高考数学:解析几何公式
- 格式:doc
- 大小:12.50 KB
- 文档页数:3
第八章⎪⎪⎪平面解析几何第一节直线的倾斜角与斜率、直线的方程1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)直线l 的倾斜角为α(α≠π2),则斜率k =tan_α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.[小题体验]1.设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .α+45°或α-135°解析:选D 由倾斜角的取值范围知,只有当0°≤α+45°<180°,即0°≤α<135°时,l 1的倾斜角才是α+45°.而0°≤α<180°,所以当135°≤α<180°时,l 1的倾斜角为α-135°,故选D.2.下列说法中正确的是( )A.y -y 1x -x 1=k 表示过点P 1(x 1,y 1),且斜率为k 的直线方程 B .直线y =kx +b 与y 轴交于一点B (0,b ),其中截距b =|OB | C .在x 轴和y 轴上的截距分别为a 与b 的直线方程是x a +yb =1D .方程(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)表示过点P 1(x 1,y 1),P 2(x 2,y 2)的直线 解析:选D 对于A ,直线不包括点P 1,故A 不正确;对于B ,截距不是距离,是B 点的纵坐标,其值可正可负,故B 不正确;对于C ,经过原点的直线在两坐标轴上的截距都是0,不能表示为x a +yb =1,故C 不正确;对于D ,此方程为直线两点式方程的变形,故D正确.故选D.3.(2018·嘉兴检测)直线l 1:x +y +2=0在x 轴上的截距为________;若将l 1绕它与y 轴的交点顺时针旋转90°,则所得到的直线l 2的方程为________________.解析:对于直线l 1:x +y +2=0,令y =0,得x =-2,即直线l 1在x 轴上的截距为-2;令x =0,得y =-2,即l 1与y 轴的交点为(0,-2),直线l 1的倾斜角为135°,∴直线l 2的倾斜角为135°-90°=45°,∴l 2的斜率为1,故l 2的方程为y =x -2,即x -y -2=0.答案:-2 x -y -2=01.点斜式、斜截式方程适用于不垂直于x 轴的直线;两点式方程不能表示垂直于x ,y 轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.截距不是距离,距离是非负值,而截距可正可负,可为零,在与截距有关的问题中,要注意讨论截距是否为零.3.求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率是否存在加以讨论.[小题纠偏]1.直线x cos α+3y +2=0的倾斜角的范围是( ) A.⎣⎡⎦⎤π6,π2∪⎣⎡⎦⎤π2,5π6 B.⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π C.⎣⎡⎦⎤0,5π6 D.⎣⎡⎦⎤π6,5π6解析:选B 设直线的倾斜角为θ,则tan θ=-33cos α, 又cos α∈[-1,1],所以-33≤tan θ≤33, 又0≤θ<π,且y =tan θ在⎣⎡⎭⎫0,π2和⎝⎛⎭⎫π2,π上均为增函数, 故θ∈⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π.故选B. 2.过点(5,10),且到原点的距离为5的直线方程是________. 解析:当斜率不存在时,所求直线方程为x -5=0满足题意; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0.由距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0. 答案:x -5=0或3x -4y +25=0考点一 直线的倾斜角与斜率(基础送分型考点——自主练透)[题组练透]1.若直线l 经过A (2,1),B (1,-m 2)(m ∈R )两点,则直线l 的倾斜角α的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎝⎛⎭⎫π2,π C.⎣⎡⎭⎫π4,π2D.⎝⎛⎦⎤π2,3π4解析:选C 因为直线l 的斜率k =tan α=1+m 22-1=m 2+1≥1,所以π4≤α<π2.故倾斜角α的取值范围是⎣⎡⎭⎫π4,π2.2.经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,则直线l 的斜率k 和倾斜角α的取值范围分别为________,________.解析:如图所示,结合图形,若l 与线段AB 总有公共点,则k PA ≤k ≤k PB ,而k PB >0,k PA <0,故k <0时,倾斜角α为钝角,k =0时,α=0,k >0时,α为锐角.又k PA =-2-(-1)1-0=-1,k PB =1-(-1)2-0=1,∴-1≤k ≤1.又当0≤k ≤1时,0≤α≤π4;当-1≤k <0时,3π4≤α<π.故倾斜角α的取值范围为α∈⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 答案:[-1,1] ⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π 3.若A (2,2),B (a,0),C (0,b )(ab ≠0)三点共线,求1a +1b的值.解:∵k AB =0-2a -2=-2a -2,k AC =b -20-2=-b -22,且A ,B ,C 三点共线,∴k AB =k AC ,即-2a -2=-b -22,整理得ab =2(a +b ),将该等式两边同除以2ab 得1a +1b =12.[谨记通法]1.倾斜角与斜率的关系当α∈⎣⎡⎭⎫0,π2且由0增大到π2⎝⎛⎭⎫α≠π2时,k 的值由0增大到+∞. 当α∈⎝⎛⎭⎫π2,π时,k 也是关于α的单调函数,当α在此区间内由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,k 的值由-∞趋近于0(k ≠0).2.斜率的3种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率. (2)公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.(3)方程法:若已知直线的方程为Ax +By +C =0(B ≠0),则l 的斜率k =-AB . 考点二 直线的方程(重点保分型考点——师生共研)[典例引领]求适合下列条件的直线方程:(1)经过点(4,1),且在两坐标轴上的截距相等;(2)经过点(-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍; (3)经过点(3,4),且与两坐标轴围成一个等腰直角三角形. 解:(1)设直线方程在x ,y 轴上的截距均为a , 若a =0,即直线方程过点(0,0)和(4,1), ∴直线方程为y =14x ,即x -4y =0;若a ≠0,则设直线方程为x a +ya =1,∵直线方程过点(4,1),∴4a +1a =1, 解得a =5,∴直线方程为x +y -5=0.综上可知,所求直线的方程为x -4y =0或x +y -5=0.(2)由已知,设直线y =3x 的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34.又直线经过点(-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3).即所求直线的方程为x -y +1=0或x +y -7=0.[由题悟法]求直线方程的2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).[即时应用]求适合下列条件的直线方程:(1)经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半的直线方程为________.(2)过点(2,1)且在x 轴上的截距与在y 轴上的截距之和为6的直线方程为________. 解析:(1)由3x +y +1=0,得此直线的斜率为-3, 所以倾斜角为120°,从而所求直线的倾斜角为60°, 所以所求直线的斜率为 3. 又直线过点A (-3,3),所以所求直线方程为y -3=3(x +3), 即3x -y +6=0.(2)由题意可设直线方程为x a +yb=1,则⎩⎪⎨⎪⎧a +b =6,2a +1b =1,解得a =b =3,或a =4,b =2. 故所求直线方程为x +y -3=0或x +2y -4=0.答案:(1)3x -y +6=0 (2)x +y -3=0或x +2y -4=0 考点三 直线方程的综合应用(题点多变型考点——多角探明) [锁定考向]直线方程的综合应用是常考内容之一,它常与函数、导数、不等式、圆相结合,命题多为客观题.常见的命题角度有:(1)与基本不等式相结合的最值问题;(2)与导数的几何意义相结合的问题; (3)由直线方程解决参数问题.[题点全练]角度一:与基本不等式相结合的最值问题1.过点P (2,1)作直线l ,与x 轴和y 轴的正半轴分别交于A ,B 两点,求: (1)△AOB 面积的最小值及此时直线l 的方程;(2)直线l 在两坐标轴上截距之和的最小值及此时直线l 的方程; (3)|PA |·|PB |的最小值及此时直线l 的方程. 解:(1)设直线l 的方程为y -1=k (x -2), 则可得A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k ). ∵直线l 与x 轴,y 轴正半轴分别交于A ,B 两点,∴⎩⎨⎧2k -1k>0,1-2k >0,得k <0.∴S △AOB =12·|OA |·|OB |=12·⎝⎛⎭⎫2-1k ·(1-2k )=12⎝⎛⎭⎫4-1k-4k ≥12⎣⎡⎦⎤4+2 ⎝⎛⎭⎫-1k ·(-4k ) =4,当且仅当-1k=-4k ,即k =-12时,△AOB 的面积有最小值4,此时直线l 的方程为y -1=-12(x -2),即x +2y -4=0.(2)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k )(k <0), ∴截距之和为2-1k +1-2k =3-2k -1k ≥3+2 (-2k )·⎝⎛⎭⎫-1k =3+22,当且仅当-2k =-1k ,即k =-22时等号成立.故截距之和的最小值为3+22, 此时直线l 的方程为y -1=-22(x -2), 即x +2y -2-2=0.(3)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k )(k <0), ∴|PA |·|PB |=1k 2+1·4+4k 2=2⎣⎢⎡⎦⎥⎤1-k +(-k )≥4, 当且仅当-k =-1k , 即k =-1时上式等号成立.故|PA |·|PB |的最小值为4,此时直线l 的方程为y -1=-(x -2),即x +y -3=0. 角度二:与导数的几何意义相结合的问题2.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( ) A.⎣⎡⎦⎤-1,-12 B.[]-1,0 C .[0,1]D.⎣⎡⎦⎤12,1解析:选A 由题意知y ′=2x +2,设P (x 0,y 0), 则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,所以0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.角度三:由直线方程解决参数问题3.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.解:由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×(2-a )×2+12×(a 2+2)×2=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,四边形的面积最小,故a =12.[通法在握]处理直线方程综合应用的2大策略(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.[演练冲关]1.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:52.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解:(1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k ≥0,故k 的取值范围为[)0,+∞.(3)依题意,直线l 在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,∴A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.一抓基础,多练小题做到眼疾手快1.(2019·金华一中模拟)直线x +(a 2+1)y +1=0的倾斜角的取值范围为( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π 解析:选B 由直线方程可知斜率k =-1a 2+1,设倾斜角为α,则tan α=-1a 2+1,而-1≤-1a 2+1<0,∴-1≤tan α<0,又∵α∈[0,π),∴3π4≤α<π,故选B.2.直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π 解析:选B 设直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1].又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.3.(2018·湖州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段P Q 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13C .-32D.23解析:选B 依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可得直线l 的斜率为-3-17+5=-13.4.如图中的直线l1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析:选D 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.5.(2018·豫西五校联考)曲线y =x 3-x +5上各点处的切线的倾斜角的取值范围为________.解析:设曲线上任意一点处的切线的倾斜角为θ(θ∈[0,π)), 因为y ′=3x 2-1≥-1,所以tan θ≥-1, 结合正切函数的图象可知, θ的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 答案:⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π 二保高考,全练题型做到高考达标1.已知A (-1,1),B (3,1),C (1,3),则△ABC 的BC 边上的高所在直线方程为( ) A .x +y =0 B .x -y +2=0 C .x +y +2=0D .x -y =0解析:选B 因为B (3,1),C (1,3), 所以k BC =3-11-3=-1,故BC 边上的高所在直线的斜率k =1,又高线经过点A ,所以其直线方程为x -y +2=0.2.