解析几何公式大全25541
- 格式:doc
- 大小:363.00 KB
- 文档页数:7
(完整版)高中数学解析几何公式大全一、直线方程1. 点斜式:y y1 = m(x x1),其中m是直线的斜率,(x1, y1)是直线上的一个点。
2. 斜截式:y = mx + b,其中m是直线的斜率,b是直线在y轴上的截距。
3. 一般式:Ax + By + C = 0,其中A、B、C是常数。
二、圆的方程1. 标准式:(x a)2 + (y b)2 = r2,其中(a, b)是圆心的坐标,r是圆的半径。
2. 一般式:x2 + y2 + Dx + Ey + F = 0,其中D、E、F是常数。
三、椭圆的方程1. 标准式:((x h)2/a2) + ((y k)2/b2) = 1,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。
2. 一般式:((x h)2/a2) + ((y k)2/b2) 1 = 0,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。
四、双曲线的方程1. 标准式:((x h)2/a2) ((y k)2/b2) = 1,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。
2. 一般式:((x h)2/a2) ((y k)2/b2) 1 = 0,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。
五、抛物线的方程1. 标准式:y2 = 4ax,其中a是抛物线的焦点到准线的距离。
2. 一般式:y2 = 4ax + b,其中a是抛物线的焦点到准线的距离,b是抛物线在y轴上的截距。
六、直线与圆的位置关系1. 判定直线与圆的位置关系:计算直线到圆心的距离d与圆的半径r的关系。
如果d < r,直线与圆相交;如果d = r,直线与圆相切;如果d > r,直线与圆相离。
2. 直线与圆的交点:解直线方程和圆的方程,得到两个交点的坐标。
七、直线与椭圆的位置关系1. 判定直线与椭圆的位置关系:将直线方程代入椭圆方程,得到一个关于x的一元二次方程。
第三部分 解析几何常用公式、结论汇总 1. 斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).2 .直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式0Ax By C ++=(其中A 、B 不同时为0).3. 两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+①121212||,ll k k b b ⇔=≠; ②12121ll k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C ll A B C ⇔=≠;②1212120ll A A B B ⊥⇔+=;4. 夹角公式 (1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π.5.1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π.6.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.7 .点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).8.0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B=,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.9.111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.10. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220xy Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).11. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l:Ax By C ++=与圆C:220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数. (3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E yF x y D x E y F λ+++++++++=,λ是待定的系数.12.点与圆的位置关系 点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d=d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.13.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .其中22BA C Bb Aa d+++=.14.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .15.圆的切线方程 (1)已知圆220xy Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=.当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程. ②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222xy r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±16.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.17.椭圆22221(0)x y a b a b +=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.18.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.19. 椭圆的切线方程(1)椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y a b +=.(3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A aB b c +=.20.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.21.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.22.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).23. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y a b -=.(3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=.24. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x px p x CD ++=+++=212122. 25.抛物线px y 22=上的动点可设为P ),2(2y py 或或)2,2(2pt pt P P (,)x y ,其中 22y px = .26.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a--=. 27.抛物线的内外部 (1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>.点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>.(2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->.点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->.(3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>.点00(,)P x y 在抛物线22(0)xpy p =>的外部22(0)x py p ⇔>>.(4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>.点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->.28. 抛物线的切线方程 (1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.29.两个常见的曲线系方程 (1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}ab k a b <<时,表示双曲线.30.直线与圆锥曲线相交的弦长公式AB =1212||||AB x x y y =-=-A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率). 31.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=.(2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B ++++--=++.32.“四线”一方程 对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.。
