解析几何公式大全
- 格式:docx
- 大小:89.00 KB
- 文档页数:8
解析几何知识点总结解析几何是数学中的一个分支,它研究几何图形在坐标系中的性质和变化规律。
在解析几何中,我们使用坐标系表示各种几何图形,通过运用代数的方法来研究它们的性质和关系。
本文将对解析几何的核心知识点进行总结,包括直线、圆、曲线以及相应的性质和公式。
直线是解析几何中最基本的图形之一。
在平面直角坐标系中,一条直线可以通过两点确定。
若给出直线上两点的坐标为(x₁, y₁)和(x₂, y₂),则可以得到直线的斜率 k 为:k = (y₂ - y₁) / (x₂ - x₁)斜率表示了直线与 x 轴的夹角和斜率的大小关系。
若直线垂直于 x 轴,则斜率不存在;若直线平行于 x 轴,则斜率为零。
直线的方程可以用点斜式、斜截式和一般式等多种方式表示。
点斜式的形式为:y - y₁ = k(x - x₁)斜截式的形式为:y = kx + b一般式的形式为:Ax + By + C = 0其中 A、B、C 为常数。
圆是解析几何中的另一个重要概念。
在平面直角坐标系中,圆的方程为:(x - a)² + (y - b)² = r²其中(a,b)为圆心的坐标,r 为半径。
通过圆的方程,我们可以得到圆上任意一点(x,y)满足的条件。
解析几何还涉及到曲线的研究。
常见的曲线包括抛物线、椭圆和双曲线等。
以抛物线为例,它的一般方程为:y = ax² + bx + c其中 a、b、c 为常数。
根据 a 的正负和 a 的绝对值大小,可以确定抛物线的开口方向和形状。
在解析几何中,还有一些重要的性质和公式需要掌握。
例如,两条直线的位置关系可以通过它们的斜率来判断。
如果两条直线的斜率相等,则它们平行;如果两条直线的斜率互为倒数,则它们垂直。
此外,解析几何还涉及到点、线、圆之间的距离计算。
点(x₁, y₁)和点(x₂, y₂)之间的距离可以通过以下公式计算:d = √[(x₂ - x₁)² + (y₂ - y₁)²]同样地,点(x₁, y₁)到直线 Ax + By + C = 0 的距离可以通过以下公式计算:d = |Ax₁ + By₁ + C| / √(A² + B²)通过掌握以上基本原理和公式,我们可以进一步应用解析几何的知识,解决实际问题。
高中数学解析几何第一局部:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。
(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.αtan =k〔1〕.倾斜角为︒90的直线没有斜率。
〔2〕.每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率〔直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否那么会产生漏解。
〔3〕设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 那么当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o90=α;斜率不存在;二、直线的方程 1.点斜式:直线上一点P 〔x 0,y 0〕及直线的斜率k 〔倾斜角α〕求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:假设直线在y 轴上的截距〔直线与y 轴焦点的纵坐标〕为b ,斜率为k ,那么直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y = 注意:正确理解“截距〞这一概念,它具有方向性,有正负之分,与“距离〞有区别。
3.两点式:假设直线经过),(11y x 和),(22y x 两点,且〔2121,y y x x ≠≠那么直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。
4截距式:假设直线在x 轴,y 轴上的截距分别是a ,b 〔0,0≠≠b a 〕那么直线方程:1=+bya x ; 注意:1〕.截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
空间解析几何知识点1. 空间直角坐标系- 定义:由三条互相垂直的直线(x轴、y轴、z轴)确定的坐标系。
- 坐标表示:任意一点P的坐标表示为(x, y, z)。
- 距离公式:两点P1(x1, y1, z1)和P2(x2, y2, z2)之间的距离为√((x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2)。
2. 向量及其运算- 向量定义:具有大小和方向的量。
- 向量表示:向量a表示为a = (a1, a2, a3)。
- 向量加法:a + b = (a1+b1, a2+b2, a3+b3)。
- 向量数乘:k * a = (ka1, ka2, ka3)。
- 向量点积:a · b = a1b1 + a2b2 + a3b3。
- 向量叉积:a × b = (a2b3 - a3b2, a3b1 - a1b3, a1b2 -a2b1)。
- 向量模:|a| = √(a1^2 + a2^2 + a3^2)。
- 向量方向余弦:向量a的方向余弦为(a1/|a|, a2/|a|, a3/|a|)。
3. 平面方程- 点法式:A(x-x0) + B(y-y0) + C(z-z0) = 0,其中A、B、C为平面的法向量,(x0, y0, z0)为平面上一点。