已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( )A .y =3x +2B .y =3x -2C .y =3x +12D .y =-3x +2 解析:选A ∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2,∴直线l 的方程为y =3x +2,故选A.3.(2018·温州五校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0的图象可能是( )解析:选B 当a >0,b >0时,-a <0,-b <0,选项B 符合.4.若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)解析:选C 令x =0,得y =b 2,令y =0,得x =-b ,所以所求三角形面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2]. 5.函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在mx +ny -1=0(mn >0)上,则1m +1n 的最小值为( )A .2B .4C .8D .1解析:选B ∵函数y =a 1-x (a >0,a ≠1)的图象恒过定点A (1,1). ∴把A (1,1)代入直线方程得m +n =1(mn >0). ∴1m +1n =⎝⎛⎭⎫1m +1n (m +n )=2+n m +m n ≥2+2 n m ·m n =4(当且仅当m =n =12时取等号), ∴1m +1n 的最小值为4.6.(2018·温州调研)已知三角形的三个顶点为A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析:∵BC 的中点坐标为⎝⎛⎭⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x+13y +5=0.答案:x +13y +5=07.若直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为________________.解析:由ax +y +3a -1=0,可得a (x +3)+(y -1)=0,令⎩⎪⎨⎪⎧ x +3=0,y -1=0,可得⎩⎪⎨⎪⎧x =-3,y =1,∴M (-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于M 点对称的直线方程为2x +3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去),∴所求直线方程为2x +3y +12=0.答案:2x +3y +12=08.若圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是________.解析:由圆x 2+y 2+2x -6y +1=0知其标准方程为(x +1)2+(y -3)2=9, ∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称, ∴该直线经过圆心(-1,3),即-a -3b +3=0, ∴a +3b =3(a >0,b >0). ∴1a +3b =13(a +3b )⎝⎛⎭⎫1a +3b =13⎝⎛⎭⎫1+3a b +3b a +9≥13⎝⎛⎭⎫10+23a b ·3b a =163, 当且仅当3b a =3ab ,即a =b 时取等号. 故1a +3b 的最小值是163.答案:1639.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4, 由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6,解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.10.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解:由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎨⎧m +n 2=12·m -3n2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.三上台阶,自主选做志在冲刺名校 1.已知曲线y =1e x+1,则曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积为________.解析:y ′=-e x(e x +1)2=-1e x +1ex +2, 因为e x >0,所以e x +1e x ≥2e x ·1e x =2(当且仅当e x =1e x ,即x =0时取等号),所以e x +1ex+2≥4,故y ′=-1e x +1ex +2≥-14(当且仅当x =0时取等号).所以当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝⎛⎭⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.该切线在x 轴上的截距为2,在y 轴上的截距为12,所以该切线与两坐标轴所围成的三角形的面积S =12×2×12=12.答案:122.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,当△ABO 的面积取最小值时,求直线l 的方程.解:法一:设A (a,0),B (0,b )(a >0,b >0), 则直线l 的方程为x a +yb =1.因为l 过点P (3,2),所以3a +2b =1.因为1=3a +2b ≥26ab ,整理得ab ≥24,所以S △ABO =12ab ≥12,当且仅当3a =2b ,即a =6,b =4时取等号. 此时直线l 的方程是x 6+y4=1,即2x +3y -12=0.法二:依题意知,直线l 的斜率k 存在且k <0, 可设直线l 的方程为y -2=k (x -3)(k <0), 则A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4-k≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4-k=12×(12+12)=12, 当且仅当-9k =4-k,即k =-23时,等号成立.所以所求直线l 的方程为2x +3y -12=0.第二节两条直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.三种距离公式1.(2018·金华四校联考)直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则m=()A.2B.-3C.2或-3 D.-2或-3解析:选C∵直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,∴2m=m+13≠4-2,解得m=2或-3.2.“a=14”是“直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0相互垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A由直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0相互垂直,得(a+1)(a-1)+3a(a+1)=0,即4a2+3a-1=0,解得a=14或-1,∴“a=14”是“直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0相互垂直”的充分不必要条件,故选A.3.(2018·浙江五校联考)已知动点P的坐标为(x,1-x),x∈R,则动点P的轨迹方程为________,它到原点距离的最小值为________.解析:设点P的坐标为(x,y),则y=1-x,即动点P的轨迹方程为x+y-1=0.原点到直线x+y-1=0的距离为d=|0+0-1|1+1=22,即为所求原点到动点P的轨迹的最小值.答案:x+y-1=02 21.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x,y的系数分别相等这一条件盲目套用公式导致出错.[小题纠偏]1.已知P :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,Q :a =-1,则P 是Q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.所以P 是Q 的充要条件.2.(2018·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( )A .7B.172C .14D .17解析:选B 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,解得m =172.考点一 两条直线的位置关系(基础送分型考点——自主练透)[题组练透]1.已知a ≠0,直线ax +(b +2)y +4=0与直线ax +(b -2)y -3=0互相垂直,则ab 的最大值为( )A .0B .2C .4D. 2解析:选B 若b =2,两直线方程分别为y =-a 4x -1和x =3a ,此时两直线相交但不垂直.若b =-2,两直线方程分别为x =-4a 和y =a 4x -34,此时两直线相交但不垂直.若b ≠±2,两直线方程分别为y =-a b +2x -4b +2和y =-a b -2x +3b -2,此时两直线的斜率分别为-ab +2,-ab -2,由-ab +2·⎝⎛⎭⎪⎫-a b -2=-1,得a 2+b 2=4.因为a 2+b 2=4≥2ab ,所以ab ≤2,且当a =b =2或a =b =-2时取等号,故ab 的最大值为2.2.(2018·诸暨模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a +3b =1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝⎛⎭⎫2a +3b =13+6a b +6b a≥13+2 6a b ·6ba =25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25.答案:253.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.解:(1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎨⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2. 又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2, 且l 1在y 轴上的截距为-1.[谨记通法]1.已知两直线的斜率存在,判断两直线平行垂直的方法(1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; (2)两直线垂直⇔两直线的斜率之积等于-1.[提醒] 当直线斜率不确定时,要注意斜率不存在的情况. 2.由一般式确定两直线位置关系的方法[提醒] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.考点二 距离问题(重点保分型考点——师生共研)[典例引领]1.(2018·衢州模拟)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( )A.2B.823 C. 3D.833解析:选B 因为l 1∥l 2,所以1a -2=a 3≠62a ,解得a =-1,所以l 1:x -y +6=0,l 2:x-y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪6-232=823.2.直线3x +4y -3=0上一点P 与点Q (2,-2)的连线的最小值是________. 解析:∵点Q 到直线的距离即为P ,Q 两点连线的最小值, ∴|P Q |min =|3×2+4×(-2)-3|32+42=1.答案:13.若直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析:法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1, 即|3k -1|=|-3k -3|,∴k =-13. ∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.故所求直线l 的方程为x +3y -5=0或x =-1.法二:当AB ∥l 时,有k =k AB =-13, ∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当l 过AB 中点时,AB 的中点为(-1,4).∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.答案:x +3y -5=0或x =-1[由题悟法]处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.(2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而使计算简便.[即时应用]1.已知P 是直线2x -3y +6=0上一点,O 为坐标原点,且点A 的坐标为(-1,1),若|PO |=|PA |,则P 点的坐标为________.解析:法一:设P (a ,b ),则⎩⎪⎨⎪⎧2a -3b +6=0,a 2+b 2=(a +1)2+(b -1)2,解得a =3,b =4.∴P 点的坐标为(3,4).法二:线段OA 的中垂线方程为x -y +1=0,则由⎩⎪⎨⎪⎧ 2x -3y +6=0,x -y +1=0.解得⎩⎪⎨⎪⎧ x =3,y =4,则P 点的坐标为(3,4). 答案:(3,4)2.已知直线l :ax +y -1=0和点A (1,2),B (3,6).若点A ,B 到直线l 的距离相等,则实数a 的值为________.解析:法一:要使点A ,B 到直线l 的距离相等,则AB ∥l ,或A ,B 的中点(2,4)在直线l 上.所以-a =6-23-1=2或2a +4-1=0, 解得a =-2或-32. 法二:要使点A ,B 到直线l 的距离相等, 则|a +1|a 2+1=|3a +5|a 2+1,解得a =-2或-32. 答案:-2或-32考点三 对称问题(题点多变型考点——多角探明)[锁定考向]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型.常见的命题角度有:(1)点关于点对称;(2)点关于线对称;(3)线关于线对称.[题点全练]角度一:点关于点对称1.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以由两点式得直线l 的方程为x +4y -4=0.答案:x +4y -4=02.已知直线l :2x -3y +1=0,点A (-1,-2),则直线l 关于点A (-1,-2)对称的直线l ′的方程为________.解析:法一:在l :2x -3y +1=0上任取两点,如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二:设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.答案:2x -3y -9=0角度二:点关于线对称3.已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.