解析几何中的基本公式1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=特别地:x //AB 轴, 则=AB 。
y //AB 轴, 则=AB 。
2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++则:2221BA C C d +-=注意点:x ,y 对应项系数应相等。
3、 点到直线的距离:0C By Ax :l ),y ,x (P =++则P 到l 的距离为:22BA CBy Ax d +++=4、 直线与圆锥曲线相交的弦长公式:⎩⎨⎧=+=0)y ,x (F bkx y消y :02=++c bx ax ,务必注意.0>∆若l 与曲线交于A ),(),,(2211y x B y x则:2122))(1(x x k AB -+=5、 若A ),(),,(2211y x B y x ,P (x ,y )。
P 在直线AB 上,且P 分有向线段AB 所成的比为λ,则⎪⎪⎩⎪⎪⎨⎧λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x变形后:yy y y x x x x --=λ--=λ2121或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα适用范围:k 1,k 2都存在且k 1k 2≠-1 , 21121tan k k k k +-=α若l 1与l 2的夹角为θ,则=θtan 21211k k k k +-,]2,0(π∈θ注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。
(2)l 1⊥l 2时,夹角、到角=2π。
(3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。
解析几何中的基本公式1、两点间距离:若 A (x 1,y 1), B (X 2,y 2),则 AB=J(X 2 — X i )2+(y 2 — yj 22、平行线间距离:若 l 1 : AX By C^ 0, 12 : AX By C 0注意点:X ,y 对应项系数应相等。
则P到—S BJ4、直线与圆锥曲线相交的弦长公式: 丿y一 kX + bJ z (x ,y) =0消y : ax 2∙ bx ∙ c = 0 ,务必注意 厶∙0. 若l 与曲线交于A (x 1, y 1), B (X 2 ,y 2) 贝 V : AB = (1一k 2)(x2=xj 25、若A (X 1,y 1), B (X 2,y 2) , P (X , y )。
P 在直线AB 上,且P 分有向线段AB 所成的比为入,X I HL X 2 1 ■ W 丁2 1 ■X 2 -Xy 2 一 y6、若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为 二很三(0,二)则:CI - C 2..A 2 B 23、点到直线的距离:P(X , y ), l: AXByC=O,特别地:变形后:X-X ly 一 y 1'=1时,P 为AB 中点且X 1 X 22 y 「y 22或适用范围:k ι, k 2都存在且k ιk 2= — 1 ,若I i 与12的夹角为R 则tan ,=k1^k 2, —(0,上]1 + k 1k 22IIJmnJnJ注意:(1) ∣1到∣2的角,指从∣1按逆时针方向旋转到∣2所成的角,范围(0,二)∣1到∣2的夹角:指 丨1、∣2相交所成的锐角或直角.(2)∣1 _12时,夹角、到角 =—。
tan _1 + k k― 28、直线的倾斜角:'与斜率k的关系a)每一条直线都有倾斜角-,但不一定有斜率。
(2)斜率存在时为 y - y = k (x — X ) y - y 1 _ X - X 1 y ? 一 y 1 χ2 F其中I 交X 轴于(a,0),交y 轴于(0,b)当直线I 在坐标轴上,距相等时应分: (1) 截距=0 设y=kxb)若直线存在斜率k ,而倾斜角为:■,则k=tan :•。
2025年高考数学解析几何知识点总结解析几何是高中数学的重要组成部分,在高考中占有相当的比重。
下面我们来对这部分的知识点进行一个全面的总结。
一、直线1、直线的方程点斜式:$y y_1 = k(x x_1)$,其中$(x_1, y_1)$是直线上的一点,$k$是直线的斜率。
斜截式:$y = kx + b$,其中$k$是斜率,$b$是直线在$y$轴上的截距。
两点式:$\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}$,其中$(x_1, y_1)$,$(x_2, y_2)$是直线上的两点。
截距式:$\frac{x}{a} +\frac{y}{b} = 1$,其中$a$,$b$分别是直线在$x$轴和$y$轴上的截距。
一般式:$Ax + By + C = 0$($A$,$B$不同时为 0)2、直线的斜率定义:直线倾斜角$\alpha$($\alpha \neq 90°$)的正切值$k =\tan\alpha$。
斜率公式:若直线上有两点$(x_1, y_1)$,$(x_2, y_2)$,则斜率$k =\frac{y_2 y_1}{x_2 x_1}$。
3、两条直线的位置关系平行:两条直线斜率相等且截距不等。
垂直:两条直线斜率之积为$-1$。
4、点到直线的距离公式点$P(x_0, y_0)$到直线$Ax + By + C = 0$的距离$d =\frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$二、圆1、圆的方程标准方程:$(x a)^2 +(y b)^2 = r^2$,其中$(a, b)$是圆心坐标,$r$是半径。
一般方程:$x^2 + y^2 + Dx + Ey + F = 0$($D^2 + E^2 4F > 0$)2、圆的性质圆心到圆上任意一点的距离都等于半径。
圆的直径所对的圆周角是直角。
3、直线与圆的位置关系相交:圆心到直线的距离小于半径。
解析几何解析几何1、直线、直线两点距离、定比分点两点距离、定比分点 直线方程直线方程|AB|=| | |P1P2|=y -y1=k(x -x1) y =kx +b 两直线的位置关系两直线的位置关系 夹角和距离夹角和距离或k1=k2,且b1≠b2 l1与l2重合重合或k1=k2且b1=b2 l1与l2相交相交或k1≠k2 l2⊥l2 或k1k2=-1 l1到l2的角的角l1与l2的夹角的夹角点到直线的距离点到直线的距离2.圆锥曲线圆锥曲线圆 椭 圆标准方程(x -a)2+(y -b)2=r2 圆心为(a ,b),半径为R 一般方程x2+y2+Dx +Ey +F =0 其中圆心为( ), 半径r (1)用圆心到直线的距离d 和圆的半径r 判断或用判别式判断直线与圆的位置关系判断或用判别式判断直线与圆的位置关系(2)两圆的位置关系用圆心距d 与半径和与差判断与半径和与差判断 椭圆椭圆焦点F1(-c ,0),F2(c ,0) (b2=a2-c2) 离心率离心率准线方程准线方程焦半径|MF1|=a +ex0,|MF2|=a -ex0 双曲线双曲线 抛物线抛物线双曲线双曲线焦点F1(-c ,0),F2(c ,0) (a,b>0,b2=c2-a2) 离心率离心率准线方程准线方程焦半径|MF1|=ex0+a,|MF2|=ex0-a 抛物线y2=2px(p>0) 焦点F 准线方程准线方程坐标轴的平移坐标轴的平移是新坐标系的原点在原坐标系中的坐标。