- 两点式:(y-y1)/(x-x1) = (y2-y1)/(x2-x1),表示过两点P1(x1, y1, z1)和P2(x2, y2, z2)的平面。
- 一般式:Ax + By + Cz + D = 0。
4. 直线方程- 参数式:x = x0 + at, y = y0 + bt, z = z0 + ct,其中(x0,y0, z0)为直线上一点,(a, b, c)为直线的方向向量,t为参数。
- 一般式:Ax + By + Cz + D = 0。
- 点向式:(x-x0)/a = (y-y0)/b = (z-z0)/c,其中(x0, y0, z0)为直线上一点,(a, b, c)为直线的方向向量。
第三部分 解析几何常用公式、结论汇总 1. 斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).2 .直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式0Ax By C ++=(其中A 、B 不同时为0).3. 两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=;4. 夹角公式 (1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.5.1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π. 6.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.7 .点到直线的距离d =点00(,)P x y ,直线l :0Ax By C ++=).8.0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.9.111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.10. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220xy Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).11. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l:Ax By C ++=与圆C:220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.12.点与圆的位置关系 点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d=d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.13.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d+++=.14.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .15.圆的切线方程 (1)已知圆220xy Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=.当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222xy r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k的圆的切线方程为y kx =±16.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.17.椭圆22221(0)x y a b a b +=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.18.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.19. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y ya b+=.(2)过椭圆22221(0)x y a b a b +=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b +=.(3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A aB b c +=.20.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.21.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.22.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).23. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b-=.(2)过双曲线22221(0,0)x y a b a b -=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b -=.(3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=.24. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x px p x CD ++=+++=212122. 