解:(1)设A ′(x ,y ),则⎩⎨⎧ y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧ x =-3313,y =413.∴A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设M ′(a ,b ),则⎩⎨⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N (4,3). 又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.角度三:线关于线对称4.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( )A .x -2y +3=0B .x -2y -3=0C .x +2y +1=0D .x +2y -1=0 解析:选A 设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎨⎧ x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2, 由点P ′(x 0,y 0)在直线2x -y +3=0上,∴2(y -2)-(x +2)+3=0,即x -2y +3=0.[通法在握]1.中心对称问题的2个类型及求解方法(1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程.2.轴对称问题的2个类型及求解方法(1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧ A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[演练冲关]1.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎨⎧y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎪⎨⎪⎧x =4,y =-2,∴BC 所在直线的方程为y -1=-2-14-3(x -3),即3x +y -10=0. 同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3),∴AC 所在直线的方程为y -2=3-2-1-(-4)(x +4),即x -3y +10=0.联立⎩⎪⎨⎪⎧ 3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧x =2,y =4,可得C (2,4). 2.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎨⎧ b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0. 又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1, 即6x -y -6=0.答案:6x -y -6=03.已知△ABC 中,顶点A (4,5),点B 在直线l :2x -y +2=0上,点C 在x 轴上,求△ABC 周长的最小值.解:设点A 关于直线l :2x -y +2=0的对称点为A 1(x 1,y 1),点A 关于x 轴的对称点为A 2(x 2,y 2),连接A 1A 2交l 于点B ,交x 轴于点C ,则此时△ABC 的周长取最小值,且最小值为||A 1A 2.∵A 1与A 关于直线l :2x -y +2=0对称,∴⎩⎨⎧ y 1-5x 1-4×2=-1,2×x 1+42-y 1+52+2=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=7.∴A 1(0,7).易求得A 2(4,-5), ∴△ABC 周长的最小值为 ||A 1A 2=(4-0)2+(-5-7)2=410.一抓基础,多练小题做到眼疾手快1.(2018·浙江名校协作体联考)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧ a (a -2)=3×1,a ×1≠3×1,解得a =-1,故选C. 2.(2018·丽水调研)已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A .(3,3)B .(2,3)C .(1,3) D.⎝⎛⎭⎫1,32 解析:选C 直线l 1的斜率为k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2).两式联立,解得⎩⎪⎨⎪⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3). 3.(2018·诸暨期初)已知点A (7,-4)关于直线l 的对称点为B (-5,6),则该对称直线l 的方程为( )A .6x +5y -1=0B .5x +6y +1=0C .5x -6y -1=0D .6x -5y -1=0 解析:选D 由题可得,直线l 是线段AB 的垂直平分线.因为A (7,-4),B (-5,6),所以k AB =6+4-5-7=-56,所以k l =65.又因为A (7,-4),B (-5,6)的中点坐标为(1,1).所以直线l 的方程为y -1=65(x -1),即6x -5y -1=0. 4.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.因为|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].答案:[0,10]5.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.解析:依题意知,63=a -2≠c -1, 解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c 2=0, 又两平行直线之间的距离为21313, 所以⎪⎪⎪⎪c 2+132+(-2)2=21313,解得c =2或-6. 答案:2或-6二保高考,全练题型做到高考达标1.(2018·舟山调研)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|M Q |2的值为( )A.102B.10C .5D .10解析:选D 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直, ∴M 位于以P Q 为直径的圆上,∵|P Q |=9+1=10,∴|MP |2+|M Q |2=|P Q |2=10.2.(2018·慈溪模拟)曲线y =2x -x 3在x =-1处的切线为l ,则点P (3,2)到直线l 的距离为( )A.722B.922C.1122D.91010解析:选A 由题可得,切点坐标为(-1,-1).y ′=2-3x 2,由导数的几何意义可知,该切线的斜率为k =2-3=-1,所以切线的方程为x +y +2=0.所以点P (3,2)到直线l 的距离为d =|3+2+2|12+12=722.3.(2018·绵阳模拟)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|P Q |的最小值为( )A.95B.185C.2910D.295解析:选C 因为36=48≠-125,所以两直线平行, 由题意可知|P Q |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910, 所以|P Q |的最小值为2910. 4.(2018·厦门模拟)将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n 等于( )A.345B.365C.283D.323解析:选A 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,则⎩⎨⎧ 3+n 2=2×7+m 2-3,n -3m -7=-12,解得⎩⎨⎧ m =35,n =315,故m +n =345. 5.(2018·钦州期中)已知直线l 的方程为f (x ,y )=0,P 1(x 1,y 1)和P 2(x 2,y 2)分别为直线l 上和l 外的点,则方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示( )A .过点P 1且与l 垂直的直线B .与l 重合的直线C .过点P 2且与l 平行的直线D .不过点P 2,但与l 平行的直线解析:选C 由直线l 的方程为f (x ,y )=0,知方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示与l 平行的直线,P 1(x 1,y 1)为直线l 上的点,则f (x 1,y 1)=0,f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0化为f (x ,y )-f (x 2,y 2)=0,显然P 2(x 2,y 2)满足方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0,所以f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示过点P 2且与l 平行的直线.故选C.6.已知三角形的一个顶点A (4,-1),它的两条角平分线所在直线的方程分别为l 1:x -y -1=0和l 2:x -1=0,则BC 边所在直线的方程为________________.解析:A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上.设A 1(x 1,y 1),则有⎩⎨⎧ y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧ x 1=0,y 1=3,所以A 1(0,3). 同理设A 2(x 2,y 2),易求得A 2(-2,-1).所以BC 边所在直线方程为2x -y +3=0.答案:2x -y +3=07.(2018·余姚检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析:显然直线l 的斜率不存在时,不满足题意;设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0, 由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k2, ∴k =2或k =-23. ∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0.答案:2x -y -2=0或2x +3y -18=8.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P点,则光线所经过的路程为________.解析:易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1与A 2两点间的距离.于是|A 1A 2|=(4+2)2+(2-0)2=210. 答案:2109.(2018·绍兴一中检测)两平行直线l 1,l 2分别过点P (-1,3),Q (2,-1),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间的距离的取值范围是________.解析:∵l 1∥l 2,且P ∈l 1,Q ∈l 2,∴l 1,l 2间的最大距离为|P Q |=[2-(-1)]2+(-1-3)2=5,又l 1与l 2不重合,∴l 1,l 2之间距离的取值范围是(0,5].答案:(0,5]10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1), ∴l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0, 得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.三上台阶,自主选做志在冲刺名校1.已知线段AB 的两个端点A (0,-3),B (3,0),且直线y =2λx +λ+2与线段AB 总相交,则实数λ的取值范围为________.。
高考数学中的解析几何中的运算法则解析几何是数学的一个分支,它涉及了空间中的点、直线和平面等几何图形,并且通过坐标系将这些几何图形与代数方程联系起来。
在高考数学考试中,解析几何是一个非常重要的主题,通常会涉及到一些基本的运算法则。
本文将探讨高考数学中的解析几何中的运算法则。
一、向量的加减法解析几何中,向量通常用箭头表示,箭头代表了向量的大小和方向。
向量的加法和减法是指将两个向量相加或相减得到一个新的向量。
向量的加法和减法可以用尾部对齐的方法进行,即让向量的起点重合,然后将向量的终点连成一个新的向量。
例如,向量a和向量b的加法可以用如下公式表示:a +b = (a1+b1,a2+b2,a3+b3)其中,a1、a2和a3分别代表了向量a的x、y和z分量,b1、b2和b3分别代表了向量b的x、y和z分量。
向量的减法也可以采用类似的方法,只需要让b变成-b即可。
二、向量的数量积向量的数量积是指两个向量的乘积,通常用符号“·”表示。
向量的数量积的大小等于两个向量长度的乘积再乘以它们之间的夹角的余弦值。
向量的数量积也可以用向量的分量表示:a·b = a1b1 + a2b2 + a3b3例如,如果向量a和向量b的夹角为θ,则它们的数量积可以表示为:a·b = |a||b|cosθ其中,|a|和|b|分别代表向量a和向量b的长度。
另外,如果两个向量垂直,则它们的数量积为0,因为它们之间的夹角是90度,cos90度等于0。
三、向量的叉积向量的叉积是指两个向量的乘积,通常用符号“×”表示。
向量的叉积得到的是一个新的向量,这个向量垂直于原来的两个向量,并且大小等于原来两个向量的大小之积再乘以它们之间的夹角的正弦值。
向量的叉积也可以用向量的分量表示:a×b = (a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)例如,如果向量a和向量b的夹角为θ,则它们的叉积可以表示为:|a×b| = |a||b|sinθ其中,|a×b|表示向量a和向量b的叉积的大小。
直线的交点坐标与距离公式
主标题:直线的交点坐标与距离公式
副标题:为学生详细的分析直线的交点坐标与距离公式的高考考点、命题方向以及规律总结 关键词:直线的交点坐标与距离公式,知识总结
难度:3
重要程度:2
考点剖析:1.能用解方程组的方法求两条相交直线的交点坐标;
2.掌握两点间的距离公式、点到直线的距离公式,会球两条平行直线间的距离. 命题方向:多与直线与圆、直线与圆锥曲线位置关系相结合渗透在解答题中 知识梳理:1.两条直线的交点
直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧ A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0的解.
2.几种距离
1.两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=
x 2-x 12y 2-y 12.
2.点P 0(x 0, y 0)到直线l :A x +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B 2
. 3.两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B
2. 规律总结:1.一般地,与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0;与之垂直的直线方程可设为Bx -Ay +n =0.