这里(h,k)是新坐标系的原点在原坐标系中的坐标。
总结高考数学复习解析几何公式大全解析几何指借助笛卡尔坐标系,由笛卡尔、费马等数学家创立并开展,下面是解析几何公式大全,请考生及时停止学习。
1、直线
两点距离、定比分点直线方程
|AB|=| |
|P1P2|=
y-y1=k(x-x1)
y=kx+b
两直线的位置关系夹角和距离
或k1=k2,且b1b2
l1与l2重合
或k1=k2且b1=b2
l1与l2相交
或k1k2
l2l2
或k1k2=-1 l1到l2的角
l1与l2的夹角
点到直线的距离
2.圆锥曲线
圆椭圆
规范方程(x-a)2+(y-b)2=r2
圆心为(a,b),半径为R
普通方程x2+y2+Dx+Ey+F=0
其中圆心为( ),
半径r
(1)用圆心到直线的距离d和圆的半径r判别或用判别式判别直线与圆的位置关系
(2)两圆的位置关系用圆心距d与半径和与差判别椭圆
焦点F1(-c,0),F2(c,0)
(b2=a2-c2)
离心率
准线方程
焦半径|MF1|=a+ex0,|MF2|=a-ex0
双曲线抛物线
双曲线
焦点F1(-c,0),F2(c,0)
(a,b0,b2=c2-a2)
离心率
准线方程
焦半径|MF1|=ex0+a,|MF2|=ex0-a抛物线y2=2px(p0)
焦点F
准线方程
坐标轴的平移
这里(h,k)是新坐标系的原点在原坐标系中的坐标。
解析几何公式大全分享到这里,更多内容请关注高考数学知识点栏目。
一、倾斜角和斜率:1.倾斜角的范围: .2.已知倾斜角α求斜率 ⎧=⎨⎩k ;已知斜率k 求倾斜角⎧=⎨⎩α.1.00(,)P x y 到直线l :220,0ax by c a b ++=+≠的距离为 . 2.直线221122:0,:0,0l ax by c l ax by c a b ++=++=+≠间的距离为 .注:在研究多点到直线的距离的问题时,通常要分点在直线的 或 两类.3.弦长公式:若直线y kx b =+(倾斜角为α)被曲线截得弦AB ,其中1122(,),(,)A x y B x y ,则弦长d ====四.两直线的夹角公式:1.两直线的夹角范围 .2.2222111122221122:0,:0,0,0l a x b y c l a x b y c a b a b ++=++=+≠+≠对应斜率分别为12,k k ,夹角为θ,则有cos θ=或者tan θ=.五.两条直线的位置关系:2222111122221122:0,:0,0,0l a x b y c l a x b y c a b a b ++=++=+≠+≠,则1l 与2l 分别满足下列情况时,相应地求系数满足的条件:①相交 ;②平行 ;③重合 ;④垂直 ; 六.对称问题:1.点00(,)A x y 关于点(,)P m n 对称的点的坐标为 ;2.直线0ax by c ++=关于点(,)P m n 对称的直线方程为 ;3.曲线(,)0f x y =关于点(,)P m n 对称的曲线方程为 ;4.点00(,)A x y 关于直线2y x =-+对称的点的坐标为 ;5.直线0ax by c ++=关于直线3y x =-对称的直线方程为 ;6.曲线(,)0f x y =关于直线4y x =--对称的曲线方程为 ; 七.直线系方程:1.直线(1)(3)(11)0m x m y m --+--=恒过定点 .2.方程30x y n +-=表示两条平行线,则实数n 的取值范围是 . 八.曲线与方程:1.已知曲线C 的方程不是(,)0f x y =,则下列选项正确的是( )A .曲线C 上至少存在一点00(,)P x y ,使得00(,)0f x y ≠;B .方程(,)0f x y =至少有一组解为坐标的点00(,)P x y 不在曲线C 上;C .曲线C 上至少存在一点00(,)P x y ,使得00(,)0f x y ≠,且方程(,)0f x y =至少有一组解为坐标的点11(,)Q x y 不在曲线C 上;D .曲线C 上至少存在一点00(,)P x y ,使得00(,)0f x y ≠,或者方程(,)0f x y =至少有一组解为坐标的点11(,)Q x y 不在曲线C 上.2.“以方程(,)0f x y =的解为坐标的点都在曲线C 上”是“曲线C 的方程为(,)f x y0=”的 条件?3.方程220Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件 ?4.24D F =是曲线220x y Dx Ey F ++++=与x 轴相切的 条件? 5.若点(,)P m n 在圆222x y R +=上,则过此点的圆的切线方程为 .6.(,)P m n 是圆222x y R +=外一点,过此点向圆引切线,切点分别为,A B ,则过,A B 两点的直线方程为 .7.圆221111:0C x y d x e y f ++++=与圆222222:0C x y d x e y f ++++=相交,则过两圆交点的直线方程为 .8.若圆221111:0C x y d x e y f ++++=与圆222222:0C x y d x e y f ++++=的半径相等,则两圆的对称轴方程为 .9.圆222x y R +=的参数方程:x y =⎧⎨=⎩练习1:圆心在原点,半径为1的圆交x 轴的正半轴于A 点,,P Q 分别是圆上的两个动点,它们同时从A 点出发,沿圆作匀速圆周运动,点P 绕逆时针方向每秒钟转3π,点Q 绕顺时针方向每秒钟转6π.(1)当,P Q 第一次相距最远时,求,P Q 的坐标;(2)当它们出发后第五次相遇,试求相遇时该点的位置.练习2:设实数,x y 满足221x y +=,(1)求13y x +-的取值范围;(2)求2x y -的取值范围;九.椭圆、双曲线、抛物线1.①到定点距离等于定值的点的轨迹是 ? ②到定直线距离等于定值的点的轨迹是 ? ③到两条平行直线距离相等的点的轨迹是 ? ④到两条相交直线距离相等的点的轨迹是 ? ⑤到两个定点距离之和等于定值的点的轨迹是 ? ⑥到两个定点距离之差的绝对值等于定值的点的轨迹是 ? ⑦到定点的距离等于到定直线的距离的点的轨迹是 ?2.12,F F 为椭圆22221x y a b +=的焦点,P 为椭圆上的点,且有12F PF θ∠=,则12PF F S ∆= .3.12,F F 为双曲线22221x y a b -=的焦点,P 为椭圆上的点,且有12F PF θ∠=,则12PF F S ∆= .4.12,F F 分别为椭圆22221x y a b+=的左右焦点,P 为椭圆上的点,记12F PF θ∠=,当θ达到最大值时,点P 的坐标为 .5.椭圆22221x y a b +=与双曲线22221x y m n-=共焦点,P 为二者在第一象限的交点,12,F F 分别为它们的左右焦点,用,b n 表示①12cos F PF ∠=②12sin F PF ∠=③12PF F S ∆=. 6.对直线,0y kx m m =+≠与双曲线22221x y a b-=来说,若||b k a >,那么直线与双曲线有三种可能①② ③ ;若||b k a =,则直线与双曲线 ;若||bk a<,则直线必然 .7.若直线与抛物线22,0y px p =>只有一个公共点,则有 .8.过抛物线22,0y px p =>的焦点F 作倾斜角为θ的直线交抛物线于,A B 两点,线段AB 的中点为M点,,,A M B 在准线2px =-上的射影分别为111,,A M B . ①11A FB ∠= ②1AM B ∠= ③ 三点共线④||AB =9.抛物线22,0y px p =>上两点,A B 满足90AOB ∠=,则直线AB 恒过定点 . 10.研究曲线上的点到直线的最短距离时,通常利用 的方法.。
解析几何公式一,直线:1, 沙尔定理2, 直线上两点距离公式: 3, 平面上两点距离公式: 4, 点P分AB成的定比λ= 5, 定比分点公式:6, 中点坐标公式: 7, 三角形的重心坐标公式: 8, 倾斜角的范围:α∈ 9 斜率与倾斜角的关系10, 由直线上两点(x1,y1),(x2,y2)求直线的斜率k=11, 直线的方程:⑴点斜式: ⑵斜截式:⑶两点式: ⑷截距式:⑸一般式:12, 两条直线l1,l2的斜率分别为k1,k2,则此二直线⑴平行的条件为:⑵垂直的条件为:13, 两条直线l1,l2的方程为A1x+B1y+c1=0 与A2x+B2y+c2=0, 则此二直线⑴重合的条件为:⑵平行的条件为:⑶相交的条件为:⑷垂直的条件为:14, 两条直线l1,l2的斜率分别为k1,k2,则由l1到l2的角θ的范围为: tgθ=此二直线所成的角(夹角)θ的范围为: tgθ=15, 点线距离公式: 16, 两条平行线的距离公式:16,对称:⑴点P(x0,y)关于点(h,k)的中心对称的点为(,);点P(x0,y)关于原点(0,0)的中心对称的点为(,);⑵点P(x0,y)关于x轴的对称点为(,);点P(x0,y)关于y轴的对称点为(,);点P(x0,y)关于直线x=a的对称点为(,);点P(x0,y)关于直线y=b的对称点为(,);点P(x0,y)关于直线y=x的对称点为(,);点P(x0,y)关于直线y=-x的对称点为(,);点P(x0,y)关于直线x+y=a的对称点为(,);点P(x0,y)关于直线x-y=a的对称点为(,);⑶点P(x0,y)关于直线Ax+By+C=0的对称点,可先设对称点为(x,y),列出方程组 y-y0/x-x=B/A,A(x+x0)/2+B(y+y)/2+C=0;解此方程组即可得对称点坐标。