25.抛物线px y 22=上的动点可设为P ),2(2οοy py 或或)2,2(2pt pt P P (,)x y o o ,其中 22y px =oo . 26.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a--=. 27.抛物线的内外部 (1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>.点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>.(2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->.点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->.(3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>.点00(,)P x y 在抛物线22(0)xpy p =>的外部22(0)x py p ⇔>>.(4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>.点00(,)P x y 在抛物线22(0)xpy p =->的外部22(0)x py p ⇔>->.28. 抛物线的切线方程 (1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.29.两个常见的曲线系方程 (1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}ab k a b <<时,表示双曲线.30.直线与圆锥曲线相交的弦长公式AB =1212|||AB x x y y ==-=-A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率). 31.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=.(2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B ++++--=++.32.“四线”一方程 对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.。
解析几何中的基本公式1、两点间距离:若 A (x1,y1 ),B(x2, y2 ) ,则AB 2(x2 x ) ( y y )1 2 12 2、平行线间距离:若l1 : Ax By C1 0, l 2 : Ax By C2 0则:d C1A2C2B2注意点:x,y 对应项系数应相等。
3、点到直线的距离:P(x , y ), l : Ax By C 0则P 到l 的距离为: dAxABy2 B2C4、直线与圆锥曲线相交的弦长公式:ykxy)F(x,b2 bx c消y:ax 0 ,务必注意0.若l 与曲线交于 A ( x1 , y ), B( x ,y )1 2 2则:AB (1 k x x2 )( )2 125、若A (x1, y1 ), B(x2, y2 ) ,P(x,y)。
P 在直线AB 上,且P 分有向线段AB 所成的比为,则xy x11y11x2y2,特别地:=1 时,P 为AB 中点且xyx1y122x2y2变形后:xx2x1 或xyy2y1y6、若直线l1 的斜率为k1,直线l2 的斜率为k2,则l1 到l2 的角为, (0, )适用范围:k1,k2 都存在且k1k2 -1 ,tank21k1k k1 2若l1 与l2 的夹角为,则tankk121 k k1 2,](0,2注意:(1)l1 到l2 的角,指从l1 按逆时针方向旋转到l2 所成的角,范围(0, ) l1 到l2 的夹角:指l1、l2 相交所成的锐角或直角。
(2)l1 l2 时,夹角、到角=2。
1/ 7(3)当l1 与l2 中有一条不存在斜率时,画图,求到角或夹角。
7、(1)倾斜角,(0, ) ;(2)a, b夹角,[0,] ;(3)直线l 与平面]的夹角,;[0,2(4)l1 与l2 的夹角为,][ 0,,其中l1//l2 时夹角=0;2(5)二面角, (0, ] ;(6)l1 到l2 的角,(0,)8、直线的倾斜角与斜率k 的关系a) 每一条直线都有倾斜角,但不一定有斜率。
解析几何常用公式-CAL-FENGHAI.-(YICAI)-Company One11. AB →,A 为AB →的起点,B 为AB →的终点。
线段AB 的长度称作AB →的长度,记作|AB →|.数轴上同向且相等的向量叫做相等的向量.....。
零向量的方向任意。
..........在数轴上任意三点A 、B 、C ,向量AB →、BC →、AC →的坐标都具有关系:AC =AB +BC . ..AC →=AB →+2.设 AB → 是数轴上的任一个向量,则AB =OB -OA =x 2-x 1,d (A ,B )=|AB |=|x 2-x 1|. 4.. A (x 1,y 1),B (x 2,y 2),则两点A 、B 的距离公式d (A ,B )=x 2-x 12+y 2-y 12若B 点为原点,则d (A ,B )=d (O ,A )=x 21+y 21;5. A (x 1,y 1),B (x 2,y 2),中点M(x 1+x 22,y 1+y 22). A (x ,y )关于M (a ,b )的对称点B(2x 0-x ,2y 0-y ).6. 