2.过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.。
高考数学解析几何知识点归纳解析几何是高考数学中的一个重要板块,它将代数与几何巧妙地结合在一起,具有较强的综合性和逻辑性。
以下是对高考数学中解析几何知识点的详细归纳。
一、直线1、直线的倾斜角与斜率倾斜角:直线与 x 轴正方向所成的角,范围是0, π)。
斜率:当倾斜角不是 90°时,斜率 k =tanα(α 为倾斜角)。
过两点 P(x₁, y₁),Q(x₂, y₂)的直线斜率 k =(y₂ y₁) /(x₂ x₁)(x₁≠ x₂)。
2、直线的方程点斜式:y y₁= k(x x₁),适用于已知斜率和一点的情况。
斜截式:y = kx + b,其中 k 为斜率,b 为截距。
两点式:(y y₁) /(y₂ y₁) =(x x₁) /(x₂ x₁),适用于已知两点的情况。
截距式:x / a + y / b = 1,其中 a、b 分别为 x 轴和 y 轴上的截距(a ≠ 0,b ≠ 0)。
一般式:Ax + By + C = 0(A、B 不同时为 0)。
3、两直线的位置关系平行:斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂(斜截式);A₁B₂ A₂B₁= 0 且 A₁C₂ A₂C₁ ≠ 0 (一般式)。
垂直:斜率之积为-1,即 k₁k₂=-1 (斜率都存在);A₁A₂+ B₁B₂= 0 (一般式)。
4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程标准方程:(x a)²+(y b)²= r²,圆心为(a, b),半径为 r。
一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心为(D/2, E/2),半径为 r =√(D²+ E² 4F) / 2 。
2024高考数学解析几何知识点总结与题型分析随着时间的推移,我们离2024年的高考越来越近。
数学作为高考的一门重要科目,解析几何是其中的一个重点内容。
为了帮助同学们更好地复习解析几何,并在高考中取得好成绩,本文将对2024高考数学解析几何的知识点进行总结与题型分析。
1. 直线与平面1.1 直线的方程直线的一般方程为Ax + By + C = 0,其中A、B、C为常数。
根据直线的特点,我们可以将其方程转化为其他形式,如点斜式、两点式、截距式等,以便于解题。
1.2 平面的方程平面的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。
类似于直线的情况,根据平面的性质,我们可以将其方程转化为点法式、截距式等形式。
2. 空间几何体2.1 球球是解析几何中的一个重要概念。
其方程为(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2,其中(a, b, c)为球心坐标,r为半径长度。
2.2 圆锥曲线圆锥曲线包括圆、椭圆、双曲线和抛物线。
通过对几何体的方程进行适当的变化,可以得到不同类型的圆锥曲线方程。
掌握其特点和方程形式,对于解析几何的学习非常重要。
3. 空间几何关系3.1 直线与直线的位置关系直线与直线的位置关系包括相交、平行、重合等情况。
根据两条直线的方程,我们可以通过求解方程组或直线的斜率等方式,判断它们之间的空间位置关系。
3.2 直线与平面的位置关系直线与平面的位置关系包括相交、平行、重合等情况。
根据直线的方程和平面的方程,我们可以通过代入求解或者检验点的方法,判断它们之间的位置关系。
4. 解析几何的常见题型4.1 直线与平面的交点求解给定直线和平面的方程,我们需要求解它们的交点。
通过将直线方程代入平面方程中,可以得到关于未知变量的方程组,进而求解出交点的具体坐标。
4.2 距离计算在解析几何中,我们常常需要计算点、直线或平面之间的距离。
对于给定的两点,我们可以利用距离公式进行计算;对于直线和平面,我们可以利用点到直线/平面的距离公式进行计算。
高考数学中的平面解析几何知识点整理平面解析几何是高中数学的重要知识点,也是高考数学必考的部分。
平面解析几何涉及坐标系、直线、圆、双曲线、椭圆、抛物线等内容,需要注重理论的掌握、题目的练习和解题技巧的提高。
本篇文章就高考数学中平面解析几何的知识点进行整理和总结,帮助学生更好地应对高考数学。
一、坐标系坐标系是平面解析几何的基础,需要掌握笛卡尔坐标系和极坐标系。
笛卡尔坐标系是平面上以两条相互垂直的直线为坐标轴,确定一点的位置需要用到两个数,称为该点的坐标。
极坐标系是以圆心为原点,以极轴为基准线的坐标系。
一个点在极坐标系中的坐标表示为(r,θ),其中r为该点到圆心的距离,θ为该点与极轴正方向的夹角。
二、直线直线是平面解析几何中最基本也最重要的图形。
直线的斜率、截距和两点式都是需要掌握的公式。
斜率表示直线在笛卡尔坐标系中的倾斜程度,截距表示直线与坐标轴的交点,两点式表示直线经过的两个点的坐标。
三、圆圆是平面上与一个点距离相等的点的集合。
圆的一般式、标准式、参数式都是需要掌握的公式。
一般式表示圆心坐标为(h,k),半径为r的圆,标准式表示圆心在原点,半径为r的圆,参数式表示圆心坐标为(a,b),半径为r的圆,其中参数t在区间[0,2π)内变化。
四、椭圆椭圆是平面上到两个固定点F1和F2距离之和等于常数2a的点的集合。
椭圆的标准式、参数式和离心率都是需要掌握的公式。
标准式表示椭圆的长轴在x轴上,椭圆的中心在原点,离心率小于1;参数式表示椭圆的中心在(a,b)处,椭圆的长轴倾斜角度为θ,离心率小于1。
五、抛物线抛物线是平面上到一个定点F距离等于到另一个定点D的距离的平方的定点P的集合。
抛物线的标准式、参数式和焦距都是需要掌握的公式。
标准式表示抛物线的焦点在原点,开口朝上或朝下;参数式表示抛物线的焦点在(a,b)处,开口朝上或朝下。
六、双曲线双曲线是平面上到两个定点F1和F2距离之差等于常数2a的点的集合。
双曲线的标准式、参数式和离心率都是需要掌握的公式。
高考数学公式记忆口诀之平面解析几何
2013年高考即将开考,在考前的一段时间里,高考频道精心为大家收集整理了大量的高考复习资料,各位考生和家长可以随时关注。
本频道祝愿各位考生在考试中取得优异的成绩。
《平面解析几何》
有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
S OQ Pα 高考数学常用二级结论:解析几何、立体几何(收藏)一、解析几何30.过圆222(0)x y r r +=>上一点000(,)P x y 的切线方程为:200x x y y r +=;若0P 在圆O 外,则直线200x x y y r +=是切点弦所在直线方程.31.切线长公式:过圆220x y Dx Ey F ++++=外一点000(,)P x y 引切线,切线长PT =.32.椭圆与双曲线中的焦点三角形12PF F ∆.(1)椭圆中当点P 在短轴端点时,12PF F ∠最大,12PF F ∆的面积最大.(2)12F PF θ∠=,则椭圆中122tan 2PF F S b θ∆=:双曲线中122cot 2PF F S b θ∆=.(3)12PF F α∠=,21PF F α∠=,则椭圆中1tan tan 221e e αβ-=+:双曲线中1tan cot 221e eαβ-=-+ 33.焦半径公式,点000(,)P x y 在圆锥曲线上. (1)椭圆22221(0)x y a b a b +=>>,210()a PF e x a ex c =+=+,220()a PF e x a ex c=-=-. (2)双曲线22221(0,0)x y a b a b -=>>,210()a PF e x a ex c =+=+,220()a PF e x a ex c=-=-,点P 在右支上. (3)抛物线22(0)y px p =>,02p PF x =+.二、立体几何34.一条斜线从一个角顶点出发与两边所成的角相等,则该斜线在该角所在平面上的射影在角平子于线上;若该斜线上一点到角两边距离相等,则该斜线在该角所在平面上的射影在角平分线上.35.斜三棱柱体积:012V s h s a ==底斜棱柱,其中0s 是一个侧面面积,a 是该侧面与说对棱距离. 36.三余弦定理:从平面α内一点O 出发的斜线OP 在α内的射影为OQ ,OS α⊂,1POQ θ∠=,2SOQ θ∠=,POS θ∠=,则12cos cos cos θθθ=. 37.正四面体的棱长为a ,其高为3h a =;体积为312V a =斜棱柱;内切球与外切球半径之比为13. 38.棱长为a 的正方体内切球半径为1r ,外接球半径为2r ,与十二条棱均相切的球半径为3r,则12r a =,22r,22r=,且1231r r r =::39.长方体(,,)a b c 中,(1)对角线长l =(2)表面积为S ab bc ca +=+;(3)一条对角线与过同一顶点的三个面所成角为,,αβγ,则222cos cos cos 1αβγ+=+;(4)一条对角线与过同一顶点的三条棱所成角为,,αβγ,则222cos cos cos 2αβγ+=+;(5)长方体外接球直径2R40.正三棱椎P ABC -中,则有PA BC ⊥,PB AC ⊥,PC AB ⊥,P 在底面的射影是ABC ∆的中心.41.在三棱椎P ABC -中,设顶点P 在底面的射影为H .(1)若PA BC ⊥,PB AC ⊥,则PC AB ⊥.(2)若PA BC ⊥,PB AC ⊥,则H 为ABC 的垂心.(3)若PA PB PC ==,则H 为ABC 的外心.。
高考数学知识总结:解析几何公式大全一、标准方程:中心在原点,焦点在x轴上的椭圆标准方程:(x2/a2)+(y2/b2)=1其中a>b>0,c>0,c2=a2-b2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x2/b2) +(y2/a2)=1其中a>b>0,c>0,c2=a2-b2.参数方程:X=acosY=bsin(为参数)二、双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。
定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x2/a2)-(y2/b2)=1其中a>0,b>0,c2=a2+b2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y2/a2)-(x2/b2)=1.其中a>0,b>0,c2=a2+b2.参数方程:x=asecy=btan(为参数)直角坐标(中心为原点):x2/a2-y2/b2=1(开口方向为x 轴)y2/a2-x2/b2=1(开口方向为y轴)三、抛物线参数方程x=2pt2y=2pt(t为参数)t=1/tan(tan为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标y=ax2+bx+c(开口方向为y轴,a0)x=ay2+by+c(开口方向为x轴,a0)圆锥曲线(二次非圆曲线)的统一极坐标方程为=ep/(1-ecos)其中e表示离心率,p为焦点到准线的距离。
焦点到最近的准线的距离等于exa圆锥曲线的焦半径(焦点在x轴上,F1F2为左右焦点,P(x,y),长半轴长为a焦半径圆锥曲线上任意一点到焦点的距离成为焦半径。
圆锥曲线左右焦点为F1、F2,其上任意一点为P(x,y),则焦半径为:椭圆|PF1|=a+ex|PF2|=a-ex双曲线P在左支,|PF1|=-a-ex|PF2|=a-exP在右支,|PF1|=a+ex|PF2|=-a+exP在下支,|PF1|=-a-ey|PF2|=a-eyP在上支,|PF1|=a+ey|PF2|=-a+ey抛物线|PF|=x+p/2圆锥曲线的切线方程圆锥曲线上一点P(x0,y0)的切线方程以x0x代替x2,以。