二,圆:1, 圆的标准方程: ,其圆心为( , ),半径r= 2, 圆的一般方程: ,其圆心为( , ),半径r=3, 以(x1,y1),(x2,y2)为直径端点的圆的方程:4, 圆上一点P(x0,y)处的切线方程:⑴圆方程为x2+y2=r2:⑵圆方程为(x-a)2+(y-b)2=r2:5, 从圆外一点P(x0,y)向圆引切线,切点弦所在直线方程: ⑴圆方程为x2+y2=r2:⑵圆方程为(x-a)2+(y-b)2=r2:6, 从圆x2+y2+Dx+Ey+F=0外一点P(x0,y)向圆引切线的切线长l=7, 两圆的公共弦所在直线的方程:8, 经过两条曲线f1(x,y)=0,f2(x,y)=0的交点的曲线的方程可写为:三,椭圆:1, 椭圆的第一定义:2, 椭圆的第二定义:4, 椭圆上点的焦半径r,点到相应准线的距离d与离心率e的关系:5, 椭圆的两条焦半径r1,r2的和 r1+r2=6, 与焦点轴成角为θ时的焦半径公式:r= ,焦点弦长公式:l=7, 平行弦的斜率为k,其中点轨迹的图形为 .中点轨迹的斜率为k’,则 kk’=8, 椭圆的过定点的弦的中点轨迹为 .9, 与圆或椭圆的最值有关的问题常用的换元公式是:10,弦长公式:l=四,双曲线:1,双曲线的第一定义:2,双曲线的第二定义:34, 双曲线上点的焦半径r,点到相应准线的距离d与离心率e的关系:5, 双曲线上一点的两条焦半径r1,r2的差的绝对值|r1-r2|=6, 倾斜角为θ时的焦半径公式:r= ,焦点弦长公式:l=7, 平行弦的斜率为k,其中点轨迹的图形为 .中点轨迹的斜率为k’,则kk’=8, 双曲线的过定点的弦的中点轨迹为 .9, 与双曲线的最值有关的问题常用的换元公式是:10,共轭双曲线的方程:11,共渐近线的双曲线系方程:12, 等轴双曲线的离心率e= ,渐近线的夹角为;13,与双曲线只有唯一公共点的直线可能是:⑴⑵五,抛物线:1,抛物线的定义:2,抛物线上点的焦半径r,点到相应准线的距离d与的关系:3,倾斜角为θ时的焦半径公式:r= ,焦点弦长公式:l=4,抛物线y2=2px的平行弦的斜率为k,其中点轨迹的图形为,轨迹方程为;抛物线x2=2py的平行弦的斜率为k, 其中点轨迹的图形为,轨迹方程为;5; 7,与抛物线只有唯一公共点的直线可能是:⑴⑵六,坐标平移:1、设原点移至O'(h,k),则坐标变换公式为:x=x'+h; x'=x-h;y=y'+k. Y'=y-k.七,参数方程:1、直线的参数方程:⑴ x=x+at;y=y+bt. (t为参数)⑵ x=x+tcosθ;y=y0+tsinθ. (t为参数)。
总结2019高考数学复习解析几何公式大全
解析几何指借助笛卡尔坐标系,由笛卡尔、费马等数学家创立并发展, 下面是解析几何公式大全, 请考生及时进行学习。
1、直线
两点距离、定比分点直线方程
|AB|=| |
|P1P2|=
y-y1=k(x-x1)
y=kx+b
两直线的位置关系夹角和距离
或k1=k2, 且b1b2
l1与l2重合
或k1=k2且b1=b2
l1与l2相交
或k1k2
l2l2
或k1k2=-1 l1到l2的角
l1与l2的夹角
点到直线的距离
2.圆锥曲线
圆椭圆
标准方程(x-a)2+(y-b)2=r2
圆心为(a, b), 半径为R
一般方程x2+y2+Dx+Ey+F=0
其中圆心为( ),
半径r
(1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系
(2)两圆的位置关系用圆心距d与半径和与差判断椭圆
焦点F1(-c, 0), F2(c, 0)
(b2=a2-c2)
离心率
准线方程
焦半径|MF1|=a+ex0, |MF2|=a-ex0
双曲线抛物线
双曲线
焦点F1(-c, 0), F2(c, 0)
(a, b0, b2=c2-a2)
离心率
准线方程
焦半径|MF1|=ex0+a, |MF2|=ex0-a抛物线y2=2px(p0)
焦点F
准线方程
坐标轴的平移
这里(h, k)是新坐标系的原点在原坐标系中的坐标。
解析几何公式大全一份付出一分耕耘圆锥曲线知识考点一、直线与方程1、倾斜角与斜率:1212180<α≤0(tan x x y y --==)α 2、直线方程:⑴点斜式:直线l 经过点),(000y x P ,且斜率为k : ()00x x k y y -=- ⑵斜截式:已知直线l 的斜率为k ,且与y 轴的交点为),0(b :b kx y += ⑶两点式:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠:121121y y y y x x x x --=-- ⑷截距式:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b :1x y a b+= ⑸一般式:0=++C By Ax (A 、B 不同时为0, 斜率BAk -=,y 轴截距为BC -) (6)k 不存在⇔a x b a x o=⇔⇔=)的直线方程为过(轴垂直,90α3、直线之间的关系:222111:,:b x k y l b x k y l +=+=⑴平行:{⇔⇔≠=21212121//b b k k k k l l 且都不存在,212121C C B B A A ≠=⑵垂直:{⇔⇔⊥-=⇔-==21212111.021k k k k k k l l 不存在,02121=+B B A A⑶平行系方程:与直线0=++C By Ax 平行的方程设为:0=++m By Ax⑷垂直系方程:与直线0=++C By Ax 垂直的方程设为:0=++n Ay Bx⑸定点(交点)系方程:过两条直线:,0:22221111=++=++C y B x A l C y B x A l 的交点的方程设为:0)(222111=+++++C y B x A C y B x A λ反之直线0)(222111=+++++C y B x A C y B x A λ中,λ取任何一切实数R ,则直线一定过定点),(00y x ,即:,0:22221111=++=++C y B x A l C y B x A l 两条直线的交点),(0y x4、距离公式: (1)两点间距离公式:两点),(),,(222211y x P x x P :()()21221221y y x x P P -+-=(2)点到直线距离公式:点),(00y x P 到直线0:=++C By Ax l 的距离为2200BA CBy Ax d +++=(3)两平行线间的距离公式:1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2221BA C C d +-=二、圆与方程 1、圆的方程:⑴标准方程:()()222r b y a x =-+- 其中圆心为(,)a b ,半径为r .⑵一般方程:022=++++F Ey Dx y x (0422>-+F E D ) 其中圆心为(,)22D E --,半径为r =2、直线与圆的位置关系点),(00y x 和圆222)()(r b y a x =-+-的位置关系有三种:222222222)()()(rb y a x r b y a x rb y a x >-+-⇔=-+-⇔<-+-⇔)(点在圆外)(点在圆上)(点在圆内直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .切线方程:(1)当点),(00y x P 在圆222r y x =+上⇔200r y y x x =+ 圆222)()(r b y a x =-+-⇔200))(())((r b y b y a x a x =--+-- (2)当点),(00y x P 在圆222r y x =+外,则设直线方程()00x x k yy -=-,并利用d=r 求出斜率,即可求出直线方程【备注:切线方程一定是两条,考虑特殊直线k 不存在】④弦长公式:222||d r AB -==3、两圆位置关系:21O O d =⑴外离:r R d +> ⇔有4条公切线 ⑵外切:r R d += ⇔有3条公切线 ⑶相交:r R d r R +<<- ⇔有2条公切线 ⑷内切:r R d -= ⇔有1条公切线 ⑸内含:r R d -< ⇔有0条公切线三、圆锥曲线与方程1.