直线倾斜角::x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定,与x 轴 平行或重合的直线的倾斜角为0°.7.直线的位置与斜率、倾斜角的关系①k =0时,倾斜角为0°,直线平行于x 轴或与x 轴重合.②k >0时,直线的倾斜角为锐角,k 值增大,直线的倾斜角也增大,此时直线过第一、三象限.③k <0时,直线的倾斜角为钝角,k 值增大,直线的倾斜角也增大,此时直线过第二、四象限.④垂直于x 轴的直线的斜率不存在,它的倾斜角为90°.8. 若直线l 上任意两点A (x 1,y 1),B (x 2,y 2)且x 1≠x 2,则直线l 的斜率k =y 2-y 1x 2-x 1. 9.直线方程的五种形式(1)点斜式:经过点P 0(x 0,y 0)的直线有无数条,可分为两类:斜率存在时,直线方程为 y -y 0=k (x -x 0);斜率不存在时,直线方程为x =x 0.(2)斜截式:已知点(0,b ),斜率为k 的直线y =kx +b 中,截距b 可为正数、零、负数. (3)两点式:y -y 1y 2-y 1=x -x 1x 2-x 1(x 1≠x 2,y 1≠y 2)(4) 截距式:当直线过(a,0)和(0,b )(a ≠0,b ≠0)时,直线方程可以写为x a +yb =1,当直线斜率 不 存在(a =0)或斜率为0(b =0)时或直线过原点时,不能用截距式方程表示直线. (5)一般式:Ax +By +C =0的形式.(220A B +≠)10. (1)已知两条直线的方程为l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0.那么①l 1与l 2相交的条件是:A 1B 2-A 2B 1≠0或A 1A 2≠B 1B 2(A 2B 2≠0).②l 1与l 2平行的条件是:A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0或A 1A 2=B 1B 2≠C 1C 2(A 2B 2C 2≠0).③l 1与l 2重合的条件是:A 1=λA 2,B 1=λB 2,C 1=λC 2(λ≠0)或A 1A 2=B 1B 2=C 1C 2(A 2B 2C 2≠0).2)已知两条直线的方程为l 1:y =k 1x +b 1,l 2:y =k 2x +b 2.那么①l 1与l 2相交的条件为k 1≠k 2.②l 1与l 2平行的条件为k 1=k 2且b 1≠b 2. ③l 1与l 2重合的条件为k 1=k 2且b 1=b 2.11. 直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直________.直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2垂直________.若两直线中有一条斜率不存在时,则另一条的斜率为0,即倾斜角分别为90°和0°,也满足|α-β|=90°.12.与直线Ax +By +C =0平行的直线可表示为Ax +By +m =0(m ≠C ); 与直线Ax +By +C =0垂直的直线可表示为Bx -Ay +m =0,14. 点P (x 1,y 1)到直线Ax +By +C =0(A 2+B 2≠0)的距离为d =|Ax 1+By 1+C |A 2+B2 应用点到直线的距离公式时,若给出的直线方程不是一般式,则应先把直线方程化为一般式,然后再利用公式求解. 15.点到几种特殊直线的距离:①点P (x 1,y 1)到x 轴的距离d =|y 1| .②点P (x 1,y 1)到y 轴的距离d =|x 1|.③点P (x 1,y 1)到直线x =a 的距离为d =|x 1-a |. ④点P (x 1,y 1)到直线y =b 的距离为d =|y 1-b |.16.两平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0,C 1≠C 2,则l 1与l 2的距离为 d =|C 1-C 2|A 2+B 2. 两条平行线间的距离公式要求:l 1、l 2这两条直线的一般式中x 的系数相等,y 的系数也必须相等;当不相等时,应化成相等的形式,然后求解.17. 圆的标准方程为(x-a)2+(y-b)2=r2;18.点到圆心的距离为d,圆的半径为r.则点在圆外d>r;点在圆上d=r;点在圆内0≤d<r. 20.规律技巧圆的几何性质:①若直线与圆相切,则圆心到直线的距离等于半径,过切点与切线垂直线的直线过圆心;②若直线与圆相交,圆心、弦的中点及弦的一个端点组成的三角形是直角三角形,弦的垂直平分线经过圆心.④以A(x1,y1)、B(x2,y2)为直径的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.21. 形如Ax2+Bxy+Cy2+Dx+Ey+F=0的方程表示圆的等价条件(1)A=C≠0;x2、y2的系数相同且不等于零;(2)B=0;不含xy项.(3)(DA)2+(EA)2-4FA>0,即D2+E2-4AF>0.23.圆的一般方程形式为x2+y2+Dx+Ey+F=0,配方为 (x+D2)2+(y+E2)2=D2+E2-4F4.(1)当D2+E2-4F>0时,它表示以 (-D2,-E2)为圆心,D2+E2-4F2为半径的圆.(2)当D2+E2-4F=0时,它表示点 (-D2,-E2).(3)当D2+E2-4F<0时,它不表示任何图形24.直线与圆的位置关系(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点.25.直线与圆位置关系的判定有两种方法(1)代数法:通过直线方程与圆的方程所组成的方程组,根据解的个数来判断.