高中解析几何秒杀公式解析几何是数学必考的内容,高考数学中的解析几何的公式又非常多,那么考生如何秒杀高考数学解析几何的公式呢?高考数学解析几何有哪些解题技巧呢?如何秒杀高考数学圆锥曲线1.根据题设的已知条件,利用待定系数法列出二元二次方程,求出椭圆的方程,并化为标准方程。
2.直线设为斜截式y=kx+m,将直线与椭圆联立得到如图一元二次方程。
注意该式子具有普适性。
3.通常要验证判别式大于零(因为无论是该经验所给的弦长公式还是韦达定理都是在判别式大于零的情况下才有意义,若题目给出直线与椭圆相交则略去该步,多写不扣分)。
4.直接写出需要的弦长公式或韦达定理。
可以省去至少5分钟,而且不会算错。
5恒成立问题的证明可能会与导数,不等式交汇。
恒成立问题的证伪只要找到反例即可。
存在性问题通常是存在的,方法是提出无关的未知数。
6.最后别忘了写综上所述。
如何秒杀高考数学直线和圆的方程 1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系。
3.了解二元一次不等式表示平面区域。
4.了解线性规划的意义,并会简单的应用。
5.了解解析几何的基本思想,了解坐标法。
6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。
如何秒杀高考数学立体几何平行、垂直位置关系:1.由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
2.利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
3.三垂线定理及其逆定理在题中使用的频率最高,在证明线线垂直时应优先考虑。
空间角的计算方法:主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
1.两条异面直线所成的角:平移法,补形法,向量法。
2.直线和平面所成的角分为作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算,和用公式计算。
高考数学复习考点题型专题讲解专题28 解析几何中优化运算的方法1.焦点三角形的面积(1)设P点是椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1,F2为其焦点,记∠F1PF2=θ,△PF1F2的面积记为S△PF1F2,则S△PF1F2=b2tanθ2.(2)设P点是双曲线x2a2-y2b2=1(a>0,b>0)上异于实轴端点的任一点,F1,F2为其焦点,记∠F1PF2=θ,△PF1F2的面积记为S△PF1F2,则S△PF1F2=b2tanθ2.2.中心弦的性质设A,B为圆锥曲线关于原点对称的两点,P为该曲线上异于A,B的点.(1)若圆锥曲线为椭圆x2a2+y2b2=1(a>b>0),则k PA k PB=-b2a2=e2-1.(2)若圆锥曲线为双曲线x2a2-y2b2=1(a>0,b>0),则k PA k PB=b2a2=e2-1.3.中点弦的性质设圆锥曲线以M(x0,y0)(y0≠0)为中点的弦AB所在的直线的斜率为k.(1)若圆锥曲线为椭圆x2a2+y2b2=1(a>b>0),则k AB=-b2xa2y,k AB·k OM=-b2a2=e2-1.(2)若圆锥曲线为双曲线x2a2-y2b2=1(a>0,b>0),则k AB=b2xa2y,k AB·k OM=b2a2=e2-1.(3)若圆锥曲线为抛物线y2=2px(p>0),则k AB=py0 .4.圆锥曲线的切线方程设M(x0,y0)为圆锥曲线上的点,(1)若圆锥曲线为椭圆x2a2+y2b2=1(a>b>1),则椭圆在M处的切线方程为xxa2+yyb2=1.(2)若圆锥曲线为双曲线x2a2-y2b2=1(a>0,b>0),则双曲线在M处的切线方程为xxa2-yyb2=1.(3)若圆锥曲线为抛物线y2=2px(p>0),则抛物线在M处的切线方程为y0y=p(x+x0).5.与抛物线的焦点弦有关的二级结论过抛物线y2=2px(p>0)的焦点F倾斜角为θ的直线交抛物线于A(x1,y1),B(x2,y2)两点,则(1)x1x2=p24,y1y2=-p2;(2)两焦半径长为p1-cos θ,p1+cos θ;(3)1|AF|+1 |BF|=2p;(4)|AB|=2psin2θ,S△AOB=p22sin θ.类型一优化运算的基本途径途径1 回归定义当题目条件涉及圆锥曲线的焦点时,要考虑利用圆锥曲线的定义表示直线与圆锥曲线相交所得的弦长.例1 已知抛物线C:y2=3x的焦点为F,斜率为32的直线l与C的交点为A,B,与x轴的交点为P .若|AF |+|BF |=4,求l 的方程. 解 设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2).由题设得F ⎝⎛⎭⎪⎫34,0,故结合抛物线的定义可得|AF |+|BF |=x 1+x 2+32. 由题设可得x 1+x 2=52.由⎩⎨⎧y =32x +t ,y 2=3x ,可得9x 2+12(t -1)x +4t 2=0, 则x 1+x 2=-12(t -1)9,从而-12(t -1)9=52,解得t =-78,所以直线l 的方程为y =32x -78.途径2 设而不求在解决直线与圆锥曲线的相关问题时,通过设点的坐标,应用“点差法”或借助根与系数的关系来进行整体处理,设而不求,避免方程组的复杂求解,简化运算. 例2 已知点M 到点F (3,0)的距离比它到直线l :x +5=0的距离小2. (1)求点M 的轨迹E 的方程;(2)过点P (m ,0)(m >0)作互作垂直的两条直线l 1,l 2,它们与(1)中轨迹E 分别交于点A ,B 及点C ,D ,且G ,H 分别是线段AB ,CD 的中点,求△PGH 面积的最小值.解(1)由题意知,点M到点F(3,0)的距离与到直线l′:x+3=0的距离相等,结合抛物线的定义,可知轨迹E是以F(3,0)为焦点,以直线l′:x+3=0为准线的抛物线,则知p2=3,解得p=6,故M的轨迹E的方程为y2=12x.(2)设A(x1,y1),B(x2,y2),则有y21=12x1,y22=12x2,以上两式作差,并整理可得y1-y2x1-x2=12y1+y2=6yG.即k AB=6y G ,同理可得k CD=6yH,易知直线l1,l2的斜率存在且均不为0,又由于l1⊥l2,可得k AB·k CD=36yGyH=-1,即y G y H=-36,所以S△PGH=12|PG|·|PH|=12·1+1k2AB|y G| ·1+1k2CD|y H|=182+1k2AB+1k2CD≥182+2|k AB k CD|=182+2=36,当且仅当|k AB|=|k CD|=1时,等号成立,故△PGH面积的最小值为36. 途径3 换元引参结合解决问题的需要,根据题目条件引入适当的参数或相应的参数方程,巧妙转化相应的解析几何问题,避开复杂的运算.例3 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3. 证明法一 设P (a cos θ,b sin θ)(0≤θ<2π),则线段OP 的中点Q 的坐标为⎝ ⎛⎭⎪⎫a 2cos θ,b 2sin θ.|AP |=|OA |⇔AQ ⊥OP ⇔k AQ ×k =-1. 又A (-a ,0), 所以k AQ =b sin θ2a +a cos θ,即b sin θ-ak AQ cos θ=2ak AQ . 2ak AQ =b 2+a 2k 2AQ sin(θ-α), tan θ=ak AQb, 从而可得|2ak AQ |≤b 2+a 2k 2AQ <a 1+k 2AQ ,解得|k AQ |<33,故|k |=1|k AQ |> 3.法二 依题意,直线OP 的方程为y =kx , 可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b 2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a2<1,即(1+k 2)x 20<a 2.①由|AP |=|OA |及A (-a ,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0, 于是x 0=-2a1+k 2, 代入①,得(1+k 2)·4a 2(1+k 2)2<a 2,解得k 2>3,所以|k |> 3.法三 依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0).联立⎩⎨⎧y 0=kx 0,x 20a 2+y 20b2=1,消去y 0并整理,得x 20=a 2b2k 2a 2+b 2.① 由|AP |=|OA |,A (-a ,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0. 而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2⎝ ⎛⎭⎪⎫a b 2+4.又a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3,所以|k |> 3.训练1 (1)(2022·杭州质检)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A.2B. 3C.32D.62(2)已知抛物线C :y 2=2px (p >0)过点(1,-2),经过焦点F 的直线l 与抛物线C 交于A ,B 两点,A 在x 轴的上方,Q (-1,0),若以QF 为直径的圆经过点B ,则|AF |-|BF |=( ) A.23B.2 5 C.2 D.4答案 (1)D (2)D解析 (1)由已知,得F 1(-3,0),F 2(3,0), 设双曲线C 2的实半轴长为a , 由椭圆及双曲线的定义和已知,可得 ⎩⎨⎧|AF 1|+|AF 2|=4,|AF 2|-|AF 1|=2a ,|AF 1|2+|AF 2|2=12,解得a 2=2,故a =2,所以双曲线C 2的离心率e =32=62.(2)由于抛物线C :y 2=2px (p >0)过点(1,-2), 则有4=2p ,解得p =2,设直线l 的倾斜角为α∈⎝ ⎛⎭⎪⎫0,π2,根据焦半径公式,可得|AF |=21-cos α,|BF |=21+cos α,由于以QF 为直径的圆经过点B ,则有BQ ⊥BF ,在Rt△QBF 中,|BF |=2cos α, 则有|BF |=21+cos α=2cos α,即1-cos 2α=cos α, 所以|AF |-|BF |=21-cos α-21+cos α=4cos α1-cos 2α=4cos αcos α=4,故选D. 类型二 优化运算之二级结论的应用圆锥曲线中有很多的二级结论,应用这些结论能够迅速、准确地解题. 应用1 椭圆中二级结论的应用例4 (1)A ,B 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,M 是椭圆上不同于A ,B 的任意一点,若直线AM ,BM 的斜率之积为-49,则椭圆C 的离心率为( )A.23B.33C.23D.53(2)已知椭圆方程为x 25+y 2=1,右焦点为F ,上顶点为B .直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于N ,过N 与BF 垂直的直线交x 轴于点P .若MP ∥BF ,则直线l 方程为________.答案 (1)D (2)x -y +6=0解析 (1)椭圆上不同于A ,B 的任意一点与左、右顶点的斜率之积为-b 2a 2,∴-b 2a 2=-49,∴b 2a 2=49,∴椭圆的离心率e =1-b 2a2=1-49=53. (2)设点M (x 0,y 0)为椭圆x 25+y 2=1上一点.由过点M 与椭圆相切的结论,可设l :x 0x 5+y 0y =1,在直线MN 的方程中, 令x =0,可得y =1y 0,由题意可知y 0>0,即点N ⎝⎛⎭⎪⎫0,1y 0. 直线BF 的斜率为k BF =-b c =-12,所以,直线PN 的方程为y =2x +1y 0.