椭圆焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程 ()222210x y a b a b+=>> ()222210y xa b a b+=>> 第一定义 到两定点21F F 、的距离之和等于常数2a , 即21||||2MF MF a +=(212||a F F >)第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(01)MFe e d=<< 范围 a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A()1,0b B -、()2,0b B轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 222122()F F c c a b ==-离心率 22222221(01)c c a b b e e a a a a-====-<<准线方程 2a x c=±2a y c=±焦半径 0,0()M x y 左焦半径:10MF a ex =+ 右焦半径:20MF a ex =-下焦半径:10MF a ey =+ 上焦半径:20MF a ey =-焦点三角形面积12212tan()2MF F S b F MF θθ∆==∠021s 21y c in PF PF •=••=θ 通径过焦点且垂直于长轴的弦叫通径: ab 222.双曲线焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程 ()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 第一定义到两定点21F F 、的距离之差的绝对值等于常数2a , 即21||||2MF MF a -=(2102||a F F <<)第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(1)MFe e d=> 范围 或x a ≤-x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A()10,a A -、()20,a A轴长 实轴的长2a = 虚轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 222122()F F c c a b ==+离心率 22222221(1)c c a b b e e a a a a+====+>准线方程 2a x c=±2a y c=±渐近线方 程b y x a=±a y x b=±焦半径0,0()M x y M 在右支1020MF ex aMF ex a ⎧=+⎪⎨=-⎪⎩左焦:右焦:M 在左支1020MF ex a MF ex a ⎧=--⎪⎨=-+⎪⎩左焦:右焦:M 上支1020MF ey aMF ey a ⎧=+⎪⎨=-⎪⎩左焦:右焦:M 下支1020MF ey aMF ey a ⎧=--⎪⎨=-+⎪⎩左焦:右焦:焦点三角形面积 12212cot()2MF F S b F MF θθ∆==∠021s 21y c in PF PF •=••=θ 通径过焦点且垂直于长轴的弦叫通径:ab 22【备注】1、双曲线和其渐近线得关系:由双曲线求渐进线:x a b y a x b y ax b y b y a x b y a x ±=⇒±=⇒=⇒=-⇒=-22222222222201 由渐进线求双曲线:λ=-⇒=-⇒=⇒±=⇒±=2222222222220by a x b y a x a x b y a x b y x a b y2.等轴双曲线⇔实轴和虚轴等长的双曲线⇔其离心率e =2⇔渐近线x ±=y⇔方程设为λ=-22y x2、求弦长的方法: ①求交点,利用两点间距离公式求弦长; ②弦长公式) (消 ) (消x y y y y k y y k y x x x x k x x k l ]4))[(11(||11]4))[(1(1212212212212212212-++=-+=-++=-+=3.抛物线图形五、.直线与圆锥曲线的关系1、直线与圆锥曲线的关系如:直线y=kx+b与椭圆x2a2+y2b2=1 (a>b>0)的位置关系:直线与椭圆相交?⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y 2b 2=1⇔有2组实数解,即Δ>0.直线与椭圆相切?⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b 2=1⇔有1组实数解,即Δ=0,直线与椭圆相离⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b 2=1⇔没有实数解,即Δ<③、与弦的中点有关的问题常用“点差法”:把弦的两端点坐标代入圆锥曲线方程,作差→弦的斜率与中点的关系;0202y a x b k -=(椭圆) 0202y a x b k =(双曲线)3、关于抛物线焦点弦的几个结论(了解)设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则⑴ 221212,;4p x x y y p ==- ⑵ 22;sin p AB θ=⑶ 以AB 为直径的圆与准线相切;⑷ 焦点F 对A B 、在准线上射影的张角为2π;⑸112.||||FA FB P +=。
(适合高一)平面解析几何(直线与圆)所有公式 1.两点间距离公式:两点()11,A x y ,()22,B x y .()()212212y y x xAB -+-=2.点到直线距离公式:()00,y x P ,直线0=++C By Ax .2200BA CBy Ax d +++= 3.中点坐标:),(11y x A 和()22,y x B 的中点坐标为⎪⎭⎫⎝⎛++2,22211y x y x4.斜率公式: ①已知两点()11,A x y ,()22,B x y )(21x x ≠, 则1212x x y y k --=②已知倾斜角α,则αtan =k5.斜率的取值范围:()+∞∞-∈,k6.倾斜角范围:[)︒∈1800,α7.直线方程的五种形式:(1)点斜式方程:点()00,y x A , 斜率k .()00x x k y y -=-(2)斜截式方程:斜率k ,截距b .[或给点()b ,0].※截距b 是坐标, 有+,有-,有0。
b kx y += (3)两点式方程:),(11y x A ,()22,B x y (21x x ≠且21y y ≠)则121121x x x x y y y y --=--(21x x ≠,且21y y ≠) (4)截距式方程.横截距a ,纵截距b [或给点()0,a ,()b ,0]则1=+bya x (0≠a 且0≠b )(5)一般式方程:适合与所有条件,最后统一写成方程形式)0(022≠+=++B A C By Ax8.两条直线的位置关系 (1)相交⇔(一般式)01221≠-B A B A⇔(一般式))0(222121≠≠B A B B A A⇔(斜截式)21k k ≠(2)平行⇔(一般式)01221=-B A B A 且02121≠-B C C B 或02112≠-C A C A⇔(一般式))0(222212121≠≠=C B A C C B B A A⇔(斜截式)21k k =且21b b ≠(3)重合⇔(一般式))0(,,212121≠===λλλλC C B B A A⇔(一般式)212121C C B B A A ==⇔(一般式)01221=-B A B A 且02121=-B C C B 或02112=-C A C A⇔(斜截式)21k k =且21b b = (4)垂直⇔(一般式)02121=+B B A A⇔(斜截式)121-=k k9.一般式方程0=++C By Ax (0≠B ,保证斜率k 存在)与斜截式方程b kx y +=关系:BCb B A k -=-=,10.常用结论(1)与0=++C By Ax 平行的直线方程为)(0C D D By Ax ≠=++※必须写(2)与0=++C By Ax 垂直的直线方程为0=+-D Ay Bx(3)两条平行直线01=++C By Ax 与02=++C By Ax 之间的距离2221BA C C d +-= 11.圆的方程(1)标准方程:()()222r b y a x =-+-。
解析几何知识点总结解析几何是数学中的一个重要分支,它通过坐标和方程来研究几何图形的性质和相互关系。
下面我们来详细总结一下解析几何的主要知识点。