若有两组不同的实数解,即Δ>0,则相交;若有两组相同的实数解,即Δ=0,则相切;若无实数解,即Δ<0,则相离.(2)几何法:由圆心到直线的距离d与半径r的大小来判断:当d<r时,直线与圆相交;当d=r时,直线与圆相切;当d>r时,直线与圆相离.26.直线与圆相切,切线的求法(1)当点(x0,y0)在圆x2+y2=r2上时,切线方程为x0x+y0y=r2;(2)若点(x 0,y 0)在圆(x -a )2+(y -b )2=r 2上,切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2; 27.若弦长为l ,弦心距为d ,半径为r ,则(l2)2+d 2=r 2.28.判断两圆的位置关系设圆C 1:x 2+y 2+D 1x +E 1y +F 1=0, ① 圆C 2:x 2+y 2+D 2x +E 2y +F 2=0. ② ①-②得(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. ③若圆C 1与C 2相交,则③为过两圆交点的弦所在的直线方程.求两圆的公共弦所在直线方程,就是使表示圆的两个方程相减即可得到. 31.空间直角坐标系中的对称点点P (x ,y ,z )的对称点的坐标 11112222|P 1P 2|=x 2-x 12+y 2-y 12+z 2-z 12.到定点(a ,b ,c )距离等于定长R 的点的轨迹方程为(x -a )2+(y -b )2+(z -c )2=R 2,此即以定点(a ,b ,c )为球心,R 为半径的球面方程. 33..空间线段的中点坐标公式在空间直角坐标系中,已知点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则线段P 1P 2的中点P 的坐标为(x 1+x 22,y 1+y 22,z 1+z 22).。
解析几何中的基本公式1、两点间距离:若 A (x 1,y 1), B (X 2,y 2),则 AB=J(X 2 — X i )2+(y 2 — yj 22、平行线间距离:若 l 1 : AX By C^ 0, 12 : AX By C 0注意点:X ,y 对应项系数应相等。
则P到—S BJ4、直线与圆锥曲线相交的弦长公式: 丿y一 kX + bJ z (x ,y) =0消y : ax 2∙ bx ∙ c = 0 ,务必注意 厶∙0. 若l 与曲线交于A (x 1, y 1), B (X 2 ,y 2) 贝 V : AB = (1一k 2)(x2=xj 25、若A (X 1,y 1), B (X 2,y 2) , P (X , y )。
P 在直线AB 上,且P 分有向线段AB 所成的比为入,X I HL X 2 1 ■ W 丁2 1 ■X 2 -Xy 2 一 y6、若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为 二很三(0,二)则:CI - C 2..A 2 B 23、点到直线的距离:P(X , y ), l: AXByC=O,特别地:变形后:X-X ly 一 y 1'=1时,P 为AB 中点且X 1 X 22 y 「y 22或适用范围:k ι, k 2都存在且k ιk 2= — 1 ,若I i 与12的夹角为R 则tan ,=k1^k 2, —(0,上]1 + k 1k 22IIJmnJnJ注意:(1) ∣1到∣2的角,指从∣1按逆时针方向旋转到∣2所成的角,范围(0,二)∣1到∣2的夹角:指 丨1、∣2相交所成的锐角或直角.(2)∣1 _12时,夹角、到角 =—。
tan _1 + k k― 28、直线的倾斜角:'与斜率k的关系a)每一条直线都有倾斜角-,但不一定有斜率。
(2)斜率存在时为 y - y = k (x — X ) y - y 1 _ X - X 1 y ? 一 y 1 χ2 F其中I 交X 轴于(a,0),交y 轴于(0,b)当直线I 在坐标轴上,距相等时应分: (1) 截距=0 设y=kxb)若直线存在斜率k ,而倾斜角为:■,则k=tan :•。
数学解析几何二级结论公式一、椭圆部分。
1. 焦半径公式。
- 对于椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a>b>0),设F_1,F_2为左右焦点,P(x,y)为椭圆上一点。
- 当P在椭圆上时,| PF_1|=a + ex,| PF_2|=a - ex(其中e=(c)/(a),c=√(a^2)-b^{2})。
- 对于椭圆frac{y^2}{a^2}+frac{x^2}{b^2} = 1(a>b>0),设F_1,F_2为上下焦点,P(x,y)为椭圆上一点。
- | PF_1|=a+ey,| PF_2|=a - ey(其中e=(c)/(a),c=√(a^2)-b^{2})。
2. 椭圆的切线方程。
- 过椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1上一点P(x_0,y_0)的切线方程为frac{x_0x}{a^2}+frac{y_0y}{b^2} = 1。
- 过椭圆frac{y^2}{a^2}+frac{x^2}{b^2} = 1上一点P(x_0,y_0)的切线方程为frac{y_0y}{a^2}+frac{x_0x}{b^2} = 1。
3. 中点弦结论(点差法)- 设椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a>b>0),弦AB的中点为M(x_0,y_0)。