在直线PN 的方程中, 令y =0,可得x =-12y 0, 即点P ⎝ ⎛⎭⎪⎫-12y 0,0.因为MP ∥BF ,则k MP =k BF , 即y 0x 0+12y 0=2y 202x 0y 0+1=-12,整理可得(x 0+5y 0)2=0, 所以x 0=-5y 0.又因为x 205+y 20=1,所以6y 20=1.因为y 0>0,故y 0=66,x 0=-566, 所以直线l 的方程为-66x +66y =1,即x -y +6=0. 训练2 (1)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点,若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 (2)(2022·金华模拟)已知P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上一动点,F 1,F 2是椭圆的左、右焦点,当∠F 1PF 2=π3时,S △F 1PF 2=43;当线段PF 1的中点落到y 轴上时,tan∠F 1PF 2=43,则椭圆的标准方程为( )A.x216+x212=1 B.x216+y29=1C.x225+y212=1 D.x225+y29=1答案(1)D (2)A解析(1)由题意知c=3,即a2-b2=9,AB的中点记为P(1,-1),由k AB·k OP=-b2 a2,则(-1)×-1-01-3=-b2a2,∴a2=2b2,又a2-b2=9,∴a2=18,b2=9,∴E的方程为x218+y29=1.(2)设|PF1|=m,|PF2|=n,当∠F1PF2=π3时,由题意知S△F1PF2=b2tanθ2,即43=b2tan π6,所以b2=12.当线段PF1的中点落到y轴上时,又O为F1F2的中点,所以PF2∥y轴,即PF2⊥x轴.由tan∠F1PF2=43,得|F1F2||PF2|=43,即n =3c 2,则m =52c ,且n =b 2a =12a.所以联立⎩⎪⎨⎪⎧3c 2+5c 2=2a ,3c 2=12a ,解得⎩⎨⎧a =4,c =2,所以椭圆标准方程为x 216+y 212=1.应用2 双曲线中二级结论的应用例5 (1)已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为M (-12,-15),则E 的方程为( ) A.x 23-y 26=1 B.x 24-y 25=1 C.x 26-y 23=1 D.x 25-y 24=1 (2)已知P (1,1)是双曲线外一点,过P 引双曲线x 2-y 22=1的两条切线PA ,PB ,A ,B为切点,求直线AB 的方程为________. 答案 (1)B (2)2x -y -2=0解析 (1)由题意可知k AB =-15-0-12-3=1,k MO =-15-0-12-0=54,由双曲线中点弦性质得k MO ·k AB =b 2a 2,即54=b 2a2,又9=a 2+b 2, 联立解得a 2=4,b 2=5,故双曲线的方程为x 24-y 25=1.(2)设切点A (x 1,y 1),B (x 2,y 2), 则PA :x 1x -y 1y 2=1,PB :x 2x -y 2y 2=1,又点P (1,1)代入得x 1-12y 1=1,x 2-12y 2=1,∴点A (x 1,y 1),B (x 2,y 2)均在直线x -12y =1上,∴过直线AB 的方程为x -12y =1,即2x -y -2=0.训练3 (1)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,实轴的两个端点为A ,B ,点P 为双曲线上不同于顶点的任一点,则直线PA 与PB 的斜率之积为________.(2)已知P 是椭圆x 2a 21+y 2b 21=1(a 1>b 1>0)和双曲线x 2a 22-y 2b 22=1(a 2>0,b 2>0)的一个交点,F 1,F 2是椭圆和双曲线的公共焦点,e 1,e 2分别为椭圆和双曲线的离心率,若∠F 1PF 2=π3,则e 1·e 2的最小值为________. 答案 (1)3 (2)32解析 (1)由题意知c a =2,即c 2a 2=4,∴c 2=4a 2,∴a 2+b 2=4a 2,∴b 2=3a 2,∴k PA ·k PB =b 2a2=3.(2)因为点P 为椭圆和双曲线的公共点,F 1,F 2是两曲线的公共焦点,则由焦点三角形的面积公式得S △PF 1F 2=b 21tan π6=b 22tanπ6,化简得b 21=3b 22,即a 21-c 2=3(c 2-a 22),等式两边同除c 2,得1e 21-1=3-3e 22,所以4=1e 21+3e 22≥23e 1·e 2,解得e 1·e 2≥32,所以e 1·e 2的最小值为32.应用3 抛物线中二级结论的应用例6 (1)(2022·泰州调研)已知F 是抛物线C :y 2=4x 焦点,过点F 作两条相互垂直的直线l 1,l 2,直线l 1与C 相交于A ,B 两点,直线l 2与C 相交于D ,E 两点,则|AB |+|DE |的最小值为( ) A.16 B.14 C.12 D.10(2)已知直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线交于A ,B 两点(点A 在第一象限),若BA →=4BF →,则△AOB 的面积为( ) A.833 B.433C.823 D.423答案 (1)A (2)B解析 (1)如图,设直线l 1的倾斜角为θ,θ∈⎝⎛⎭⎪⎫0,π2,则直线l 2的倾斜角为π2+θ,由抛物线的焦点弦弦长公式知 |AB |=2p sin 2θ=4sin 2θ,|DE |=2p sin 2⎝ ⎛⎭⎪⎫π2+θ=4cos 2θ, ∴|AB |+|DE |=4sin 2θ+4cos 2θ=4sin 2θcos 2θ≥4⎝⎛⎭⎪⎫sin 2θ+cos 2θ22=16,当且仅当sin 2θ=cos 2θ,即sin θ=cos θ, 即θ=π4时取“=”.(2)由题意知|AF ||BF |=3,设l 的倾斜角为θ,则|AF |=p 1-cos θ,|BF |=p1+cos θ,∴1+cos θ1-cos θ=3,cos θ=12,sin θ=32, S =p 22sin θ=43=433. 训练4 (1)已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若△AOB 的面积为26,则|AB |=( ) A.24 B.8 C.12 D.16(2)已知抛物线y2=4x的焦点为F,过点F的直线l交抛物线于M,N两点,且|MF|=2|NF|,则直线l的斜率为( )A.±2B.±2 2C.±22D.±24答案(1)A (2)B解析(1)由题意知p=2,S△AOB=p22sin θ=26,∴sin θ=16,∴|AB|=2psin2θ=24.(2)由抛物线的焦点弦的性质知1|MF|+1|NF|=2p=1,又|MF|=2|NF|,解得|NF|=32,|MF|=3,∴|MN|=92,设直线l的倾斜角为θ,∴k=tan θ,又|MN|=2psin2θ,∴4sin2θ=92,∴sin2θ=89,∴cos2θ=19,∴tan2θ=8,∴tan θ=±22,故k=±2 2.一、基本技能练1.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△AOB 的面积为( ) A.334 B.938C.6332D.94 答案 D解析 抛物线C :y 2=3x 中,2p =3,p =32,故S △OAB =p 22sin θ=942sin 30°=94.2.已知椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在椭圆C 上,且直线PA 2的斜率的取值范围是[-2,-1],那么直线PA 1的斜率的取值范围是( ) A.⎣⎢⎡⎦⎥⎤12,34B.⎣⎢⎡⎦⎥⎤38,34 C.⎣⎢⎡⎦⎥⎤12,1D.⎣⎢⎡⎦⎥⎤34,1 答案 B解析 由周角定理得k PA 1·k PA 2=-b 2a 2=-34,又k PA 2∈[-2,-1], ∴k PA 1=-34k PA 2∈⎣⎢⎡⎦⎥⎤38,34.3.已知斜率为k (k >0)的直线l 与抛物线C :y 2=4x 交于A ,B 两点,O 为坐标原点,M 是线段AB 的中点,F 是C 的焦点,△OFM 的面积等于3,则k =( ) A.14B.13C.12D.263答案 B解析设AB的中点M(x0,y0),由中点弦的性质得k=py(y0≠0).由抛物线方程知p=2,所以k=2y0,另焦点F(1,0),又S△OFM=3,可知12×1×y0=3,所以y0=6,再代入k=2y=13.4.椭圆x216+y24=1上的点到直线x+2y-2=0的最大距离是( )A.3B.11C.22D.10 答案 D解析设椭圆x216+y24=1上的点P(4cos θ,2sin θ),则点P到直线x+2y-2=0的距离为d=|4cos θ+4sin θ-2|5=⎪⎪⎪⎪⎪⎪42sin⎝⎛⎭⎪⎫θ+π4-25,所以d max=|-42-2|5=10,故选D.5.已知点A(0,-5),B(2,0),点P为函数y=21+x2图象上的一点,则|PA|+|PB|的最小值为( ) A.1+25B.7 C.3 D.不存在 答案 B解析 由y =21+x 2,得y 24-x 2=1(y >0).设点A ′(0,5),即点A ′(0,5),A (0,-5)为双曲线y 24-x 2=1的上、下焦点.由双曲线的定义得|PA |-|PA ′|=4, 则|PA |+|PB |=4+|PA ′|+|PB |≥4+|BA ′|=7,当且仅当B ,P ,A ′共线时取等号,故选B.6.(2022·丽水调研)已知椭圆Г:x 2a 2+y 2b 2=1(a >b >0)的长轴长是短轴长的2倍,过右焦点F 且斜率为k (k >0)的直线与Г相交于A ,B 两点,且AF →=3FB →,则k =( ) A.1 B.2 C.3D. 2 答案 D解析 依题意a =2b ,e =1-⎝ ⎛⎭⎪⎫b a 2=32,因为AF →=3FB →,所以λ=3,设直线的倾斜角为α,则e =⎪⎪⎪⎪⎪⎪λ-1(λ+1)cos α 得32=⎪⎪⎪⎪⎪⎪3-1(3+1)cos α,|cos α|=33, 又k >0,∴α∈⎝ ⎛⎭⎪⎫0,π2,得cos α=33,所以k =tan α= 2. 7.抛物线y 2=2px (p >0)的焦点为F ,过焦点F 且倾斜角为π6的直线与抛物线相交于A ,B 两点,若|AB |=8,则抛物线的方程为________. 答案y 2=2x 解析∵|AB |=2psin 2θ=2psin 2π6=8p =8,∴p =1,∴抛物线的方程为y 2=2x .8.已知点P ⎝ ⎛⎭⎪⎫12,12为椭圆:x 22+y 2=1内一定点,经过点P 引一条弦,使此弦被点P 平分,则此弦所在的直线方程为________. 答案 2x +4y -3=0解析 直线与椭圆交于A ,B ,P 为AB 中点.由k AB ·k OP =-b 2a 2得k AB ×1=-12,即k AB =-12,则直线方程为y -12=-12⎝ ⎛⎭⎪⎫x -12,即2x +4y -3=0.9.(2022·南京模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),过原点的直线与双曲线交于A ,B两点,以线段AB 为直径的圆恰好过双曲线的右焦点F ,若△ABF 的面积为2a 2,则双曲线的离心率为________. 答案 3解析 如图.设双曲线的左焦点为F ′,连接AF ′,BF ′,因为以AB 为直径的圆恰好过双曲线的右焦点F (c ,0), 所以S △AF ′F =S △ABF =2a 2且∠F ′AF =∠θ=π2, 根据双曲线焦点三角形面积公式,得S △AF ′F =b 2tanθ2.所以2a 2=b 2,即b 2a2=2,e =1+b 2a2= 3. 10.