一、直线1、直线的倾斜角直线倾斜角的范围是0, π),倾斜角α的正切值tanα称为直线的斜率k。
当倾斜角为π/2 时,直线的斜率不存在。
2、直线的方程(1)点斜式:y y₁= k(x x₁),其中(x₁, y₁)是直线上的一点,k 是直线的斜率。
(2)斜截式:y = kx + b,其中 k 是斜率,b 是直线在 y 轴上的截距。
(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁),其中(x₁, y₁)和(x₂, y₂)是直线上的两个点。
(4)截距式:x/a + y/b = 1,其中 a 是直线在 x 轴上的截距,b 是直线在 y 轴上的截距。
(5)一般式:Ax + By + C = 0(A、B 不同时为 0)(1)平行:两条直线斜率相等且截距不相等,即 k₁= k₂且 b₁≠ b₂;或者两条直线的一般式中,A₁B₂ A₂B₁= 0 且 A₁C₂A₂C₁≠ 0 。
(2)垂直:两条直线斜率的乘积为-1,即 k₁k₂=-1 ;或者两条直线的一般式中,A₁A₂+ B₁B₂= 0 。
4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离为 d =|Ax₀+By₀+ C| /√(A²+ B²)二、圆1、圆的标准方程(x a)²+(y b)²= r²,其中(a, b)是圆心坐标,r 是圆的半径。
2、圆的一般方程x²+ y²+ Dx + Ey + F = 0 (D²+ E² 4F > 0),圆心坐标为(D/2, E/2),半径为 r =√(D²+ E² 4F) / 2 。
3、直线与圆的位置关系(1)相交:圆心到直线的距离小于半径,即 d < r 。
1、斜率公式 2121y y k x x -=-(111(,)P x y 、222(,)P x y ).2、直线的五种方程(熟练掌握两点和截距式、一般式)(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).点法式和点向式在求直线方程时较直观. 3、两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;11112222A B C l l A B C ⇔==与重合 ②1212120l l A A B B ⊥⇔+=; 4、到角公式和夹角公式 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.当12121210k k A A B B =-+=或时,直线12l l ⊥,直线l 1到l 2的角及l 1及l 2的夹角都是2π.5、四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.6、点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).7、两条平行线:1122:0:0l Ax By C l Ax By C ++=++=与之间的距离是:d =8、点(,)P u v 关于点(,)Q s t 的对称点的坐标为:(2,2)s u t v --.特别地,点(,P u v 关于原点的对称点的坐标为:(20,20)u v ⨯-⨯-,即(,)u v --.9、直线0Ax By C ++=关于点(,)P u v 对称的直线的方程为:(2)(2)0A u x B v y C -+-+=. 直线0Ax By C ++=关于原点、x 轴,y 轴对称的直线的方程分别为:()()0A x B y C -+-+=,()0Ax B y C +-+=,()0A x By C -++=.10、直线0Ax By C ++=关于直线,x u y v ==对称的直线的方程分别为: (2)0A u x By C -++=,(2)0Ax B v y C +-+=.11、曲线(,)0f x y =关于点(,)P u v 对称的直线的方程为:(2,2)0f u x v y --=.12、点(,)P s t 关于直线0Ax By C ++=的对称点的坐标为:22(2As By Cs A A B ++-⨯+,222)As By Ct B A B++-⨯+.特别地,当||||0A B =≠时,点(,)P s t 关于直线0Ax By C ++=的对称点的坐标为:(,)Bt C As CA B++--.点(,)P s t 关于x 轴、y 轴,直线x u =,直线y v =的对称点的坐标分别为:(,),(,),(2,),(,2)s t s t u s t s v t ----. 13、0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:当B 与Ax By C ++同号时,表示直线l 上方的区域;当B 与Ax By C ++异号时,表示直线l下方的区域.简言之,同号在上,异号在下.当A 与Ax By C ++同号时,表示直线l 右方的区域;当A 与Ax By C ++异号时,表示直线l 左方的区域. 简言之,同号在右,异号在左. 14、111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:12111222()()0B B A x B y C A x B y C ++++>所表示的平面区域是上上、下下两部分;12111222()()0B B A x B y C A x B y C ++++<所表示的平面区域上下、下上两部分. 12111222()()0A A A x B y C A x B y C ++++>所表示的平面区域是左左、右右两部分; 12111222()()0A A A x B y C A x B y C ++++<所表示的平面区域左右、右左两部分.15、圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).16、 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.17、点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.18、直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .其中22BA CBb Aa d +++=.19、两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .20、圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x x E y y x x y y F ++++++=表示过两个切点的切点弦方程.②过圆外一点00(,)P x y 的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k的圆的切线方程为y kx =±21、椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.22、椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.23、椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b ⇔+>. 24、椭圆的切线方程(1)椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是22222A aB b c +=.25、双曲线22221(0,0)x y a b a b-=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.26、双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b⇔-<. 27、双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).28、双曲线的切线方程(1)双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=.29、椭圆、双曲线的心准距是:2a c ,焦准距是:2b c ,通径长是:22b a.30、过椭圆、双曲线的焦点的弦长为:22222|cos |ab a c θ-,过顶点的弦长为:22222|cos |cos ab a c θθ-,其中θ是弦与长(实)轴所成的一个角(是锐角或直角或钝角都可以).31、抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.过焦点弦长p x x px p x CD ++=+++=212122.32、抛物线px y 22=上的动点可设为P ),2(2 y py 或或)2,2(2pt pt P P (,)x y ,其中 22y px = . 