信工程开课学期:3—3课程学时:总学时: 64学时;其中理论 48 学时,实验 16 学时。
课程学分:4先修课程:大学物理、模拟电子线路、数字逻辑电路并修课程:课程简介:《电磁场与电磁波》课程是高等学校通信工程等电子科学与技术类各专业本科生必修的一门技术基础课.电磁场与电磁波是通信技术的理论基础,是通信工程专业本科学生的知识结构中重要组成部分。
本课程包括电磁场与电磁波两大部分。
电磁场部分是在《电磁学》课程的基础上,运用矢量分析的方法,描述静电场和恒定磁场的基本物理概念,在总结基本实验定律的基础上给出电磁场的基本规律,研究静态场的解题方法.电磁波部分主要是介绍有关电磁波在各种介质中的传播规律及天线的基本理论.二、课程教育目标本课程使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。
使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。
培养学生正确的思维方法和分析问题的能力,使学生学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。
其教育目标主要表在以下三方面:1、内容方面,应使学生牢固掌握矢量运算,梯度、散度和旋度概念,高斯公式和斯托克司公式;掌握恒定和时变电磁场的麦克斯韦方程组、泊松方程、电磁波的波动方程等;掌握分离变量法、镜像法、有有界空间中电磁波的求解方法等;理解电磁场的矢势¦和标势、规范变换、规范不变性、库仑规范、洛仑兹规范、时谐平面电磁波、推迟势、电磁辐射、截止频率和谐振频率等概念。
2、能力方面,应使学生学会和掌握如何通过数学方法求解一些基本和实际问题,对结果给予物理解释的科学研究方法;使学生在运算能力和抽象思维能力方面受到初步而又严格的训练;培养学生解决和研究问题的能力,培养学生严谨的科学学风.3、方法方面,着重物理概念、基本规律和基本问题的解释和阐述,注意本课程与大学物理电磁学的衔接,以及与后继课程联系,注重解决常见基本问题和实际问题。
5.5 磁路的基本概念一、选择题:1、两个完全相同的交流铁心线圈,分别工作在电压相同而频率不同(f1>f2)的两电源下,此时线圈的磁通量Φ1和Φ2的关系是()A.Φ1>Φ2 B.Φ1=Φ2 C.Φ1〈Φ2 D.无法确定2、尺寸相同的环形螺线管,一为铁心,另一个为空心,当通以相同的电流,两线圈中的磁场强度H的关系为( )A.H铁〉H空 B.H铁<H空 C.H铁=H空 D.无法确定3、有两个材料相同的铁心绕组,匝数N1=N2,磁路平均长度L1=L2,但截面积Sl〈S2,通入相同直流时( )A。
Φ1〉Φ2,B1〉B2 B.Φl<Φ2,B1〈B2C,Φ1=Φ2,B1=B2 D.Φ1〈Φ2,B1=B24、一铁芯线圈,接在直流电压不变的电源上.当铁芯的横截面积变大而磁路的平均长度不变时,则磁路中的磁通将()A。
减小 B.增大 C.保持不变 D.不能确定5、如果线圈的匝数和流过它的电流不变,只改变线圈中的媒介质,则线圈内( )A.H不变,B变化 B.H变化,B不变C.H、B均不变化 D.H、B均变化6、相同长度、相同截面积的两段磁路,a段为气隙,磁阻为Rma,b段为铸钢,磁阻为Rmb,则____。
A.Rma= RmbB.Rma<RmbC.Rma〉 RmbD.条件不够,不能比较。
7、某直流继电器,在维修中将吸引线圈匝数减少了一半,导线截面积不变,额定电压不变,其后果是(线圈、电阻不计) ( )A。
电流增大,磁通增大 B.电流增大,磁通减少C.电流增大,磁通不变 D.电流不变,磁通减少8、若一直流铁芯线圈,工作在磁化曲线的直线段,若保持电源电压不变,铁芯不变,线圈电阻不变,仅使线圈匝数加倍,则( )A。
电流不变,铜损不变,磁感应强度B变小B.电流变小,铜损变小,磁感应强度B变小C.电流变小,铜损变小,磁感应强度B变大D.电流不变,铜损不变,磁感应强度B加倍9、下列与磁导率无关的物理量是 ( )A.磁感应强度 B.磁场强度 C.磁通 D.磁阻10、一个带气隙的铁心线圈,接到电压一定的交流电源上,而且线圈电阻可以忽略不计,仅改变气隙的大小,则 ( )A.线圈中的电流变化,磁路的磁通也变化B.线圈中的电流不变,磁路的磁通变化C.线圈中的电流变化,但磁路的磁通不变化D.绒圈中的电流与磁路的磁通均保持不变11、两个铁芯材料相同,线圈匝数相同,磁路的平均长度L1=L2,截面积S1>S2,要使两铁芯磁通Φ1=Φ2,则它们的励磁电流I1和 I2的大小是( )A.I1〉12 B.I1〈12 C.I1 =12 D.无法确定12、若制造变压器用的硅钢片磁导率不合格,比标准降低很多,当电源电压的有效值和频率不变时,则变压器的空载电流(主要是励磁电流)将( )A.减小 B.增大 C.不变 D.接近为零13、有一直流励磁的铁心线圈,若线圈的匝数加倍;但线圈的电阻和电源电压保持不变,则线圈中的电流和铁心中磁感应强度的变化是 ( )A.I减半,B不变 B.I不变,B加倍C.I减半,B减半 D。