(2022·武汉调研)已知双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)与C 2:y 2a 22-x 2b 22=1(a 2>0,b 2>0)有相同的渐近线,若C 1的离心率为2,则C 2的离心率为________. 答案233解析 设双曲线C 1,C 2的半焦距分别为c 1,c 2, 因为C 1的离心率为2,所以C 1的渐近线方程为y =±b 1a 1x =±⎝ ⎛⎭⎪⎫c 1a 12-1x =±22-1x =±3x , 所以C 2的渐近线方程为y =±a2b 2x =±3x ,所以a 2b 2=3,所以C 2的离心率为c 22a 22=1+⎝ ⎛⎭⎪⎫b 2a 22=233.11.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),直线l :y =kx +a ,直线l 与椭圆C 交于M ,N 两点,与y 轴交于点P ,O 为坐标原点.(1)若k =1,且N 为线段MP 的中点,求椭圆C 的离心率;(2)若椭圆长轴的一个端点为Q (2,0),直线QM ,QN 与y 轴分别交于A ,B 两点,当PA →·PB →=1时,求椭圆C 的方程.解 (1)由题意知直线l :y =x +a 与x 轴交于点(-a ,0), ∴点M 为椭圆C 的左顶点,即M (-a ,0). 设N ⎝ ⎛⎭⎪⎫-a 2,a 2,代入椭圆C :x 2a 2+y 2b 2=1得14+a 24b 2=1,即b 2a 2=13, 则e 2=c 2a 2=1-b 2a 2=23,∴e =63,即椭圆C 的离心率e =63. (2)由题意得a =2,∴椭圆C :b 2x 2+4y 2=4b 2(b >0), 联立⎩⎨⎧b 2x 2+4y 2=4b 2,y =kx +2,消去y 得(4k 2+b 2)x 2+16kx +16-4b 2=0,⎩⎪⎨⎪⎧Δ=16b 2(4k 2+b 2-4)>0,x M+x N=-16k 4k 2+b 2,x M ·x N =16-4b24k 2+b2,∵直线QM :y =y M x M -2(x -2),∴A ⎝ ⎛⎭⎪⎫0,-2y M x M -2,PA →=⎝ ⎛⎭⎪⎫0,2y M +2x M -42-x M . ∵y M =kx M +2, ∴y M -2=kx M ,即PA →=⎝ ⎛⎭⎪⎫0,2(k +1)x M 2-x M , 同理PB →=⎝ ⎛⎭⎪⎫0,2(k +1)x N 2-x N , ∴PA →·PB →=4(k +1)2x M x Nx M x N -2(x M +x N )+4=4-b 2=1,即b 2=3,∴椭圆C 的标准方程为x 24+y 23=1.12.在平面直角坐标系xOy 中,已知点F 1(-17,0),F 2(17,0),点M 满足|MF 1|-|MF 2|=2.记M 的轨迹为C . (1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA |·|TB |=|TP |·|TQ |,求直线AB 的斜率与直线PQ 的斜率之和. 解 (1)因为|MF 1|-|MF 2|=2<|F 1F 2|=217,所以点M 的轨迹C 是以F 1,F 2分别为左、右焦点的双曲线的右支.设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),半焦距为c ,则2a =2,c =17,得a =1,b 2=c 2-a 2=16, 所以点M 的轨迹C 的方程为x 2-y 216=1(x ≥1).(2)设T ⎝ ⎛⎭⎪⎫12,t ,由题意可知直线AB ,PQ 的斜率均存在且不为零,设直线AB 的方程为y-t =k 1⎝ ⎛⎭⎪⎫x -12(k 1≠0),直线PQ 的方程为y -t =k 2⎝ ⎛⎭⎪⎫x -12(k 2≠0),由⎩⎪⎨⎪⎧y -t =k 1⎝ ⎛⎭⎪⎫x -12,x 2-y 216=1,得(16-k 21)x 2-2k 1⎝ ⎛⎭⎪⎫t -k 12x -⎝⎛⎭⎪⎫t -k 122-16=0.设A (x A ,y A ),B (x B ,y B )⎝ ⎛⎭⎪⎫x A >12,x B>12, 由题意知16-k 21≠0,则x A x B =-⎝⎛⎭⎪⎫t -k 122-1616-k 21,x A +x B =2k 1⎝⎛⎭⎪⎫t -k 1216-k 21,所以|TA |=1+k 21⎪⎪⎪⎪⎪⎪x A -12=1+k 21⎝⎛⎭⎪⎫x A -12,|TB |=1+k 21⎪⎪⎪⎪⎪⎪x B -12=1+k 21⎝ ⎛⎭⎪⎫x B -12, 则|TA |·|TB |=(1+k 21)⎝⎛⎭⎪⎫x A -12⎝ ⎛⎭⎪⎫x B -12=(1+k 21)⎣⎢⎡⎦⎥⎤x A x B -12(x A +x B )+14=(1+k 21)⎣⎢⎡-⎝ ⎛⎭⎪⎫t -k 122-1616-k 21-12·⎦⎥⎤2k 1⎝ ⎛⎭⎪⎫t -k 1216-k 21+14=(1+k 21)(t 2+12)k 21-16. 同理得|TP |·|TQ |=(1+k 22)(t 2+12)k 22-16.因为|TA |·|TB |=|TP |·|TQ |,所以(1+k 21)(t 2+12)k 21-16=(1+k 22)(t 2+12)k 22-16,所以k 22-16+k 21k 22-16k 21=k 21-16+k 21k 22-16k 22,即k 21=k 22,又k 1≠k 2,所以k 1=-k 2,即k 1+k 2=0. 故直线AB 的斜率与直线PQ 的斜率之和为0. 二、创新拓展练13.(2022·广东四校联考)倾斜角为π3的直线经过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F ,与双曲线C 的右支交于A ,B 两点,且AF →=λFB →(λ≥5),则双曲线C 的离心率的范围是( ) A.⎣⎢⎡⎭⎪⎫43,+∞B.⎝ ⎛⎦⎥⎤1,43C.(1,2)D.⎣⎢⎡⎭⎪⎫43,2答案 D解析 tan π3>b a ⇒b a <3⇒b 2<3a 2⇒c 2-a 2<3a 2⇒c 2<4a 2,∴c 2a 2<4,即e <2;|e cos θ|=|λ-1||λ+1|⇒e 2=⎪⎪⎪⎪⎪⎪λ-1λ+1=λ-1λ+1=1-2λ+1∈⎣⎢⎡⎭⎪⎫23,1,即23≤e 2<1,故43≤e <2.14.(多选)(2022·海南调研)已知斜率为3的直线l 经过抛物线C :y 2=2px (p >0)的焦点F ,与抛物线C 交于点A ,B 两点(点A 在第一象限),与抛物线的准线交于点D ,若|AB |=8,则以下结论正确的是( ) A.1|AF |+1|BF |=1 B.|AF |=6C.|BD |=2|BF |D.F 为AD 中点 答案 BCD解析 法一 如图,过点B 作x =-p 2的垂线,垂足为B ′,F ⎝ ⎛⎭⎪⎫p 2,0,直线l 的斜率为3,则直线l 的方程为y =3⎝⎛⎭⎪⎫x -p 2,联立⎩⎨⎧y 2=2px ,y =3⎝⎛⎭⎪⎫x -p 2, 得12x 2-20px +3p 2=0. 解得x A =3p 2,x B =p6,由|AB |=|AF |+|BF |=x A +x B +p =8p3=8,得p =3.所以抛物线方程为y2=6x.则|AF|=x A+p2=2p=6,故B正确;所以|BF|=8-|AF|=2,|BD|=|BB′|cos 60°=|BF|cos 60°=4,∴|BD|=2|BF|,故C正确;所以|AF|=|DF|=6,则F为AD中点,故D正确;而1|AF|+1|BF|=23,故A错误.法二设直线AB的倾斜角为θ,利用抛物线的焦点弦的性质,由|AB|=2psin2θ=8,则p=3,|AF|=p1-cos θ=6,|BF|=p1+cos θ=2,1 |AF|+1|BF|=2p=23,在Rt△DBB′中,cos θ=|BB′||BD|,所以|BD|=4,|DF|=|BF|+|BD|=6,因此F为AD中点.故选BCD.15.已知A,B是抛物线y2=4x上的两点,F是焦点,直线AF,BF的倾斜角互补,记AF,AB的斜率分别为k1,k2,则1k22-1k21=________.答案 1解析F(1,0),设A(x1,y1),B(x2,y2),根据抛物线的对称性,且两直线的倾斜角互补, 所以(x 2,-y 2)在直线AF 上, 直线AF :y =k 1(x -1),代入y 2=4x ,化简可得k 21x 2-(2k 21+4)x +k 21=0,根据韦达定理,可得⎩⎨⎧x 1+x 2=2k 21+4k 21,x 1x 2=1,又k 2=y 2-y 1x 2-x 1=4x 2-4x 1x 2-x 1=2x 2+x 1, 所以k 22=4x 1+x 2+2x 1x 2=42k 21+4k 21+2=k 21k 21+1,故1k 22-1k 21=1.16.已知P 是圆C :(x -2)2+(y +2)2=1上一动点,过点P 作抛物线x 2=8y 的两条切线,切点分别为A ,B ,则直线AB 斜率的最大值为________. 答案34解析 由题意可知,PA ,PB 的斜率都存在,分别设为k 1,k 2,切点A (x 1,y 1),B (x 2,y 2), 设P (m ,n ),过点P 的抛物线的切线为y =k (x -m )+n , 联立⎩⎨⎧y =k (x -m )+n ,x 2=8y ,得x 2-8kx +8km -8n =0, 因为Δ=64k 2-32km +32n =0, 即2k 2-km +n =0,所以k1+k2=m2,k1k2=n2,又由x2=8y得y′=x 4,所以x1=4k1,y1=x218=2k21,x 2=4k2,y2=x228=2k22,所以k AB=y2-y1x2-x1=2k22-2k214k2-4k1=k2+k12=m4,因为点P(m,n)满足(x-2)2+(y+2)2=1,所以1≤m≤3,因此14≤m4≤34,即直线AB斜率的最大值为3 4 .17.已知点A为圆B:(x+2)2+y2=32上任意一点,定点C的坐标为(2,0),线段AC的垂直平分线交AB于点M.(1)求点M的轨迹方程;(2)若动直线l与圆O:x2+y2=83相切,且与点M的轨迹交于点E,F,求证:以EF为直径的圆恒过坐标原点.(1)解圆B的圆心为B(-2,0),半径r=42,|BC|=4. 连接MC,由已知得|MC|=|MA|,∵|MB |+|MC |=|MB |+|MA |=|BA |=r =42>|BC |,∴由椭圆的定义知:点M 的轨迹是中心在原点,以B ,C 为焦点,长轴长为42的椭圆, 即a =22,c =2,b 2=a 2-c 2=4, ∴点M 的轨迹方程为x 28+y 24=1.(2)证明 当直线EF 的斜率不存在时, 直线EF 的方程为x =±83, E ,F 的坐标分别为⎝⎛⎭⎪⎫83,83,⎝⎛⎭⎪⎫83,-83或⎝⎛⎭⎪⎫-83,83,⎝⎛⎭⎪⎫-83,-83, OE →·OF →=0.当直线EF 斜率存在时,设直线EF 的方程为y =kx +m , ∵EF 与圆O :x 2+y 2=83相切,∴|m |1+k2=83,即3m 2=8k 2+8. 设E (x 1,y 1),F (x 2,y 2),∴OE →·OF →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2,(*)联立⎩⎨⎧x 28+y 24=1,y =kx +m ,消去y 得(1+2k 2)x 2+4kmx +2m 2-8=0, ∴x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-81+2k 2,代入(*)式得OE→·OF→=(1+k2)·2m2-81+2k2-4k2m21+2k2+m2=3m2-8k2-81+2k2,又∵3m2=8k2+8,∴OE→·OF→=0,综上,以EF为直径的圆恒过定点O.31 / 31。