33、二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a--=. 34、抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 35、抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =. 36、两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.37、直线与圆锥曲线相交的弦长公式AB =|AB|y , 剩下x ,后者适用于消去x ,剩下y )或AB =1212||||x x y y =-=-(弦端点A ),(),,(2211y x B y x ,由方程(,)0y kx b F x y =+⎧⎨=⎩ 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率). 38、圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=.(2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 39、“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均可由此方程得到.。
[高中解析几何公式]解析几何公式解析几何公式(一)1.倾斜角( )2.斜率(刻画直线对于x轴的倾斜程度)(1) (2) 【在、上单调递增】3.直线的方程:(1)斜截式:(不能表示斜率不存在的直线)(2)点斜式:(不能表示斜率不存在的直线)(3)两点式:(不能表示两种直线)(4)截距式:(不能表示y=kx,三种直线)(5)一般式:(其中A、B不同时为零)4.两直线位置关系的判定与性质定理列表如下:平行且重合且垂直5. 到角和夹角:设,(1) 到角:依逆时针方向旋转到与重合时所转的角当k1,k2都存在且k1k2 -1时,到的角为,则;(2)夹角:和相交构成的四个角中不大于直角的角叫这两条直线所成的角,简称夹角当k1,k2都存在且k1k2 -1时,与的夹角为,则6.点到直线的距离公式点P 到的距离 .7.平行线间距离公式两平行线与之间的距离为 .8.若A ,P(x,y)P在直线AB上,且P分有向线段AB所成的比为,定比,则9.两点间距离:若,则特别地:轴,则轴,则10.直线系方程(1)平行直线系与(2)垂直直线系与(3)过已知点的直线系(不包括)11.线性规划(1) 二元一次不等式表示平面区域如果(A0)则点在直线右侧;如果(A0)则点在直线左侧;如果(A0)则点在直线上(2)线性规划:求线性目标函数在线性约束条件下的最值问题,统称为线性规划;满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫可行域12.圆(一)圆方程常见形式:(1)标准式:(__a)2+(y-b)2=r2(R0),其中(a,b)为圆心,r为半径;(2)一般式:x2+y2+Dx+Ey+F=0,配方得:(3)参数式:(__a)2+(y-b)2=R2(R0)的参数式为:,为参数圆与二元二次方程一一对应,这些二元二次方程方程特征为:(1)二次项中无xy交叉项;(2)x2,y2项前面系数相等;(3)x,y的一次项系数D,E及常数项F满足D2+E2-4F0(二)直线与圆的位置关系有三种解析几何公式(二)1.第一定义椭圆:若F1 F2是两定点,P为动点,且( 为常数)则P点的轨迹是椭圆(当时,则P点的轨迹是线段)双曲线:若F1 F2是两定点,( 为常数),则动点P的轨迹是双曲线(当时,则P点的轨迹是射线)2.第二定义椭圆:若F1为定点,l为定直线,动点P到F1的距离与到定直线l的距离之比为常数e(0e1),则P点的轨迹是椭圆双曲线:若动点P到定点F与定直线l的距离之比是常数e(e1),则动点P的轨迹是双曲线3.椭圆的标准方程及几何性质标准方程中心在原点,焦点在轴上中心在原点,焦点在轴上范围,,对称性关于轴、轴、原点对称(原点为中心)顶点四个顶点A 、A 、B 、B焦点F (-c,0),F (c,0)F (0,-c),F (0,c)轴长轴|A A |=2a,短轴|B B |=2b离心率离心率越大,椭圆越扁,离心率越小,椭圆越圆(反记法)准线=通径通径长焦准距4.双曲线的标准方程及几何性质标准方程中心在原点,焦点在轴上中心在原点,焦点在轴上范围或或对称性关于轴、轴、原点对称(原点为中心)顶点A(-a,0) B(a,0)A(0,-a), B(0,a)焦点F (-c,0),F (c,0)F (0,-c),F (0,c)轴实轴长|A A |=2a,虚轴长|B B |=2b,焦点在实轴上离心率离心率越大,双曲线越开阔准线=准线垂直于实轴,且在两顶点的内侧准线垂直于实轴,且在两顶点的内侧渐近线通径通径长焦准距5.焦半径:(1) 椭圆:或(负半轴) 或(正半轴)焦半径范围(1) 双曲线:(长) (短)焦半径范围6.焦半径之积(1)椭圆:(2)双曲线:7.焦点三角形面积S = (椭圆)S = (双曲线)8.弦长公式:9.补充知识:1具有共同渐近线的双曲线系若双曲线方程为渐近线方程:若渐近线方程为双曲线可设为若双曲线与有公共渐近线,可设为( ,焦点在x轴上,,焦点在y轴上)2等轴双曲线:当离心率两渐近线互相垂直,分别为y= ,此时双曲线为等轴双曲线,可设为3.优美椭圆和优美双曲线(1)我们把离心率等于黄金比的椭圆称为优美椭圆,设为优美椭圆,F、A分别为它的左焦点和右顶点,B是它的短轴的一个端点,则有:(2)我们把离心率等于黄金比倒数即的双曲线称为优美双曲线,设为优美双曲线,F、A分别为它的左焦点和右顶点,B是它的虚轴的一个端点,则有:3. 共轭双曲线:我们把“以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线”定义为原双曲线的共轭双曲线与特征1:具有共同渐近线特征2:焦距相等特征3:解析几何公式(三)(二)抛物线(一)定义:到定点F与定直线l的距离相等的点的轨迹是抛物线即到定点F的距离与到定直线l的距离之比是常数e(e=1)(二)图形:(三)基本性质:方程:;焦点:,通径;准线:;焦半径:过焦点的弦长通径最短注意:抛物线上的动点可设为P 或P (四)抛物线的重要性质:已知AB是抛物线的焦点弦,F为抛物线的焦点,A B (1)(2)|AB|= 为直线AB与x轴的夹角(3)S△AOB= (4) 为定值(5)以AB为直径的圆与抛物线的准线相切(6) (直径所对的圆周角是直角)(7) (8)连接焦点和准线上任意一点的线段被y轴平分(三角形中位线)。
解析几何公式1. 直线的方程•一般式:ax + by + c = 0•点斜式:y - y₁ = k(x - x₁)•截距式:x/a + y/b = 12. 圆的方程•标准式:(x - h)² + (y - k)² = r²•一般式:x² + y² + Dx + Ey + F = 03. 曲线的方程•椭圆:(x - h)²/a² + (y - k)²/b² = 1•双曲线:(x - h)²/a² - (y - k)²/b² = 1 或 (y - k)²/a² - (x - h)²/b² = 1 •抛物线:y = ax² + bx + c4. 空间曲面的方程•二次曲面:Ax² + By² + Cz² + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 05. 距离公式•两点间距离公式:d = √((x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²)•点到直线的距离公式:d = |Ax₀ + By₀ + C| / √(A² + B²)•点到平面的距离公式:d = |Ax₀ + By₀ + Cz₀ + D| / √(A² + B² + C²) 6. 直线的位置关系•平行:两直线斜率相等•垂直:两直线斜率乘积为 -1•重合:两直线方程相同•相交:两直线方程组有唯一解7. 圆与直线的位置关系•外离:圆心到直线的距离大于半径•外切:圆心到直线的距离等于半径•相交:圆心到直线的距离小于半径•内切:圆心到直线的距离等于半径•内含:圆心到直线的距离小于半径8. 圆与圆的位置关系•外离:两圆心之间的距离大于两半径之和或差•外切:两圆心之间的距离等于两半径之和•相交:两圆心之间的距离小于两半径之和•内切:两圆心之间的距离等于两半径之差•内含:两圆心之间的距离小于两半径之差9. 抛物线的性质•开口方向:参数a决定– a > 0时,开口向上– a < 0时,开口向下•焦点:(h, k + 1/(4a))•准线:y = k - 1/(4a)10. 椭圆与双曲线的性质•焦点距离:2ae–椭圆:a > 0, a > b–双曲线:a > 0, a < b•焦点位置:–椭圆:(±ae, 0)–双曲线:(±ae, 0) 或 (0, ±ae)•扁率:c/a•主轴:长轴的两个端点•短轴:短轴的两个端点以上是一些常见的解析几何公式,有助于解决直线、圆、曲线以及空间曲面的方程和位置关系问题。