- 设A(x_1,y_1),B(x_2,y_2),将A、B两点代入椭圆方程相减得:k_AB=-frac{b^2x_0}{a^2y_0}(k_AB为弦AB的斜率)。
二、双曲线部分。
1. 焦半径公式。
- 对于双曲线frac{x^2}{a^2}-frac{y^2}{b^2} = 1,设F_1,F_2为左右焦点,P(x,y)为双曲线上一点。
- 当P在双曲线右支上时,| PF_1|=ex + a,| PF_2|=ex - a(其中e=(c)/(a),c=√(a^2)+b^{2})。
解析几何公式大全几何学是研究图形和空间的性质、变换和计量的一门学科。
在几何学中,有许多重要的公式用于解决各种几何问题。
这些公式涵盖了面积、体积、周长等几何属性的计算方法。
接下来,我们将解析一些几何公式,介绍它们的推导、应用和实际意义。
一、平面图形的公式:1.面积公式:-矩形(正方形)的面积公式:面积=长×宽(面积=边长×边长)-三角形的面积公式:面积=1/2×底×高-梯形的面积公式:面积=1/2×(上底+下底)×高-平行四边形的面积公式:面积=底×高2.周长公式:-矩形(正方形)的周长公式:周长=2×(长+宽)(周长=4×边长)-三角形的周长公式:周长=边1+边2+边3-梯形的周长公式:周长=上底+下底+边1+边2-平行四边形的周长公式:周长=2×(边1+边2)3.直角三角形的公式:-勾股定理:c²=a²+b²(其中c表示斜边的长度,a和b表示两条直角边的长度)- 正弦定理:a/sinA = b/sinB = c/sinC(其中 a、b、c 分别表示三角形的边长,A、B、C 分别表示对应角的度数)- 余弦定理:c² = a² + b² - 2abcosC(其中 a、b、c 分别表示三角形的边长,C 表示夹在 a 和 b 之间的角度)二、立体图形的公式:1.体积公式:-立方体的体积公式:体积=长×宽×高(体积=边长³)-圆柱体的体积公式:体积=圆的面积×高(体积=πr²h)-锥体的体积公式:体积=1/3×圆的面积×高(体积=1/3×πr²h)-球体的体积公式:体积=4/3×πr³2.表面积公式:-立方体的表面积公式:表面积=6×面的面积(表面积=6×边长²)- 圆柱体的表面积公式:表面积= 2 × 圆的面积 + 侧面积(表面积= 2πr² + 2πrh)- 锥体的表面积公式:表面积 = 圆的面积 + 侧面积(表面积 =πr² + πrl)-球体的表面积公式:表面积=4×πr²以上公式是几何学中常用的一些公式,它们在解决各种几何问题时非常有用。
高中数学解析几何第一部分:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。
(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.αt a n =k(1).倾斜角为︒90的直线没有斜率。
(2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
(3)设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 则当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o90=α;斜率不存在;二、直线的方程1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y =注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
3.两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠则直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。
4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:1=+bya x ; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
平行线间距离:若l i : Ax By C i 0, 12 : Ax By C20
则:d C i C2I
J A2B2
注意点:x, y对应项系数应相等。
点到直线的距离:P(x , y ),I:Ax By C 0
则P到1的距离为: |Ax d By C
解析几何中的基本公式
.A2B2
直线与圆锥曲线相交的弦长公式:y kx b F(x,y) 0
2
消y:ax bx c 0,务必注意0.
若I与曲线交于A(x1, y1), B(x2, y2)
则:AB v'(1 k2)(X2 X i)2
若A(x i, y i), B(X2, y2),P(x,y)。
P在直线AB上,且P分有向线段AB所成的比为
i
y i y2 i ,特别
地:
x
=1时,P为AB中点且
y
x-i x2
2
y i y2
2
变形后:—i或」
X2 x y2 y
若直线l i的斜率为k i,直线|2的斜率为k2,则l i到|2的角为,
(0,
)
适用范围:k i,k2都存在且k i k2 —i , tan k2 k i i k i k2
I i 到I 2的夹角:指 11、
12相交所成的锐角或直角。
(2) l 1 I 2时,夹角、到角=—。
2
(3) 当11与I 2中有一条不存在斜率时,画图,求到角或夹角。
直线的倾斜角 与斜率k 的关系 每一条直线都有倾斜角
,但不一定有斜率。
若直线存在斜率k ,而倾斜角为 ,则k=tan 。
直线I 1与直线I 2的的平行与垂直
(1)若I 1, I 2均存在斜率且不重合:①I 1//I 2 k 1=k 2