【知识梳理】解析几何的20个微专题[1]专题1:直线与方程知识梳理: (1)直线的倾斜角定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.当直线与x 轴平行或重合时,规定它的倾斜角为︒0.倾斜角的范围为[)︒︒180,0. (2)直线的斜率:定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即=k αtan .倾斜角是︒90的直线,斜率不存在. (3) 过两点的直线的斜率公式:经过两点),(),,(222111y x P y x P 的直线的斜率公式:当21x x ≠时,1212x x y y k --=;当21x x =时,斜率不存在.注:①任何直线都有倾斜角,但不是任何直线都有斜率,倾斜角是︒90的直线的斜率不存在.②斜率随倾斜角的变化规律:③可以用斜率来证明三点共线,即若AC AB k k =,则C B A ,,三点共线. 直线方程的五种形式注意:①求直线方程的方法主要有两种:一是直接法,根据已知条件,选择适当的直线方程的形式,直接写出直线方程;二是待定系数法,先设出直线方程,再根据条件求出待定系数,最后代入求出直线方程.但使用直线方程时,一定要注意限制条件,以免解题过程中丢解.②截距与距离的区别:截距可为一切实数,纵截距是直线与y 轴交点的纵坐标,横截距是直线与x 轴交点的横坐标,而距离是一个非负数.直线与直线位置关系1.两条直线的交点若直线1l :0111=++C y B x A 和2l :0222=++C y B x A 相交,则交点坐标是方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的解. 2.两条直线位置关系的判定 (1)利用斜率判定若直线1l 和2l 分别有斜截式方程1l :11b x k y +=和2l :22b x k y +=,则 ①直线1l ∥2l 的等价条件为2121,b b k k ≠=. ②直线1l 与2l 重合的等价条件为2121,b b k k ==.③直线1l 与2l 相交的等价条件为21k k ≠;特别地,1l ⊥2l 的等价条件为121-=⋅k k .若1l 与2l 斜率都不存在,则1l 与2l 平行或重合.若1l 与2l 中的一条斜率不存在而另一条斜率为0,则1l 与2l 垂直.(2)用直线一般式方程的系数判定设直线1l :0111=++C y B x A ,2l :0222=++C y B x A ,则 ①直线1l ∥2l 的等价条件为0012211221≠-=-C B C B B A B A 且. ②直线1l 与2l 重合的等价条件为0012211221=-=-C B C B B A B A 且.③直线1l 与2l 相交的等价条件为01221≠-B A B A ;特别地, 1l ⊥2l 的等价条件为02121=+B B A A .注:与0=++CBy Ax 平行的直线方程一般可设为0=++m By Ax 的形式,与0=++C By Ax 垂直的直线方程一般可设为0=+-n Ay Bx 的形式.(3)用两直线联立的方程组的解的个数判定设直线1l :0111=++C y B x A ,2l :0222=++C y B x A ,将这两条直线的方程联立,得方程组⎩⎨⎧=++=++00222111C y B x A C y B x A ,若方程组有惟一解,则1l 与2l 相交,此解就是1l ,2l 交点的坐标;若方程组无解,此时1l 与2l 无公共点,则1l ∥2l ;若方程组有无数个解,则1l 与2l 重合.3. 直线系问题(1)设直线1l :0111=++C y B x A 和2l :0222=++C y B x A若1l 与2l 相交,则0)(222111=+++++C y B x A C y B x A λ表示过1l 与2l 的交点的直线系(不包括2l );若1l ∥2l ,则上述形式的方程表示与与2l 平行的直线系.(2)过定点),(00y x 的旋转直线系方程为))((00R k x x k y y ∈-=-(不包括0x x =);斜率为0k 的平行直线系方程为)(0R b b x k y ∈+=.注:直线系是具有某一共同性质的直线的全体,巧妙地使用直线系,可以减少运算量,简化运算过程. 距离公式与对称问题 1.距离公式(1)两点间的距离公式平面上的两点),(),,(222111y x P y x P 间的距离=21P P 212212)()(y y x x -+-.特别地,原点)0,0(O 与任一点),(y x P 的距离=OP 22y x +.若x P P //21轴时,=21P P 21x x -;若y P P //21轴时,=21P P 21y y -. (2)点到直线的距离公式已知点),(000y x P ,直线l :0=++C By Ax ,则点0P 到直线l 的距离=d 2200BA CBy Ax +++.已知点),(000y x P ,直线l :a x =,则点0P 到直线l 的距离=d a x -0. 已知点),(000y x P ,直线l :b y =,则点0P 到直线l 的距离=d b y -0. 注:用此公式求解点到直线距离问题时,直线方程要化成一般式. (3)两条平行直线间的距离公式已知两平行直线1l :0111=++C y B x A 和2l :0222=++C y B x A ,若点),(000y x P 在1l 上,则两平行直线1l 和2l 的距离可转化为),(000y x P 到直线2l 的距离.已知两平行直线1l :01=++C By Ax 和2l :02=++C By Ax ,则两直线1l 和2l 的距离=d 2221BA C C +-.注:用此公式求解两平行直线间的距离时,直线方程要化成一般式,并且y x ,项的系数必须对应相等. 2.对称问题 (1)中心对称 ①点关于点的对称点),(00y x P 关于),(b a A 的对称点为)2,2(001y b x a P --. ②直线关于点的对称在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点的坐标,再由两点式求出直线的方程,或者求出一个对称点,再利用1l ∥2l ,由点斜式求出直线的方程,或者在所求直线上任取一点),(y x ,求出它关于已知点的对称点的坐标,代入已知直线,即可得到所求直线的方程. (2)轴对称①点关于直线的对称点),(00y x P 关于b kx y +=的对称点为),(111y x P ,则有⎪⎪⎩⎪⎪⎨⎧++⋅=+-=⋅--b x x k y y k x x y y 22101010101,由此可求出11,y x .特别地, 点),(00y x P 关于a x =的对称点为),2(001y x a P -,点),(00y x P 关于b y =的对称点为)2,(001y b x P -. ②直线关于直线的对称此类问题一般转化为点关于直线的对称问题来解决,有两种情况:一是已知直线与对称直线相交,一是已知直线与对称直线平行. 本章知识结构专题2:圆的标准方程与一般方程知识梳理:⑴.圆的一般方程的概念:当 时,二元二次方程220x y Dx Ey F ++++=叫做圆的一般方程。
高考数学中的解析几何中的距离公式证明在高考数学中,解析几何是一个非常重要的部分。
解析几何是数学中的一门学科,它研究的是平面和空间图形的性质和关系。
在解析几何中,距离公式是一个非常重要的公式。
本文将探讨高考数学中的解析几何中的距离公式证明。
解析几何中的距离公式是指在平面直角坐标系或空间直角坐标系中,两点之间的距离公式。
在平面直角坐标系中,两点之间的距离公式为:$AB=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$在空间直角坐标系中,两点之间的距离公式为:$AB=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$这两个公式在解析几何中的应用非常广泛。
例如,在平面直角坐标系中,我们可以通过这个公式来求两点之间的距离,从而确定一条直线的长度。
在空间直角坐标系中,我们可以通过这个公式来求两点之间的距离,从而确定一个平面的面积。
那么,解析几何中的距离公式是如何推导出来的呢?下面,本文将为大家详细介绍其证明过程。
首先,我们需要明确一点,距离公式的证明是建立在勾股定理的基础上的。
勾股定理是说,一个直角三角形的两条直角边的平方和等于这个直角三角形的斜边的平方。
这个定理可以用数学表述为:$c^2=a^2+b^2$其中,c表示斜边的长度,a和b分别表示两条直角边的长度。
那么,距离公式的证明过程如下:证明平面直角坐标系中的距离公式:1. 假设A(x1,y1)和B(x2,y2)是平面坐标系中的两个点。
2. 假设点A和点B之间的距离为AB。
3. 构建直角三角形OAB,其中O是坐标系的原点。
4. 将OA和OB分别表示为a和b,AB表示为c。
5. 根据勾股定理,我们可以得出以下公式:$c^2=a^2+b^2$6. 将a和b用x1,y1,x2和y2表达出来,得到以下公式:$a=\left|x_2-x_1\right|$$b=\left|y_2-y_1\right|$7. 将公式6中的a和b代入公式5,得到以下公式:$c^2=\left|x_2-x_1\right|^2+\left|y_2-y_1\right|^2$8. 根据乘法公式,我们可以把公式7化简为以下形式:$c^2=(x_2-x_1)^2+(y_2-y_1)^2$9. 取平方根,即可得到平面直角坐标系中的距离公式:$AB=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$证明空间直角坐标系中的距离公式:1. 假设A(x1,y1,z1)和B(x2,y2,z2)是空间坐标系中的两个点。
高考数学:解析几何公式
1、直线
两点距离、定比分点直线方程
|AB|=| |
|P1P2|=
y-y1=k(x-x1)
y=kx+b
两直线的位置关系夹角和距离
或k1=k2,且b1≠b2
l1与l2重合
或k1=k2且b1=b2
l1与l2相交
或k1≠k2
l2⊥l2
或k1k2=-1 l1到l2的角
l1与l2的夹角
点到直线的距离
2.圆锥曲线
圆椭圆
标准方程(x-a)2+(y-b)2=r2
圆心为(a,b),半径为R
一样方程x2+y2+Dx+Ey+F=0
其中圆心为( ),
半径r
(1)用圆心到直线的距离d和圆的半径r判定或用判别式判定直线与圆的位置关系
(2)两圆的位置关系用圆心距d与半径和与差判定椭圆
焦点F1(-c,0),F2(c,0)
(b2=a2-c2)
离心率
准线方程
焦半径|MF1|=a+ex0,|MF2|=a-ex0
双曲线抛物线
双曲线
焦点F1(-c,0),F2(c,0)
(a,b0,b2=c2-a2)
离心率
准线方程
焦半径|MF1|=ex0+a,|MF2|=ex0-a抛物线y2=2px(p0)
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。
什么缘故?依旧没有完全“记死”的缘故。
要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。
能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每
天往笔记本上抄写,教师定期检查等等。
如此,一年就可记300多条成语、30 0多则名言警句,日积月累,终究会成为一笔不小的财宝。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会为所欲为地“提取”出来,使文章增色添辉。
焦点F
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。
慢慢“老师”之说也不再有年龄的限制,老少皆可适用。
只是司马迁笔下的“老师”因此不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识
的传播者。
今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。
准线方程
坐标轴的平移
那个地点(h,k)是新坐标系的原点在原坐标系中的坐标。