解析几何中的基本公式
平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++
则:2
2
21B
A C C d +-=
注意点:x ,y 对应项系数应相等。
点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2
2
B
A C
By Ax d +++=
直线与圆锥曲线相交的弦长公式:⎩
⎨
⎧=+=0)y ,x (F b
kx y
消y :02
=++c bx ax ,务必注意.0>∆ 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+=
若A ),(),,(2211y x B y x ,P (x ,y )。
P 在直线AB 上,且P 分有向线段AB 所成的比为λ,
则⎪⎪⎩
⎪⎪⎨⎧λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且⎪⎪⎩⎪⎪⎨⎧
+=+=2221
21y y y x x x
变形后:y
y y y x x x x --=λ--=
λ21
21或 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2
11
21tan k k k k +-=
α
若l 1与l 2的夹角为θ,则=
θtan 2
1211k k k k +-,]2,0(π
∈θ
注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。
(2)l 1⊥l 2时,夹角、到角=
2
π。
(3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。
(1)倾斜角α,),0(π∈α; (2)]0[,π∈θθ→
→,,夹角b a ;
(3)直线l 与平面]2
0[π∈ββα,,的夹角;
(4)l 1与l 2的夹角为θ,∈θ]2
0[π,,其中l 1//l 2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,,
直线的倾斜角α与斜率k 的关系
每一条直线都有倾斜角α,但不一定有斜率。
若直线存在斜率k ,而倾斜角为α,则k=tan α。
直线l 1与直线l 2的的平行与垂直
(1)若l 1,l 2均存在斜率且不重合:①l 1//l 2⇔ k 1=k 2 ②l 1⊥l 2⇔ k 1k 2=-1
(2)若0:,0:22221111=++=++C y B x A l C y B x A l
若A 1、A 2、B 1、B 2都不为零 l 1//l 2⇔
2
1
2121C C B B A A ≠
=; l 1⊥l 2⇔ A 1A 2+B 1B 2=0;
l 1与l 2相交⇔
2
121B B A A ≠ l 1与l 2重合⇔
2
1
2121C C B B A A =
=; 注意:若A 2或B 2中含有字母,应注意讨论字母=0与≠0的情况。
直线方程的五种形式
名称 方程 注意点
斜截式: y=kx+b 应分①斜率不存在 ②斜率存在
点斜式: )( x x k y y -=- (1)斜率不存在: x x =
(2)斜率存在时为)( x x k y y -=- 两点式:
1
21
121x x x x y y y y --=--
截距式:
1=+b
y
a x 其中l 交x 轴于)0,(a ,交y 轴于),0(
b 当直线l 在坐标轴上,截距相等时应分:
(1)截距=0 设y=kx (2)截距=0≠a 设1=+a
y a x 即x+y=a
一般式: 0=++C By Ax (其中A 、B 不同时为零) 11、直线0=++C By Ax 与圆2
2
2
)()(r b y a x =-+-的位置关系有三种 若2
2
B
A C Bb Aa d +++=
,0<∆⇔⇔>相离r d
0=∆⇔⇔=相切r d 0>∆⇔⇔<相交r d 13、圆锥曲线定义、标准方程及性质
(一)椭圆
定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。
定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0<e<1),则P 点的轨迹是椭圆。
标准方程:122
22=+b
y a x )0(>>b a
定义域:}{a x a x ≤≤-值域:}{b y b x ≤≤- 长轴长=a 2,短轴长=2b
焦距:2c
准线方程:c
a x 2
±=
焦半径:
)
(2
1c
a x e PF +=,
)
(2
2x c
a e PF -=,
2
12PF a PF -=,c a PF c a +≤≤-1等(注意涉及焦半径①用点P 坐标表示,②第一定义。
)
注意:(1)图中线段的几何特征:=11F A c a F A -=22,=21F A c a F A +=12 =11F B a F B F B F B ===122221 ,222122b a B A B A +==等等。
顶点与准线距离、焦点与准线距
离分别与c b a ,,有关。
(2)21F PF ∆中经常利用余弦定理....、三角形面积公式.......将有关线段1PF 、2PF 、2c ,有关角21PF F ∠结合起来,
建立1
PF +2PF 、1
PF •
2PF 等关系
(3)椭圆上的点有时常用到三角换元:⎩⎨
⎧θ
=θ
=sin cos b y a x ;
(4)注意题目中椭圆的焦点在x 轴上还是在y 轴上,请补充当焦点在y 轴上时,其相应的性质。
二、双曲线
(一)定义:Ⅰ若F 1,F 2是两定点,21212F F a PF PF <=-(a 为常数)
,则动点P 的轨迹是双曲线。
Ⅱ若动点P 到定点F 与定直线l 的距离之比是常数e (e>1),则动点P 的轨迹是双曲线。
(二)图形:
(三)性质
方
程
:
12
2
22=-b y a x
)0,0(>>b a 122
22=-b
x a y )0,0(>>b a
定义域:}{a x a x x ≤≥或; 值域为R ; 实轴长=a 2,虚轴长=2b
焦距:2c
准线方程:c
a x 2
±=
焦半径:
)(21c a x e PF +=,)(2
2x c
a e PF -=,a PF PF 221=-;
注意:(1)图中线段的几何特征:=1AF a c BF -=2,=2AF c a BF +=1
顶点到准线的距离:c a a c a a 22+-或;焦点到准线的距离:c a c c a c 22+-或;两准线间的距离=c
a 2
2
(2)若双曲线方程为12222=-b y a x ⇒渐近线方程:⇒=-02222b y a x x a
b
y ±=
若渐近线方程为x a
b
y ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x
若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22
22b
y a x
(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上) (3)特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,
可设为λ=-2
2
y x ;
(4)注意21F PF ∆中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将有关线段1PF 、2PF 、2
1F F 和角结合起来。
二、抛物线
(一)定义:到定点F 与定直线的距离相等的点的轨迹是抛物线。
即:到定点F 的距离与到定直线l 的距离之比是常数e (e=1)。
(二)图形:
(三)性质:方程:焦参数-->=p p px y ),0(,22;
焦点: )0,2
(
p
,通径p AB 2=; 准线: 2
p
x -=;
焦半径:,2p x CF += 过焦点弦长p x x p
x p x CD ++=+++=21212
2
注意:(1)几何特征:焦点到顶点的距离=2
p
;焦点到准线的距离=p ;通径长=p 2
顶点是焦点向准线所作垂线段中点。
(2)抛物线px y 22
=上的动点可设为P ),2(2
y p
y 或或)2,2(2pt pt P P px y y x 2),(2
=其中。