② I 1 I 2
k 1k 2=— 1
(2)若 I 1 : A 1x B 1 y C 1 0, I 2 : A 2X B 2y C 2
若A 1、A 2、B 1、B 2都不为零
I 1//I 2
△邑
C !; A 2
B 2
C 2
若i i 与12的夹角为,则tan
注意:(1 ) I i 到12的角,指从 k i k 2
1 kk
11按逆时针方向旋转到 I 2所成的
角, (0,)
(1) 倾斜角
,
(0,); (2) a, b 夹角, [0, ]; (3) 直线I 与平面 的夹角 ,[0,,]
(4) I 1与I 2的夹角为
[0,—],其
中
2
(5) 二面角,
(0,];
(6) I 1到I 2的角, (0, )
I 1//I 2时夹角
=0;
I 1 I 2 A 1A 2+B 1B 2=0;
11与12重合
£电C
A 2
B 2
C 2
(2)斜率存在时为y y k (x x )
11与12相交
A i A 2
B i
注意:若A 2或B 2中含有字母,应注意讨论字母 直线方程的五种形式 名称 方程 斜截式: y=kx+b =0与 0的情况。
注意点
应分①斜率不存在
②斜率存在
点斜式:
y y k(x x )
(1)斜率不存在:X x
两点式: y y i y 2 y i
x x 1 x 2 x-1
截距式: 一 — 1
a b
截距相等时应分: 其中I 交x 轴于(a,0),交y 轴于(0,b )当直线1在坐标轴
上,
般式: Ax By C 0
(1) 截距=0 设y=kx (2) 截距=a
0 设--1
a a
即 x+y=a
(其中A 、B 不同时为零)
11、直线Ax By C
2
0与圆(x a) 2 2
(y b ) r 的位置关系有三种
若d Aa
Bb C
d r
相离
J A 2 B 2
d r 相切
相交
13、圆锥曲线定义、标准方程及性质
(一)椭圆
定义I :若F i , F 2是两定点,P 为动点,且|PF J |PF ^ 2a |F i F ^ ( a 为常数)则P 点的轨迹是椭圆。
定义n :若F i 为定点,|为定直线,动点 P 到F i 的距离与到定直线I 的距离之比为常数 e ( 0<e<1),则P 点的轨迹是椭 圆。
距离分别与a,b,c 有关。
(2) PF i F 2中经常利用余弦定理.、三角形面积公式 将有关线段PF 』、| PF 2、2c ,有关角 F i PF 2结合起来,
建立 |PF i + PF 2|
、
PF i ? PF 2等关系
(4)注意题目中椭圆的焦点在 x 轴上还是在 二、双曲线
y 轴上,请补充当焦点在 y 轴上时,其相应的性质。
注意:
(i )图中线段的几何特征: AF 」 A 2F 2 a c , A ,F 2| IA2R a c B i F i |B i F 2 B 2F 2 B 2 F i
a ,
A 2
B 2|
A ,
B 2
Ja
b 等等。
顶点与准线距离、焦点与准线
a c 等(注意涉及焦半径①用点
P 坐标表示,②第一定义。
)
(3)椭圆上的点有时常用到三角换元:
acos
;
bsi n
(一)疋乂
:I
右 F i , F 2是两定点,
PF i
IPF 2II 2a F i F 2 ( a 为常数),则动点P 的轨迹是双曲线。
标准方程:
2
x 2 a
2
【2 i
(a b
b 0)
定义域: {X a
x a }值域: {x b y b}
长轴长 =2a ,短轴长 =2b
2
a
准线方程:
x
c
2
2
焦半径
:
PF i | e(x
), c
PF 2
e (a x), c
PF i 2a PF 2 , a c PF i
焦距:2c
n若动点P到定点F与定直线I的距离之比是常数 e (e>1),则动点P的轨迹是双曲线。
2
4'//
V
X/X x
(三)性
质
(a 0,b 0)
2
y
2
a
0,b 0)
定义域:{xx a或x a};值域为R;
实轴长=2a,虚轴长=2b
焦距:2c
准线方程:x
焦半径:|PF1e(x PF2
2
,a
e(―
c
x),||PF i |PF2II 2a
注意:(1 )图中线段的几何特征: AFi| |BF2 c a,AF2BF
1
顶点到准线的距离: ;焦点到准线的距离:
2
—;两准线间的距离=
2a2
可设为x 2 y 2
;
(4)注意 PF^2中结合定义||PF j PF ?” 2a 与余弦定理cos FfF ?,将有关线段PR 、、PF 2、
和角结合起来。
二、抛物线
(一)定义:到定点
F 与定直线的距离相等的点的轨迹是抛物线。
即:到定点F 的距离与到定直线I 的距离之比是常数 e ( e=1)。
(2)若双曲线方程为
2
x
~2
a
2
x
渐近线方程:—
a
若渐近线方程为
b 0双曲线可设为
2
x
~~2 a
2
x
若双曲线与—
a
2
y b 2
1有公共渐近线,可设
为
2
x ~2 a
2
y b 2
( 0 ,焦点在x 轴上,
焦点在y 轴上)
(3)特别地当a b 时
离心率e .2
两渐近线互相垂直,分别为
y= x ,此时双曲线为等轴双曲线,
X
2
(三)性质:方程:y2 2 px,( p 0), p 焦参数;
焦点:(才,0),通径AB 2p ; 准线:x
X i X2 x i X2 P 卫;
2
焦半径:CF x -,过焦点弦长CD
2
注意:(1 )几何特征:焦点到顶点的距离=号;焦点到准线的距离=p ;通径长=2p
顶点是焦点向准线所作垂线段中点。
2
2 px (2)抛物线y2 2px上的动点可设为P(— ,y )或P(2pt2,2pt)或p(x,y)其中y2
2p。